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Abstract: In the paper, the results of experimental investigations of ion implanted cutting tools
performance are presented. The tools, made out of Si3N4 with additives typically used for turning of
Ti-6Al-4V alloy, underwent implantation with ions of yttrium (Y+) and rhenium (Re+) using the metal
vapor vacuum arc method. Distribution of ions on the tool surface was measured. The cutting tools
were tested in turning process with measurement of cutting forces and analysis of wear. A rather
unexpected result was the increased wear of the tool after Y+ implantation with 1 × 1017 ion/cm2.
It was demonstrated, however, that the tool after Y+ 2 × 1017 ion/cm2 ion implantation provided the
best machining performance.

Keywords: cutting; turning; titanium alloy; tool performance; ion implantation; edge wear

1. Introduction

Due to its extraordinary properties, titanium and titanium alloy Ti-6Al-4V is widely used in
various branches of industry [1–3], such as aircraft, automotive industry and optoelectronics [4,5], or
medicine [6]. In the field of orthopedics and in dental prosthetics, titanium found a wide range of
applications [6,7]. Its high corrosion resistance is attributed to passive layers consisting of amorphous
TiO2, formed on the surfaces [8–10]. It may be characterized as a very difficult-to-cut material due
to its endurance and relative elongation (6–15%). Moreover, low heat transfer ability causes that the
thermal energy does not dissipate easily by conduction, which results in increase of temperatures
in the cutting contact area [11]. A similar situation takes place in the case of cobalt alloys [12]. As a
consequence, large amounts of heat are not carried away with the chipped material, but penetrate
into the cutting tool [13], which require application of new cooling methods [14]. In the research on
Ti-6Al-4V alloy machining, special attention is paid to the additive manufactured details cut with solid
ceramic tools [15].

It is widely acknowledged that ceramic tools have good thermal stability and perform very
well during high temperature cutting processes [16]. Nevertheless, the inserts designed to cut
the difficult-to-machine materials are coated with special coatings. These are typically multilayer
compositions, with outer layers reducing friction coefficient and inner layers protecting the tool from
the heat generated at the tool–chip interface [17].
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Specific microstructure in the coating, and especially in its subsurface layers, and thus enhanced
hardness and a desirable residual stress can be achieved using PVD (physical vapor deposition)
methods [18] or with ion implantation techniques, which is known to be suitable for ceramics [19].
Almost all characteristics of the tool material increasing its wear resistance were found to be changed
after ion implantation [20]. It was reported that the tools PVD-coated with (Ti, Al)N + TiN had
the longest tool life and were recommended for face milling of titanium alloys [21]. The process
of deposition can be supported with IBAD (ion beam assisted deposition), to induce changes in
hardness or to generate desirable residual stresses in the subsurface layer [22]. This way, substantial
improvement of the cutting tools performance and reduction of their wear can be reached. Wear
conditions of different cutting tools could increase the cost of production and cause substantial effect on
carbon emissions [23]. There are many factors affecting the wear of cutting tools, such as vibration [24]
and cutting forces [25]. There are publications on micro end milling of Ti-6Al-4V that focused on wear
behavior and performance of tungsten carbide cutting insert with TiAlN coating [26]. However, there
are very few reports about the ion implantation impact on the lifetime of ceramic inserts at increased
temperatures in industrial conditions [27]. The present work is dedicated to the influence of yttrium
(Y+) and rhenium (Re+) ions implantation into the rake face of nitride ceramics cutting inserts on their
performance in real working conditions.

2. Materials and Methods

The research was focused on the cutting tools performance during machining of a typical α+β

dual-phase titanium alloy Ti-6Al-4V. Its microstructure consists of hexagonal close packed (HCP) α
and body centered cubic (BCC) β phases [28]. Since α phase normally precipitates from β phase, the
arrangement of phases is determined by the heat treatment conditions [29]. Physically, α phase is
stabilized by aluminum, while β phase by vanadium, so that the aluminum addition provides an
increase of strength, while the vanadium addition allows maintaining plasticity [30]. Values of the
Young modulus can have quite a large scattering, reportedly varying from 94 to 118 GPa [31]. Chemical
composition of the alloy is the following: Al—6.5%, V—4.3%, Fe—0.18%, C—0.01%, N—0.13%, and
O—0.13% by weight [32].

