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Abstract: Silver nanoparticles (Ag NPs) play important roles in the development of plasmonic 
applications. Combining these nanoparticles with graphene can yield hybrid materials with 
enhanced light–matter interaction. Here, we report a simple method for the synthesis of graphene–
silver nanoparticle hybrids on highly oriented pyrolytic graphite (HOPG) substrates. We 
demonstrate by scanning tunneling microscopy and local tunneling spectroscopy measurements the 
electrostatic n-type doping of graphene by contact with silver. We show by UV-Vis reflectance 
investigations that the local surface plasmon resonance (LSPR) of Ag NPs partially covered with 
graphene is preserved for at least three months, i.e., three times longer than the LSPR of bare Ag 
NPs. The gradual loss of LSPR is due to the spontaneous sulfurization of non-covered Ag NPs, as 
revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. We show that 
the Ag NPs completely sandwiched between graphene and HOPG do not sulfurize, even after one 
year. 
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1. Introduction 

Noble metallic nanoparticles (NPs) are extensively applied for chemical and biological sensing 
due to their local surface plasmon resonance (LSPR) [1,2] and surface-enhanced Raman scattering 
(SERS) properties [3,4]. In particular, the optical properties of gold (Au) and silver (Ag) nanoparticles 
are highly investigated due to their enhanced interaction with light [5–10]. Their LSPR can be tuned 
by controlling the size, shape, dispersion, and uniformity of the NPs, and also the dielectric constant 
of the surrounding medium [11–17]. Nanostructured Ag is the best material for plasmonics due to 
the absence of interband absorptions and low optical loss at optical frequencies [18]. However, silver 
has poor stability under ambient conditions, forming Ag2S on its surface. This leads to morphological 
changes of the NPs and significant diminishing of the optical properties [19]. Preserving the high 
surface plasmon resonance intensity of silver nanoparticles is of key importance in potential 
applications. The most common approach to improve the chemical stability of Ag nanostructures is 
to form core–shell structures by passivating the surface of Ag with a protective shell, which can be 
either organic or inorganic (see [20] for a recent review). This coating should be at the same time thick 
enough to fully protect Ag NPs and thin enough to conserve the strong near-field interaction in SERS-
based sensing experiments. In this respect, graphene seems to be the ideal protective coating [21], 
since it is atomically thin and impenetrable to standard gases, including helium [22,23]. Nevertheless, 
for large-area graphene grown by chemical vapor deposition (CVD), the oxygen can infiltrate 
through defects and grain boundaries [24]. 
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The synthesis of Ag NPs can be realized over a wide range of strategies [25], depending on the 
required shape of the nanoparticles. The most commonly used method is the chemical reduction in a 
bottom-up approach. The size and shape of produced Ag NPs depend on many factors, such as the 
temperature, the concentration of the silver precursor, and the strength of chemical interaction 
between the capping agent and various crystallographic planes of silver [26]. In this work, we present 
a simple method for the preparation of Ag NPs and graphene–silver nanoparticle hybrids directly 
onto highly oriented pyrolytic graphite (HOPG) substrates. The morphology, optical, and electronic 
properties of the hybrid nanomaterials are investigated by atomic force microscopy (AFM), UV-Vis 
reflectance spectroscopy, and scanning tunneling microscopy (STM) and scanning tunneling 
spectroscopy (STS), respectively. Electron transfer from silver to graphene is observed by local STS 
measurements on graphene-covered silver nanostructures. We show that a graphene overlayer can 
preserve the LSPR of Ag NPs, however its protective efficiency is limited by the area of graphene 
coverage. We demonstrate by scanning electron microscopy (SEM) and energy-dispersive X-ray 
spectroscopy (EDX) that the Ag NPs completely sandwiched between graphene and HOPG are 
protected from sulfur, even 14 months after preparation. 

