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Abstract: Dye wastewater is a serious threat to human health and life. It is an important task for
researchers to treat it efficiently. Among many treatment methods, the photo-Fenton method can
rapidly degrade organic pollutants. In this study, a ternary photocatalyst, Ag2O-NiO/CuFe2O4,
was prepared and applied for a photo-Fenton reaction to degrade methylene blue (MB). MB had
the best degradation effect when 10 mg of the catalyst were used in an 80 mL reaction system for
measurement. The degradation rate of MB was up to 96.67% in 60 min with a high degradation rate
constant k = 5.67× 10−2min−1. The total organic carbon (TOC) degradation rate was 78.64% with
a TOC degradation rate constant of k = 2.57× 10−2min−1. Therefore, this study fully proves that
Ag2O-NiO/CuFe2O4 can catalyze the photo-Fenton reaction and effectively degrade MB.
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1. Introduction

With the rapid development of global industry, the problem of water pollution has become more
and more severe. Organic dyes based on heterocyclic aromatic/aromatic-azo compounds are highly
toxic, carcinogenic, and difficult to degrade [1,2]. Methylene blue (MB) mainly comes from the printing
and dyeing industry [3]. MB can prevent sunlight from entering water and therefore affects the growth
of aquatic organisms [4]. Furthermore, MB can cause eye burns and may even lead to permanent
damage. If MB is taken into the body, it will cause a burning sensation and vomiting. Therefore,
the treatment of dye wastewater has become an urgent problem. Unfortunately, traditional wastewater
treatment processes (microbial degradation) cannot efficiently decompose MB.

In recent years, researchers have proposed many new technologies, such as adsorption,
condensation, photocatalysis, electrocatalysis, and the photo-Fenton process [5–8]. Solar energy
is an inexhaustible clean energy source that can be used to degrade MB and other dyes. Due to
the economics of solar energy, photocatalysis is considered one of the most promising methods.
Many semiconductor materials can decompose toxic organic compounds into non-toxic inorganic
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compounds under light irradiation. Various semiconductors have been developed as photocatalysts,
including CuFe2O4, TiO2, CdS, Bi2O3, Ag2O, NiO, and g-C3N4 and so on [9–12]. Copper ions and
iron ions can participate in the photo-Fenton reaction [13]. Therefore, CuFe2O4 can also trigger the
photo-Fenton reaction.

Among many photocatalysts, CuFe2O4 has attracted wide attention because of its suitable energy
band structure, high chemical stability, thermal stability and low toxicity [14]. In addition, CuFe2O4

has magnetic properties that makes it easy to recycle [15,16]. It will not cause secondary pollution
and can be widely used in heterogeneous catalysis. CuFe2O4 has a relatively narrow band gap [17]
that can absorb visible light. In order to increase its absorption rate of visible light, it is often
prepared into a micro-nano structure [18,19]. The surface of the structure produces defect energy
levels and surface energy levels during the preparation process, thereby providing a recombination
center for photo-generated electron-holes [20,21]. Then, the lifetime of electrons and holes is reduced,
i.e., the photocatalytic efficiency is reduced. Therefore, a single transition metal oxide used for
the photocatalytic degradation of MB cannot meet the needs of practical applications. At present,
researchers have made many efforts to improve the photocatalytic properties of materials, such as
noble metal loading, metal doping, and coupling with other semiconductors (MoS2, Co3O4, NiO,
WO3, etc.) [9,22–24]. The latest literature has reported that mixed transition metal oxides (CuO/Fe3O4,
CuO/MnFe2O4, γ-Fe2O3/Mn3O4, and CoO-CuO) not only have excellent catalytic performance but also
maintain excellent stability [24–26]. Therefore, the combination of CuFe2O4 and other semiconductors
would increase the photo-Fenton reaction rate.

Ag2O and NiO are often used in photocatalysis research. Though it is a narrow-band gap
semiconductor, Ag2O is rarely used as the main catalyst, but it is used as a co-catalyst due to the
instability of its photocatalytic reaction and its high carrier recombination rate [23,27]. NiO is a wide
band gap semiconductor with important electronic, chemical, and electrical properties [28]. NiO can
only absorb ultraviolet light, so its utilization rate of sunlight is low. It is the best choice to combine
NiO with other semiconductor materials to improve its photocatalytic activity.