Thermal conductivity of titanium alloys is low, ca. 1/6 that for steel [33], and it can be assumed as
6.7 W/(m·K) [34]. It results in heat concentration on the cutting edge and the rake face of the tool during
machining. The temperature in the chip–tool interface when turning Ti-6Al-4V can reach 1200 ◦C [35].
The material strengthening phenomena takes place, and, as a consequence, the tool wear is increased,
friction and cutting forces rise up, and the cutting edge is quickly damaged. According to the available
reports, hardness of annealed Ti-6Al-4V with alpha-beta microstructure is ca. 350 HV [33].

For the turning tests, the samples made out of Ti-6Al-4V alloy with diameter ∅60 mm and length l =

35 mm. The tests of cutting were performed using the machining center DMG NEF400 CNC (Bielefeld,
Germany). The cutting forces were measured with the dynamometer CL 16-3F-3M made by ZEPWN
(Marki, Poland) shown in Figure 1. It was able to measure cutting forces during machining process,
and its uncertainty was assumed below 0.45% of the actually measured value [17]. The sampling was
performed each 0.1 s.

There are some recommendations on the machining parameters for different titanium alloys [36].
In general, the highest cutting speeds vc between 95 and 210 m/min can be applied to non-alloyed
titanium, but an increase of vanadium and chromium content with a harder β phase requires smaller
cutting speeds. For the dual-phase alloy Ti-6Al-4V, the recommended cutting speed was 48–100 m/min,
and in experiments, it was vc = 50 m/min at feed rate f = 0.15 mm/rev and cutting depth ap = 0.5 mm.

Since Si3N4-based ceramics appeared to be superior to Al2O3-based ones as the material of
cutting tools [37], the former was chosen for the experiments. Cutting tools were used with inserts
TNGA 160408E (IS9) made out of nitride ceramics IS9 (Si3N4 with additives), fixed in holders MTJNL
2020K-16W-M produced by ISCAR company (Tel Aviv, Israel). The geometry of cutting tools was as
follows: α = 6◦; γ = −6◦; κr = 93◦; rε = 0.8 mm. No coolants were applied.
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Figure 1. CL16-3F3M device: (a) The overall view; (b) scheme of the measured forces components. 
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Before the turning tests, some of the applied inserts underwent the ion implantation procedure.
The rake surfaces of the cutting inserts underwent ion implantation with the respective ions of yttrium
(Y+) and rhenium (Re+) in order to modify the properties of the outer layer. For that purpose, the
device TITAN (HCEI, Tomsk, Russia), equipped with a spark source of metal vapor MEVVA type
(metal vapor vacuum arc) was used. Since tribological aspects play important role in the tool wear [38],
the parameters of the ion implantation process were chosen according to the tribological research
described in [39]. Table 1 presents applied ion doses and beam energy of the process.

Table 1. Ion implantation parameters.

No. Insert Ion Type Ion Dose (ion/cm2) Beam Energy (keV)

1 TNGA 160408E
(IS9, Si3N4-based ceramic) Re+ 1 × 1017

2 × 1017 65

2 TNGA 160408E
(IS9, Si3N4-based ceramic) Y+ 1 × 1017

2 × 1017 65

The implantation procedure was performed at the Polish National Center of Nuclear Research
(NCBJ, Świerk, Poland). Its results were assessed with a scanning electron microscope EVO MA10
produced by ZEISS (Jena, Germany).

3. Results and Discussion

The experiments were aimed on assessment of the performance of ion implanted cutting tools
compared to the typical unimplanted ones. To reach that goal, three directions were explored, namely,
quality of the ion implantation, cutting forces during machining, and tool wear. The results are
presented and discussed in the respective subsections.

3.1. Ions Distribution on the Rake Surface

Rake surfaces of nitride ceramic inserts IS9 before and after ion implantation can be seen in
Figure 2. It is noteworthy that the general appearance of the surface did not change, because of a very
thin coating of ions. Figure 3 presents the results obtained from the energy dispersive spectroscopy
(EDS) measurement.



Materials 2020, 13, 4687 4 of 12

Materials 2020, 13, x FOR PEER REVIEW 4 of 12 

 

Rake surfaces of nitride ceramic inserts IS9 before and after ion implantation can be seen in 
Figure 2. It is noteworthy that the general appearance of the surface did not change, because of a very 
thin coating of ions. Figure 3 presents the results obtained from the energy dispersive spectroscopy 
(EDS) measurement. 

  
(a) (b) 

 
(c) 

Figure 2. Analyzed surfaces: (a) Unimplanted insert surface; (b) Surface after yttrium ion implantation 
(dose 2 × 1017 ion/cm2); (c) Surface after rhenium ion implantation (dose 2 × 1017 ion/cm2). 