2. Materials and Methods 

Bulk silver of 99.99% purity (Metal-Art Zrt., Budapest, Hungary) was placed in an electrically 
heated tungsten boat for evaporation. Thin silver films of 7 nm nominal thickness were evaporated 
onto HOPG substrates at a background pressure of 5 × 10−7 mbar and rate of 0.1 nm s−1. During the 
process, the substrate remained at room temperature. Immediately after silver deposition and 
opening of the vacuum chamber, the thin silver films were covered with CVD graphene, which was 
synthesized as described in a previous paper [27]. For the transfer of large-area graphene samples 
grown on copper foil, we applied a polymer tape. The copper foil was etched using a mixture of 
CuCl2 aqueous solution (20%) and HCl (37%) in a 4:1 volume ratio. The tape holding the graphene 
was rinsed in distilled water, dried, and pressed onto the deposited silver thin film. Graphene-
covered silver thin films were obtained by lifting the tape with tweezers. In order to drive the surface 
diffusion of deposited silver and to form the Ag nanoparticles, subsequent annealing of both bare 
and graphene-covered thin silver films was performed at 400 °C under inert gas (Ar) atmosphere for 
90 min. We used these annealing parameters, which worked earlier for the preparation of gold 
nanoparticles, as reported recently [27]. 

The Ag NPs and graphene–Ag NP hybrid structures were investigated by tapping mode AFM 
measurements performed on a MultiMode 8 (Bruker France S.A.S, Champs sur Marne, France), along 
with STM and STS measurements using a DI Nanoscope E (Bresso , Italy) operating under ambient 
conditions. The optical reflectance properties of the samples were measured in the wavelength range 
of 200 to 1000 nm using an Avantes AvaSpec-HS1024 × 122TEC fibre optic spectrometer (Avantes BV, 
Apeldoorn,The Netherlands). We used a bifurcated probe for illumination and detection with 200 
μm core diameters. The reflectance spectra of the samples were recorded by collecting the specular 
reflected light under normal incidence illumination with an Avantes AvaLight DH-S-BAL balanced 
UV-Vis light source (Apeldoorn, The Netherlands). Scanning electron microscopy (SEM) and energy-
dispersive X-ray spectroscopy (EDX) investigations were performed with Thermo Scientific Scios2 
(Brno, Czech Republic) and Oxford X-max 20 (Oxford, UK) instruments, respectively. 

3. Results and discussion 

The surface of 7 nm Ag deposited onto HOPG is shown in Figure 1a, as measured by AFM. The 
as-deposited thin film is not continuous and can be characterized by a root mean square roughness 
(RMS) of 7.5 nm. Annealing at 400 °C resulted in flat nanoparticles (Figure 1b) formed due to the 
surface diffusion and aggregation of silver clusters. The nanoparticles can be characterized by having 
a mean height of 26 ± 4.9 nm (Figure 1c) and equivalent disk radius of 40 ± 9.6 nm (Figure 1d). We 
applied this method earlier for the preparation of flat gold nanoparticles with similar dimensions and 
surface coverage [26]. 
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Figure 1. (a) Atomic force microscopy (AFM) image of 7 nm Ag as-deposited onto highly oriented 
pyrolytic graphite (HOPG) substrate. (b) AFM image of the same sample as in (a) after annealing at 
400 °C. Mean height (c) and equivalent disc radius (d) distribution of 161 Ag NPs formed during 
annealing. 

We also prepared graphene-covered samples by transferring the two-dimensional carbon sheet 
onto the as-deposited silver thin film. Typical AFM images of the graphene–Ag hybrid 
nanostructures obtained after a similar annealing procedure are shown in Figure 2. Elongated 
structures, as well as large, nanoparticle-free graphene–HOPG areas, are also observed (Figure 2a). 
Closer investigation of the elongated structures reveals graphene-covered groups of Ag NPs, as 
shown in Figure 2b (graphene–Ag NP–HOPG sandwich structure). 

 
Figure 2. (a) AFM image of graphene-covered Ag nanostructures formed on HOPG substrate during 
annealing at 400 °C. Bare nanoparticles are also observed between the two white dashed lines, which 
mark a discontinuity of the graphene overlayer. (b) Larger magnification of AFM image 
corresponding to the square marked with green lines in (a), showing graphene–Ag NP–HOPG 
sandwich structure. 