Based on above introduction, the hydrothermal method and calcination were used to prepare an
Ag2O-NiO/CuFe2O4 ternary catalyst, which showed an excellent photocatalytic performance under
sunlight. Within 60 min of photocatalytic degradation in photo-Fenton system, the removal rate of
MB was 96.67%. The degradation mechanism of MB in this study was analyzed according to its
characterization and catalytic performance.

2. Material and Methods

2.1. Chemicals

Copper sulfate pentahydrate (CuSO4·5H2O, analytical reagent (AR)), ferric chloride hexahydrate
(FeCl3·6H2O, AR), nickel acetate tetrahydrate (C4H6NiO4·4H2O, AR), silver sulfate (Ag2SO4, AR),
sodium hydroxide (NaOH, AR), methylene blue (MB, AR), 30.0% hydrogen peroxide (H2O2, AR),
absolute ethanol (EtOH, C2H5OH, AR), and t-butanol (TBA, (CH3)3COH, AR) were purchased from
Sinopharm Chemical Reagent (Shanghai, China) and were used as received without further purification.

2.2. Synthesis and Characterization of Ag2O-CuFe2O4/NiO

In 200 mL deionized water, 3.210 g CuSO4·5H2O and 2.705 g FeCl3·6H2O were fully dissolved
under magnetic stirring; this is marked as solution A. Additionally, a 100 mL NaOH solution was
prepared with a final pH of 9; this is marked as solution B. We dropwise added solution A to solution B
under magnetic stirring, and we kept the pH of the mixture at 9 from beginning to end by adding 1.0 M
NaOH, thus generating a black suspension. Then, the suspension was evaporated and concentrated to
60 mL at 60 ◦C under magnetic stirring. The 60 mL concentrated suspension was poured into a stainless
steel reactor and placed in a 100 ◦C oven for 10 h. Subsequently, the concentrated suspension was
centrifuged and dried to obtain a black powder, which is denoted as powder C. To remove undesired
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soluble ions such as Na+, SO4
2− and Cl−, powder C was washed with deionized water and then

centrifuged three times; then, precipitate powder C was dried in a 60 ◦C oven overnight. Then, 0.117 g
of Ag2SO4 and 0.031 g of C4H6O4Ni·4H2O were dissolved in 20 mL of deionized water, and all of black
powder C was poured in; this is denoted as mixture M. Mixture M was tempestuously stirred at room
temperature for 2 h to make powder C fully and uniformly contact Ag+ and Ni2+. Then, mixture M
was dried at 60 ◦C under magnetic stirring until the deionized water completely evaporated. We then
put the residual solid mixture M into a muffle furnace for high-temperature calcination in an air
atmosphere. The detailed process of sample preparation is shown in Figure 1. Figure S1 shows the MB
degradation with the samples calcined at different temperatures. It can be found from Figure S1 that
the sample calcined at 650 ◦C had the best degradation effect of MB, so the calcination temperature of
all samples used in this study was 650 ◦C and the sample was coded as Ag2O-NiO/CuFe2O4. The molar
ratio among Ag2O, NiO, and CuFe2O4 was calculated as 3:1:40 in Ag2O-NiO/CuFe2O4. For control
experiments, a sample without the addition of Ag2SO4 and C4H6O4Ni·4H2O was also prepared by
directly calcining powder C; this is coded as CuFe2O4.
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Figure 1. The schematic illustration of the synthetic process of Ag2O-NiO/CuFe2O4.

The phase composition and crystal structure of Ag2O-NiO/CuFe2O4 were analyzed by transmission
electron microscopy (TEM) with a JEM2100 (JEOL, Tokyo, Japan) and X-ray diffraction (XRD) with an
XRD-6000 (Shimadzu, Kyoto, Japan) with the radiation (λ = 1.5406 Å) in the range of 2θ from 10◦ to
70◦ and a 1◦/min scanning rate.