  
(a) (b) 

 
(c) 

Figure 2. Analyzed surfaces: (a) Unimplanted insert surface; (b) Surface after yttrium ion implantation
(dose 2 × 1017 ion/cm2); (c) Surface after rhenium ion implantation (dose 2 × 1017 ion/cm2).

Materials 2020, 13, x FOR PEER REVIEW 4 of 12 

 

Rake surfaces of nitride ceramic inserts IS9 before and after ion implantation can be seen in 
Figure 2. It is noteworthy that the general appearance of the surface did not change, because of a very 
thin coating of ions. Figure 3 presents the results obtained from the energy dispersive spectroscopy 
(EDS) measurement. 

  
(a) (b) 

 
(c) 

Figure 2. Analyzed surfaces: (a) Unimplanted insert surface; (b) Surface after yttrium ion implantation 
(dose 2 × 1017 ion/cm2); (c) Surface after rhenium ion implantation (dose 2 × 1017 ion/cm2). 

  
(a) (b) 

 
(c) 

Figure 3. EDS analysis of different chemical compositions of the IS9 inserts: (a) Before ion implantation;
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It can be seen that the chemical composition after yttrium ion implantation at both doses contains
some amounts of Y, absent in the original material. To assess distribution of the material on the rake
surface, the maps were prepared with the points of higher density and brightness on the areas with
higher substance content. There was no significant difference in mappings representing elements after
ion implantation at dose 1 × 1017 ion/cm2 or 2 × 1017 ion/cm2. An example of such a map is shown in
Figure 4, where steady distribution of both yttrium and rhenium is clearly seen.
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Figure 4. Yttrium (a) and rhenium (b) distribution on the nitride ceramic surface after ion implantation.

Lower brightness may suggest that Re+ ions adhered to the nitride ceramic surface in smaller
degree than ions Y+. Nevertheless, presence and steady distribution of the ions that made up a coating,
is clear and obvious, which confirms high quality and surface integrity of the investigated cutting tools.

3.2. Cutting Forces Measurement

The cutting forces during tests are represented by graphs shown in Figures 5–7. They were
plotted for the unimplanted cutting inserts, rhenium (Re+) implanted and yttrium (Y+) implanted
ones, respectively. Since the obtained results appeared very different for three edges of each triangular
inserts, the respective plots for each edge are shown separately. The plots represent the resulting
machining force through its three components, namely, cutting force Fc, feed force Ff, and passive force
Fp. The graphs contain 6 cycles of interrupted cutting each, since the tool life tends to be reduced in the
interrupted cutting method due to the high impact loads during the entry and the exit from the cut [40].

From Figure 5, it is seen that 1st and 2nd edges were damaged after ca. 100 s of work, so that
further cutting did not provide required quality. In case of the 3rd edge, damage was rather steady and
the edge was blunting without larger cracks and chipping, though unstable cutting force Fc between
50 and 100 s might indicate some kind of accelerated wear or microdamage. Looking at the first three
cycles in Figure 6, it is difficult to find substantial improvement in case of rhenium ion implantation.
Further cycles of the Re+ implanted insert appear more stable, though perform higher forces, which is
not the case for the 3rd edge of unimplanted insert, however. In addition, passive force Fp is clearly
increasing from 100 up to 400 and even 500 N for two edges of the Re+ implanted insert. Steady
twofold and even 5-fold increase of feed force Ff is noteworthy: it takes place in all edges of the Re+

implanted insert in a similar way. In this respect, the tools implanted with yttrium ions appear to be
much more advantageous because of stable performance during 200 s in all 6 cycles, as it is seen in
Figure 7. Detailed analysis of the graphs obtained for Y+ implanted tools at dose 1 × 1017 ion/cm2 (not
shown here) proved that after 3–4 cycles, when the layer of yttrium was worn out, forces increased and
lost stability.
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after 200 s (Figure 7c). 
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dispersion of all forces components values in the end points is the smallest. 

  
(a) (b) 

Figure 7. Registered force components Fp, Fc, and Ff for the Y+ implanted at dose 2 × 1017 ion/cm2

insert IS9: (a) 1st edge; (b) 2nd edge; (c) 3rd edge.

