

Supporting Materials

The Scissors Effect in Action: The Fox-Flory Relationship Between the Glass Transition Temperature of Crosslinked Poly(Methyl Methacrylate) and Mc in Nanophase Separated Poly(Methyl Methacrylate)-*l*-Polyisobutylene Conetworks

Szabolcs Pásztor ^{1,*}, Bálint Becsei ¹, Györgyi Szarka ¹, Yi Thomann ², Ralf Thomann ^{2,3}, Rolf Mühlhaupt ^{2,3,4} and Béla Iván ^{1,*}

- ¹ Polymer Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary; modulus03@gmail.com (B.B.); szarka.gyorgyi@ttk.hu (G.S.)
- ² Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, D-79110 Freiburg, Germany; yi.thomann@fmf.uni-freiburg.de (Y.T.); ralf.thomann@fmf.uni-freiburg.de (R.T.); rolf.muelhaupt@makro.uni-freiburg.de (R.M.)
- ³ Freiburg Materials Research Center, University of Freiburg, Stefan-Meier-Str. 21, D-79104 Freiburg, Germany
- ⁴ Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Str. 31, D-79104 Freiburg, Germany
- *Correspondence: pasztor.szabolcs@ttk.hu (S.P.), ivan.bela@ttk.hu (B.I.)

Received: 4 October 2020; Accepted: 24 October 2020; Published: 28 October 2020

Content

Molecular weight distribution curves of MA–PIB–MA and PMMA samples (Figures S1–S6) ¹H NMR spectra of MA–PIB–MA samples (Figures S7–S11)

Figure S1. The molecular weight distribution of the MA–PIB–MA2.3 methacrylate–telechelic polyisobutylene in logarithmic scale obtained by GPC measurement ($M_n = 2600 \text{ g/mol}, M_w/M_n = 1.06$).

Figure S2. The molecular weight distribution of the MA–PIB–MA4.1 methacrylate–telechelic polyisobutylene in logarithmic scale obtained by GPC measurement ($M_n = 4500$ g/mol, $M_w/M_n = 1.15$).

Figure S3. The molecular weight distribution of the MA–PIB–MA6.9 methacrylate–telechelic polyisobutylene in logarithmic scale obtained by GPC measurement ($M_n = 6800 \text{ g/mol}, M_w/M_n = 1.12$).

Figure S4. The molecular weight distribution of the MA–PIB–MA9.2 methacrylate–telechelic polyisobutylene in logarithmic scale obtained by GPC measurement (M_n = 9100 g/mol, M_w/M_n = 1.13)

Figure S5. The molecular weight distribution of the MA–PIB–MA13.3 methacrylate–telechelic polyisobutylene in logarithmic scale obtained by GPC measurement ($M_n = 11,900$ g/mol, $M_w/M_n = 1.07$).

Figure S6. The molecular weight distribution of the PMMA in logarithmic scale obtained by GPC measurement (M_n = 23,300, M_w/M_n = 4.97).

Figure S7. ¹H NMR spectrum of the MA–PIB–MA2.3 sample.

Figure S8. ¹H NMR spectrum of the MA–PIB–MA4.1 sample.

Figure S9. ¹H NMR spectrum of the MA–PIB–MA6.9 sample.

Figure S11. ¹H NMR spectrum of the MA–PIB–MA13.3 sample.