2.3. Photodegradation Experiments

The photocatalytic performance of Ag2O-NiO/CuFe2O4 was evaluated with MB. A 500 W Xe
lamp (GXZ500, Shanghai Jiguang special lighting electric appliance factory, Shanghai, China) was
used as the simulated sunlight. The distance from the lamp to the MB suspension liquid level was
15 cm. As is typical, 10.0 mg of Ag2O-NiO/CuFe2O4 and 100 µL of H2O2 were simultaneously
added into an aqueous MB solution (80 mL, 10 mg/L), and then the MB photocatalytic degradation
experiment was carried out under the irradiation of the Xe lamp. At a certain time interval, a 3 mL
suspension was withdrawn from the reaction and subjected to centrifugation. In addition, the same
reaction mixture was magnetically stirred in the dark to compare the results irradiated by the Xe
lamp. The MB concentration was determined by a UV-VIS spectrophotometer (UV-1240 Shimadzu,
Kyoto, Japan) at the wavelength of 664 nm. The total organic carbon (TOC, mg/L) of the MB solution
was determined by a TOC analyzer (SSM-5000A Shimadzu, Kyoto, Japan) during the photocatalytic
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degradation process. To reveal the photocatalytic mechanism, typical radical scavengers such as EtOH
and TBA were used in reactions to verify the active species. We used the same method to analyze the
photo-Fenton performance of CuFe2O4, NiO/CuFe2O4, andAg2O/CuFe2O4 as the controls. The effects
of NiO/CuFe2O4 and Ag2O/CuFe2O4 on MB degradation are shown in Figure S2.

The degradation efficiency of MB can be calculated by Equation (1) [29]:

Degradation (%) = (1 − C/C0) × 100% (1)

where C and C0 represent the concentration of MB at time t and the pristine concentration of
MB, respectively.

In this study, Equation (2) [30] was used to analyze the pseudo-first-order dynamics.

−ln(C/C0) = kt (2)

where k is the apparent reaction rate constant (min−1).

3. Results and Discussion

3.1. Characterization of the Synthesized Ag2O-NiO/CuFe2O4

The phase composition and crystal structure of the sample studied by XRD are shown in Figure 2.
The XRD data proved that the material contained three components: Ag2O, NiO, and CuFe2O4.
The 18.55◦, 30.18◦, 35.65◦, 44.70◦, and 65.01◦ diffraction peaks appeared in the CuFe2O4 and
Ag2O-NiO/CuFe2O4 samples. They corresponded to the (101), (112), (211), (202), (220), and (400)
crystal planes of CuFe2O4 (PDF card No.72-1174), respectively. The 32.74◦ and 53.75◦ diffraction
peaks in Ag2O-NiO/CuFe2O4 corresponded to the (111) and (220) crystal planes of Ag2O (PDF card
No.12-793), respectively. The 37.29◦ and 62.67◦ diffraction peaks in Ag2O-NiO/CuFe2O4 corresponded
to the (101) and (110) crystal planes of the NiO phase (PDF card No.44-1159), respectively. These results
could convincingly verify the existence of Ag2O and NiO in Ag2O-NiO/CuFe2O4. Therefore, it was
proven that Ag2O, NiO, and CuFe2O4 were the main components in the sample and the as-prepared
Ag2O-NiO/CuFe2O4 was synthesized successfully.
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Figure 2. XRD patterns of CuFe2O4 and Ag2O-NiO/CuFe2O4.

The morphology of Ag2O-NiO/CuFe2O4 was characterized and analyzed by TEM, as shown in
Figure 3. In Figure 3b, the crystal lattice fringe of the sample can be clearly seen, which fully proves
that the sample had an excellent crystallinity within a certain size range that was conducive to carrier
transmission. Figure 3c–e shows the enlargements of the corresponding square areas in Figure 3b.
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The measured lattice plane spacings were 0.48, 0.249, and 0.205 nm, corresponding to the (101), (211),
and (220) crystal planes of CuFe2O4 (PDF card No.72-1174), respectively, which was consistent with
the results of XRD. Due to the small proportion of Ag+ and Ni2+ doping, Ag2O and NiO nanoparticles
were not found in the field of TEM.
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3.2. MB Degradation