Graphene–Ag NPs were also investigated by STM and STS in order to study the effect of silver 
contact on the density of electronic states of graphene. Figure 3a shows a STM image of a graphene-
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covered Ag nanostructure with a maximum height of 45 nm. The atomic-resolution inset image 
reveals the honeycomb lattice of the graphene overlayer. STS measurements were performed both on 
the top of the nanostructure (red symbol in Figure 3a) and on nearby graphene–HOPG (Figure 3a, 
white symbol). The dI/dU spectra shown in Figure 3b were obtained by numerically differentiating 
and averaging 25 different current (I)–voltage (U) characteristics for each area. A clear shift is 
observed between the two average dI/dU spectra, with p-doped graphene on HOPG (Dirac point 
around 70 mV) and slightly n-doped graphene on the Ag NP (Dirac point around –10 mV). This local 
probe measurement is in agreement with previous results, where electron transfer from Ag NPs to 
graphene was demonstrated by Raman spectroscopy [28]. 

 
Figure 3. (a) Scanning tunneling microscopy (STM) image of a graphene-covered Ag nanostructure. 
Dark-colored regions correspond to graphene on the HOPG substrate. Tunneling parameters: I = 0.4 
nA, U = 0.8 V. Atomic-resolution STM image of silver-supported graphene is shown in the inset. (b) 
The dI/dU spectra measured on graphene–HOPG (dashed line) and graphene–Ag (red line). The STS 
measurements were performed at the graphene–HOPG and graphene–Ag positions marked in (a) 
with white and red symbols, respectively. 

Next, we discuss the optical properties of the prepared samples. The reflectance spectra of the 
as-deposited Ag thin film (Figure 1a), bare Ag NPs (Figure 1b), and graphene-covered Ag NPs 
(Figure 2) are shown in Figure 4a. While the spectrum of the as-deposited Ag thin film is featureless, 
we observe a reflectance minimum at 379 nm for the sample with bare Ag NPs, which is attributed 
to the LSPR of the nanoparticles. The LSPR is more pronounced for the graphene-covered Ag NPs, 
which is redshifted to 396 nm. This redshift can be partly induced by the increased effective refractive 
index of the medium, due to the presence of a graphene overlayer [29]. On the other hand, the LSPR 
frequency (𝜔௅ௌ௉ோ) is closely related to the bulk plasmon frequency (𝜔௉) of the metal through [30]: 

𝜔௅ௌ௉ோ ൎ 𝜔௉ඥ1൅ 2𝜀௠ ൌ ඨ𝑁𝑒ଶ 𝑚𝜀଴⁄1൅ 2𝜀௠  (1)

where 𝑁 is the density of electrons in the NPs, 𝑒 is the electronic charge, 𝑚 is the effective mass of 
the electron, and 𝜀଴, 𝜀௠ are the permittivity of free space and the surrounding medium, respectively. 
The transfer of electrons from Ag NPs to graphene, as demonstrated in Figure 3, decreases 𝑁 and 
also induces a redshift of the LSPR wavelength. In addition, possible electrostatic coupling [31] 
between closely spaced graphene-encapsulated Ag NPs, as well as the formation of larger NPs (see 
Figure 5a) [32], can also contribute to the observed total LSPR redshift of 17 nm. The reflectance 
decreased at all wavelengths compared to the reflectance from bare Ag NPs, which is attributed to 
the enhanced light absorption of graphene [33]. 
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Figure 4. (a) Optical reflectance spectra of the as-deposited Ag thin film (black), the Ag NPs produced 
by annealing (blue), and the graphene-covered Ag NPs (red). The LSPR of Ag NPs (blue dashed line) 
is redshifted when covered with graphene (red dashed line). (b) Optical reflectance spectra measured 
after one month on bare Ag NPs (orange) and on graphene–Ag NPs (black). For better comparison, 
the initial spectra from (a) are also shown (blue dashed and red dashed lines, respectively). The 
spectrum of graphene–Ag NPs measured after 3 months is also plotted (green). 

Further, we investigated how the optical properties of Ag NPs and graphene–Ag NPs kept under 
ambient conditions vary in time. We performed the same reflectance measurements on the same 
samples one month and three months after preparation. The corresponding spectra are shown in Figure 
4b. It can be clearly observed that due to spontaneous sulfurization, the optical reflectance spectrum of 
bare Ag NPs already loses its features after one month, similar to earlier reports [19,21]. In contrast, 
graphene-covered Ag NPs have well-defined LSPR, even after three months. This is in agreement with 
the Raman spectroscopy data reported very recently [34], which show the stability of graphene-covered 
Ag NPs after 10 weeks. Nevertheless, the amplitude of the resonance decreases and the LSPR gradually 
shifts towards larger wavelengths, i.e., the reflectance minimum is observed at 418 and 433 nm after 
one and three months, respectively. Further reflectance measurements revealed that the LSPR of 
graphene-covered Ag NPs vanished in approximately nine months after preparation. 