Special attention should be paid to the passive force component Fp, responsible for penetration
into the machined material. When the edge loses its sharpness, larger Fp is required for overcoming
the material’s resistance. In the graphs for unimplanted inserts, its value is rather unstable, varying
between 50 and 150 N (Figure 5a,b). Its jump from 100 to 200 N after 100 s in Figure 5c may be attributed
to some sort of chipping damage of the cutting edge. A similar sharp increase of the passive force
component Fp is seen in Figure 6a, but after 230 s of working and reaching higher values of almost 300
N. Other rhenium-implanted edges performed gradual increase of Fp after each interruption. In this
respect, the yttrium implanted inserts performed exceptionally well, keeping a very steady Fp value of
ca. 100 N with some vibrations after 230 s (Figure 7a) or jump up to 200 N after 200 s (Figure 7c).

In order to provide more generalized insight, the initial and final values of forces in each turning
test were gathered in single graphs presented in Figure 8. Dashed lines were added to emphasize
the general trend for each cutting tool. It should be noted that for yttrium ion implanted surfaces,
dispersion of all forces components values in the end points is the smallest.
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3.3. Wear of the Cutting Tool

Visual inspection of the cutting edges and rake faces after turning tests was in conformity with
the observations made from forces graphs. However, in order to make the results more objective,
wear parameters VBN (notch wear, mm) and VBC (tool corner wear, or flank wear of tool corner,
mm) were calculated according to the Standard PN-ISO 3685:1996. Figures 9–11 present examples of
the worn edges photomicrographs of the unimplanted, rhenium (Re+) implanted, and yttrium (Y+)
implanted inserts, respectively. In Figure 12, values of the obtained wear parameters are collected in
the bar diagram.
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Figure 12. Wear parameters of TNGA 160408E (IS9) inserts measured on two edges each: (a) VBN; (b)
VBC. The respective symbols along X-axis denote: Unimplanted 1st and 2nd edge; Re1—Re+ (1 × 1017

ion/cm2) implanted edges; Re2—Re+ (2 × 1017 ion/cm2) implanted edges: Y1—Y+ (1 × 1017 ion/cm2)
implanted edges; Y2—Y+ (2 × 1017 ion/cm2) implanted edges.

From Figure 12, where evident prevalence of implanted tools is seen, no clear trend can be derived,
though. Differences of VBN values between two edges of the same insert sometimes appear very large,
especially in case of the insert without ion implantation. One would expect smaller wear for Re+ 2 ×
1017 ion/cm2 than for Re+ 1 × 1017 ion/cm2, which did not take place in case of the 1st edge. In addition,
rather unexpected was the increased wear of for Y+ 1 × 1017 ion/cm2 (Y1). Nevertheless, the column
Y2 corresponding with Y+ 2 × 1017 ion/cm2 insert stays in agreement with data obtained from cutting
forces measurement. Namely, the tool after Y+ 2 × 1017 ion/cm2 ion implantation provided the best
machining performance.

The VBC values in Figure 12b did not reveal any distinguishable trend. Again, the tool after Y+ 2
× 1017 ion/cm2 ion implantation (Y2) was worn in the smallest degree, even though similar results
were obtained for Re+ 1 × 1017 ion/cm2 (Re1). In any case, however, VBC values for ion implanted
surfaces were in range between 0.10 and 0.25, which was less than 1/3 of the respective VBC = 0.8 for
the unimplanted tool.

Thus, in terms of tool wear decrease, ion implantation with larger doses did not provide evident
improvement than that of smaller doses, while compared to the unimplanted tools, the implanted ones
they performed substantially better. VBN values for implanted tools were at least 20% and at best
75% lower.

4. Conclusions

The research provided important initial qualitative information on impact of ion implantation
on performance of cutting tools with difficult-to-machine materials. Wear analysis and turning tests
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of inserts TNGA 160408E made out of silicon nitride ceramics IS9 (Si3N4 with additives), after ion
implantation with rhenium and yttrium, enabled formulating the following conclusions:

• implantation of ions to the rake face of ceramic cutting tools is the effective way to improve
their properties;

• in particular, implantation of yttrium ions significantly decreased cutting resistance during dry
machining of titanium alloy Ti-6Al-4V, compared to the inserts without ion implantation as well
as to the ones implanted with rhenium ions;

• wear of cutting edges after ion implantation was smaller than unimplanted ones, thus providing
longer lifetime and better performance of tools with ion implanted surfaces;

• significant improvement was obtained only with higher doses of ions, namely, Y+ 2 × 1017 ion/cm2;
• in further research, more attention will be paid to the cutting tools implanted with yttrium ions in

order to collect in-depth quantitative results.

The proposed methodology can be used in order to improve performance and to prolong the
lifetime of the ceramic cutting tools applied for machining of the titanium alloys, as well as other
difficult-to-cut materials. Further investigations will enable assessment of the ion implantation effect
on performance of newly developed nanocomposite cutting tools.
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