The catalytic activity of synthetic nano-material Ag2O-NiO/CuFe2O4 was analyzed by observing
the degradation of MB in the water phase under simulated sunlight irradiation. The degradation
efficiency of MB with different catalysts is shown in Figure 4. In a typical experiment, the solid catalyst
dosage was 10 mg and the H2O2 dosage was 100 µL, both of which were simultaneously added to an
80 mL MB aqueous solution. Figure 4a shows the degradation of MB by Ag2O-NiO/CuFe2O4/H2O2 in
the dark. Meanwhile, the MB degradation by CuFe2O4, CuFe2O4/H2O2, H2O2, and Ag2O-NiO/CuFe2O4

were also compared. The MB removal in each curve decreased within 60 min, and the degradation
efficiency of Ag2O-NiO/CuFe2O4/H2O2 was the highest. However, the removal rate of MB was
only 8.60%, and the degradation rate constant was k = 1.50× 10−3min−1. The removal rate of
CuFe2O4/H2O2 on MB was 7.30%, and the degradation rate constant was k = 3.34× 10−4min−1.
The degradation efficiency of pure H2O2 was slightly lower than that of Ag2O-NiO/CuFe2O4/H2O2

and CuFe2O4/H2O2. However, in the comparative experiment without H2O2, the MB removal rates of
Ag2O-NiO/CuFe2O4 and CuFe2O4 were only 1.98% and 1.04%, respectively. Therefore, it can be seen
from these studies that Ag2O-NiO/CuFe2O4 and CuFe2O4 decreased the concentration of MB in the
dark due to the small amount of adsorption on the surface of nanomaterials. H2O2 could degrade dyes,
but the degradation efficiency was low. Figure 4c depicts the MB degradation under simulated sunlight
irradiation. Figure 4d shows that Ag2O-NiO/CuFe2O4/H2O2 had the highest pseudo-first-rate kinetic
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constant. Ag2O-NiO/CuFe2O4 and CuFe2O4 could catalyze the degradation of MB with H2O2, the MB
removal rates were as high as 96.67% and 57.88%, respectively, and the corresponding degradation
rate constants were k = 5.67× 10−2 and k = 1.44× 10−2min−1, respectively. With the assistance of
Ag2O-NiO/CuFe2O4, the MB degradation rate constant with H2O2 under simulated sunlight irradiation
was two orders of magnitude higher than that in the dark. Therefore, it was proven that we had
successfully synthesized a photocatalytic material that efficiently degraded MB. In CuFe2O4, the Cu
valence is +2 and the Fe valence is +3. In this study, Fe3+ was reduced to Fe2+ by photoelectrons. Cu2+

and Fe2+ can react with H2O2 to produce OH, which can efficiently degrade MB. This process is called
the Fenton reaction. Under solar irradiation, the catalytic effect of the catalyst is improved, and this
process is called the photo-Fenton reaction. The degradation of MB by Ag2O-NiO/CuFe2O4 and H2O2

under simulated sunlight irradiation was a photo-Fenton reaction.
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Figure 4. (a) Degradation of methylene blue (MB) with different catalysts in the dark; (b) the
pseudo-first-order reaction kinetics for MB degradation with different catalysts in the dark; (c) photocatalytic
degradation of MB with different composite photocatalysts under simulated solar irradiation; (d) the
pseudo-first-order reaction kinetics for MB degradation with different composite photocatalysts under
simulated solar irradiation; (e) percentage decrease in catalytic efficiency of Ag2O-NiO/CuFe2O4 for five
cycles. Initial MB concentration: 10 mg/L. Initial H2O2 concentration: 416 mg/L.
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In order to investigate the reuse potential of our photo-Fenton catalyst, Ag2O-NiO/CuFe2O4 was
collected after each degradation experiment via centrifugation. After deionized water washing and
drying at 60 ◦C, Ag2O-NiO/CuFe2O4 was reused as a reactive catalyst for MB degradation under the
same experimental conditions, and the results are shown in Figure 4e. The photocatalyst used for the
fifth time could still efficiently degrade MB in the aqueous phase, and the removal rate of MB was still
as high as 94.02%.