For a more detailed study of spontaneous sulfurization, we investigated the graphene-covered 
Ag NPs by SEM and EDX. The SEM image of freshly prepared and partially covered Ag NPs is shown 
in Figure 5a. The edge of the graphene is marked with red lines as guides for the eye. The left part of 
the image shows bare Ag NPs similar to the ones measured by AFM (Figure 1b), while we can observe 
several graphene-encapsulated groups of Ag NPs (as in Figure 2b) on the right part of the image. 
Nanoparticles with similar shape and size can be observed in both non-covered and graphene-
covered areas. However, due to the confinement induced by the graphene overlayer, the 
encapsulated NPs are closer to each other. Moreover, they tend to coalesce and to form larger 
nanoparticles. EDX analysis of bare and graphene-encapsulated NPs show characteristic Ag peaks 
near 3 keV, as shown in Figure 5b. Additionally, on graphene-covered areas, a Si peak is observed at 
1.74 keV (Figure 5b, black), which is probably due to contamination during graphene transfer (it is 
missing on areas with bare Ag NPs). For comparison, the EDX spectrum of the freshly evaporated 7 
nm Ag thin film is also displayed. The same measurements were performed on samples kept under 
ambient conditions for 14 months, as shown in Figure 5c,d. Figure 5c shows nanoparticles partially 
covered with graphene. Non-covered nanoparticles are observed in the right part of the image, 
between the two red lines marking the graphene edges. It is clear that the structure of nanoparticles 
changed remarkably and they have a less-defined shape after 14 months. In contrast, the graphene-
encapsulated NPs observed on the lower left part of Figure 5c have the same shape as freshly 
prepared NPs. EDX analysis of aged non-covered nanoparticles (Figure 5d, red) reveals the presence 
of sulfur (peak at 2.3 eV), which is the spectroscopic signature of spontaneous sulfurization from air.  
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Figure 5. (a) SEM image of freshly prepared Ag NPs partially covered with graphene. The graphene 
edges are marked with red lines as guides for the eye. (b) EDX spectra measured on freshly prepared 
7 nm Ag thin film (blue), bare Ag NPs (red), and graphene–Ag NPs (black). (c) SEM image of Ag NPs 
partially covered with graphene, 14 months after preparation. Graphene edges are marked with red 
lines as guides for the eye. (d) EDX spectra measured on bare Ag NPs (red) and graphene–Ag NPs 
(black), 14 months after preparation. 

Importantly, no sulfur is observed on graphene-encapsulated Ag NPs (Figure 5d, black), even 
after 14 months. Here, we have to stress that the total graphene coverage of graphene-coated samples 
is 40–50% as a result of the transfer process (graphene breaks easily at grain boundaries). This infers 
that the gradual loss of plasmonic properties shown in Figure 4b is primarily due to the exposed areas 
where sulfurization of non-covered Ag NPs occur. 

4. Conclusions 

We reported a simple method for the synthesis of graphene–silver nanoparticle hybrids on 
HOPG substrates. We showed that in the case of a graphene overlayer, the Ag NPs tend to coalesce 
and to form larger nanoparticles. STM and STS measurements performed on graphene–Ag NPs 
revealed charge transfer from silver resulting in the n-doping of graphene. We demonstrated by 
optical reflectance investigations that a graphene overlayer preserves the local surface plasmon 
resonance properties of Ag NPs for at least three months, although the LSPR is gradually redshifted. 
We showed by SEM and EDX that graphene can protect Ag NPs from ambient sulfur for more than 
one year. Nevertheless, with the applied transfer process, only 40–50% of Ag NPs are coated and the 
observed loss of plasmonic properties is primarily attributed to the spontaneous sulfurization of non-
covered NPs. The long-term stability of LSPR could be significantly improved by increasing the total 
graphene coverage. Such protection of Ag NPs by an atomically thin cover layer can be very useful, 
for example in LSPR shift-based sensor applications, photocatalysis, or the preparation of advanced 
substrates for surface-enhanced Raman spectroscopy. 
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