The total organic carbon (TOC) of the MB solution was determined during the experiment.
The TOC removal rate and the removal rate constant of Ag2O-NiO/CuFe2O4 were 78.64% and
k = 2.57× 10−2min−1 within 60 min, respectively, as shown in Figure 5. The TOC results suggested
that Ag2O-NiO/CuFe2O4/H2O2 could effectively mineralize MB under solar irradiation.
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Figure 5. (a) Total organic carbon (TOC) variation of MB; (b) pseudo-first-order kinetic fit for TOC
removal during the photo-Fenton process. Initial MB concentration: 10 mg/L. Initial H2O2 concentration:
416 mg/L.

By optimizing the amount of catalyst, the unnecessary use of a photocatalyst in degradation
experiments could be minimized. For this purpose, the 10 mg/L MB was degraded for 60 min using
1, 5, 10, 20, and 50 mg of catalysts mixed with 100 µL of H2O2 in an 80 mL MB solution. The results
are shown in Figure 6a,b. It was found that increasing the amount of catalyst from 1 to 50 mg
could cause the MB removal rate to increase from 86.06% to 96.67% and then decrease to 81.15%.
When the dosage of Ag2O-NiO/CuFe2O4 was 10 mg, the catalytic efficiency was the best. When the
Ag2O-NiO/CuFe2O4 dosage was less than 10 mg, the catalytic efficiency showed a positive correlation
with the catalyst dosage. Then, with the further increase of the catalyst dosage, the MB degradation
efficiency significantly decreased. When the dosage of catalyst was small, all reaction sites could fully
absorb sunlight and participate in the reaction together with H2O2 until the dosage of the catalyst
reached the optimal value. When the dosage of catalyst excessively increased, the light could not
penetrate into the dye solution due to excessive scattering of the material. Thus, the MB degradation
in the internal solution was hindered, so the overall degradation effect was poor. When the dosage of
Ag2O-NiO/CuFe2O4 was 10 mg, the degradation efficiency of MB was positively associated with the
dosage of H2O2, as shown Figure S3. However, when the dosage of H2O2 was greater than 100 µL,
the degradation efficiency changed slowly, so 100 µL was the cost-effective dosage for H2O2.
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Figure 6. (a) Effect of Ag2O-NiO/CuFe2O4 dosage on MB dye photodegradation; (b) the
pseudo-first-order reaction kinetics for MB dye degradation affected by different Ag2O-NiO/CuFe2O4

dosages. Initial MB concentration: 10 mg/L. Initial H2O2 concentration: 416 mg/L.

3.3. Enhanced Mechanism of Ag2O-NiO/CuFe2O4 on Photocatalytic Activity

In order to study the role of ·OH in the MB degradation process, EtOH and TBA were used as ·OH
quenchers. Then, we studied their effect on MB degradation, as shown in Figure 7. Both EtOH and
TBA inhibited MB degradation. When 10 mL of EtOH and 10 mL of TBA were added, the degradation
rates of MB were 0.44% and 0.64%, respectively. These data fully proved that the increase of ·OH
produced by the photo-Fenton reaction in this study led to an increase of the MB removal rate.
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Figure 7. The impact of different ·OH quenchers on MB removal in a photocatalytic system. (a) MB
degradation with different quenchers; (b) the pseudo-first-order reaction kinetics for MB degradation
with different quenchers. Initial MB concentration: 10 mg/L. Initial H2O2 concentration: 416 mg/L.

Ag2O-NiO/CuFe2O4 showed an excellent photocatalytic performance. Ag2O-NiO/CuFe2O4

was much more efficient in degrading MB than CuFe2O4. CuFe2O4 was a typical photocatalytic
semiconductor material with band gap width Eg = 1.43 eV, a conduction band bottom position
Ec = −1.12 V, and a valence band top position Ev = 0.31 V [31]. Under the sunlight irradiation, electrons
in the valence band of CuFe2O4 could absorb the photons (hυ > 1.43 eV) and jump to the conduction
band. Photogenerated electrons have reductive properties [32]. Thus, the ferric iron Fe(III) in CuFe2O4

can be reduced to Fe(II) via a ligand-to-metal charge transfer (LMCT) mechanism. As such, Fe(II) and
Cu(II) all can catalytically decompose H2O2 into OH, which is the key active species to degrade MB
dye [33]. Here, MB was adsorbed onto the surface of photocatalytic material due to hydrogen bonding,
π–π interactions, surface complexation, electrostatic interactions, and chemisorption. Then, the Fe(III)
and Cu(III) generated by H2O2 oxidation could be reduced into Fe(II) and Cu(II) by photo-induced
electrons, but the CuFe2O4 would show an oxidation state because it lacked electron, thus resulting
in a low photo-Fenton efficiency. The photo-Fenton reaction process sponsored by CuFe2O4 can be
described by Equations (3)–(6) [13].
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Ag2O and NiO are commonly used as photocatalysts. Ag2O has a narrow band gap, Eg = 1.51 eV,
and electron-hole pairs can be generated by absorbing visible light [13]. NiO has a wide band gap
width of 3.63 eV. The bottom of NiO conduction band is Ec = −0.345 V, and the top of the valence band
is Ev = 3.285 V [34]. A ternary catalyst composed of Ag2O, NiO, and CuFe2O4 can greatly improve
photocatalytic efficiency.

CuFe2O4 ≡ Fe(III) hv
→

(
h+
)
CuFe

2
O4 ≡ Fe(II) (3)(

h+)CuFe2O4 ≡ Fe(II) + H2O2 → (h+)CuFe2O4 ≡ Fe(III) + ·OH + OH− (4)

CuFe2O4 ≡ Cu(II) + H2O2 → CuFe2O4 ≡ Cu(III) + ·OH + OH− (5)

CuFe2O4 ≡ Cu(III) hv
→

(
h+
)
CuFe

2
O4 ≡ Cu(II) (6)

Ag2O hv
→

(
h+
)
Ag

2
O(e−) (7)(

h+
)
Ag

2
O(e−) + (h+

)CuFe2O4 ≡ Fe(III)→
(
h+
)
Ag

2
O + CuFe2O4 ≡ Fe(III) (8)(

h+
)
Ag

2
O(e−) + (h+

)CuFe2O4 ≡ Cu(II)→
(
h+
)
Ag

2
O + CuFe2O4 ≡ Cu(II) (9)(

h+
)
Ag

2
O + MB→ Ag2O + MBoxidation (10)

NiO hv
→ (h+)NiO(e−) (11)(

h+
)
NiO(e−) + (h

+
)CuFe2O4 ≡ Fe(III)→

(
h+
)
NiO + CuFe

2
O4 ≡ Fe(III) (12)(

h+
)
NiO(e−) + (h

+
)CuFe2O4 ≡ Cu(II)→

(
h+
)
NiO + CuFe

2
O4 ≡ Cu(II) (13)(

h+
)
NiO + OH− → NiO + ·OH (14)

·OH + MB→ CO2 + H2O + . . . . . . (15)

Because the number of photoelectrons produced by CuFe2O4 is very limited and the Fe(III) and
Cu(III) cannot be reduced in time, the photo-Fenton degradation effect of MB by the pristine CuFe2O4

reaction was very poor. Ag2O and NiO were able to promote the transition of photoelectrons in
the ternary catalyst, as shown in Figure 8. The electrons in the valence band could jump into the
conduction band under the sunlight excitation in Ag2O and NiO. Then, these photo-induced electrons
could jump into the valence band of CuFe2O4 via a heterogeneous structure, thus promoting the
effective reduction for Fe(III) and Cu(III) in CuFe2O4 and further improving the photo-Fenton efficiency.
In addition, the photo-induced hole in Ag2O could also directly oxidatively degrade MB. Meanwhile,
the photo-induced hole in NiO could oxidize OH− or H2O to produce OH for MB degradation [35].
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4. Conclusions

Ag2O-NiO/CuFe2O4 was synthesized by simple hydrothermal and calcination methods, and its
morphology and structure characteristics were analyzed by TEM and XRD. The synthesized
Ag2O-NiO/CuFe2O4 showed an excellent catalytic performance in the degradation of MB in wastewater
via the photo-Fenton reaction. The mineralization rate of the 10 mg/L (80 mL) MB solution was
78.64% within 60 min with 10 mg of the Ag2O-NiO/CuFe2O4 photo-Fenton catalyst and 100 µL of
H2O2. The novelty of this study lies in that Ag2O-NiO/CuFe2O4 is a novel, simple, low-cost and
high-efficient photocatalyst.
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