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Narutowicza 11/12, 80-233 Gdańsk, Poland; katjanus@pg.edu.pl (K.J.); anita.cymann@pg.edu.pl (A.C.-S.)

2 Institute of Fluid Flow Machinery, Polish Academy of Sciences, 80-233 Gdańsk, Poland;
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Abstract: In this work, we present the preparation and characterization of biomass-derived activated
carbon (AC) in view of its application as electrode material for electrochemical capacitors. Porous
carbons are prepared by pyrolysis of chestnut seeds and subsequent activation of the obtained
biochar. We investigate here two activation methods, namely, physical by CO2 and chemical using
KOH. Morphology, structure and specific surface area (SSA) of synthesized activated carbons are
investigated by Brunauer-Emmett-Teller (BET) technique and scanning electron microscopy (SEM).
Electrochemical studies show a clear dependence between the activation method (influencing porosity
and SSA of AC) and electric capacitance values as well as rate capability of investigated electrodes.
It is shown that well-developed porosity and high surface area, achieved by the chemical activation
process, result in outstanding electrochemical performance of the chestnut-derived porous carbons.

Keywords: biomass-derived activated carbons; pyrolysis; activation process; energy storage;
electrochemical capacitors

1. Introduction

In recent years, biomass-derived carbon materials have been widely studied due to their structural
diversity and attractive properties, which may be tailored by various preparation procedures and
activation methods [1–6]. Porous carbonaceous materials including activated carbons (AC) due to their
chemical stability, superior electrical conductivity, high specific surface area, large pore volume and
specific pore structure are used in many application: photochemical degradation [7,8], catalyst carrier,
adsorption [9,10], carrier of a phase change materials (PCMs) for application in building materials [11],
fuel cells [12], energy conversion and storage [13–15]. A popular research direction is to reuse biomass
as an environmentally friendly, easily accessible, low-cost and renewable carbon precursor.

Biomass can be transformed into valuable carbon materials by thermochemical conversion
processes performed in various oxygen conditions, e.g., gasification, pyrolysis and combustion [12].
All of these methods involve numerous chemical reactions, such as decomposition, dehydration,
oxidation, polymerization etc. Taking into account the variability of the raw materials composition and
thermal transformation complexity, the mechanism of these processes is often difficult to thoroughly
investigate. During pyrolysis, the biomass is heated in a non-reactive atmosphere. Decomposition of
the lignocellulosic materials starts at 350 ◦C and goes up to 700–800 ◦C in the absence of air/oxygen.
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The polymeric compounds forming biomass undergo transformation into smaller molecules forming
gases, condensable vapours (tars and oils) and solid biochar [16–19].

The surface of the solid product is rich in various functional groups: alkyl, carbonyl, carboxyl
etc. Nevertheless, its surface area is relatively low and pore structure not expanded enough for
electrochemical applications. In this regard, the activation processes are used to unblock and develop
micropores, thus expanding the surface area and modifying the chemical properties of the surface.
Both known methods, namely chemical and physical activation, are based on penetration/treatment of
carbon material structure by activation agents such as oxygen plasma, KOH, NaOH, HNO3, K2CO3,
steam, CO2, ZnCl2 at high temperature (up to 800 ◦C).

Activated carbons of developed porosity are valuable electrode materials for supercapacitor
application [20–22]. Biomass as a precursor for electrode material has to fulfil several criteria,
in particular, biochar should have: (i) high carbon content (to provide good electric conductivity),
(ii) low amount of impurities (to avoid further purification and limit side reactions during operation of
the device), (iii) high surface area (to assure high electric double-layer capacitance) and (iv) tailored
porosity (with pore sizes accessible for ions). To meet those criteria, the obtained biochar has to be
activated in order to remove impurities and pyrolysis residues as well as increase its specific surface
area (SSA) through the creation of micro- and mesopores. Biomass type, pyrolysis conditions and
further activation processes have a significant influence on the final properties of activated carbons.
Therefore, it is crucial to investigate a whole range of different biomass wastes, optimize the thermal
treatment parameters, select appropriate activation method and optimize its conditions [5]. Recently,
a number of species, such as agricultural and forestry biomass [23,24], soybean pod [25], castor
shell [26], waste biomass [27], durian husk [28], cassava stalks and bamboo [29], rice straw [30],
chestnut shell [12,31–36] and water chestnut (Eleocharis dulcis) [37,38] have been investigated as porous
carbon precursors for energy storage application.

Focusing on activated carbon from the chestnut plant family and different parts of chestnut
fruit, several works refer to their application as electrodes for supercapacitors. Jiang et al. studied
KOH-activated carbon obtained from chestnut shells [32]. They investigated five samples prepared
with various ratios between pre-carbonized material and KOH. The highest SSA of 1829.7 m2 g−1

was achieved for the sample activated with a 1:3 biochar: KOH ratio, which resulted in the highest
capacitance of 238.2 F g−1. Cheng et al. prepared activated carbons by carbonization of ZnCl2
pre-treated chestnut shells [33]. The resulted AC showed SSA up to 1987 m2 g−1, which resulted in
the capacitance value of 105.4 F g−1. Potassium sulphate as the activating agent was used by Hong et
al. for preparation of chestnut shell-derived AC [34]. This led to AC with a specific surface area of
1412 m2 g−1 and capacitance value equal to 265 F g−1 at a relatively low current density of 0.1 A g−1.
Another activating agent—melamine—was used by Wan et al. for activation of chestnut shell-derived
carbons [35]. They achieved a capacitance value of 402.8 F g−1 at 0.5 A g−1 for the sample with SSA of
691.8 m2 g−1. The high-performance supercapacitor electrode with the KHCO3 activated carbon from
the chestnut shell was tested by Hong et al. [31]. The activation of biochar with potassium bicarbonate
resulted in high surface area porous carbons (2298 m2 g−1), which exhibit capacitance of 387 F g−1 (at
2 A g−1) and exceptional cycle stability of 98.68% after 10,000 charge-discharge cycles at 30 A g−1 [31].
Nitrogen-doped porous carbon was obtained from edible Chinese water chestnut corms by Wei et
al. [37]. The raw biochar was chemically activated with KOH at 600–900 ◦C for 2 h, which resulted in
the N-doped AC characterized by a large surface area of 3401 m2 g−1. This, in turn, led to the high
specific capacitance (346 F g−1), energy density (22.4 Wh kg−1 at 0.5 A g−1) and good cycling stability
(capacitance retention of 97.6% after 5000 cycles at 1 A g−1) [37].

Activated carbons derived from various types of chestnuts were also investigated for several other
applications [9,10,39–43]. For instance, chestnut shells served as a raw material for the preparation
of biochar with high calorific value as a potential fuel [39]. Chestnut cupulae was used by Kar et
al. for the preparation of bio-oil, serving as fuel or chemical feedstock [40]. Dyjakon et al. studied
forest biomass containing horse chestnuts as an alternative fuel [41]. Biochar from chestnut shells
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supported with carbon nanotubes was examined as an adsorbent for heavy metals contaminants by
Yang et al. [9]. The adsorption capacity of malachite green oxalate was tested by Tzvetkov et al. using
horse chestnut-derived biochar activated by mechanochemical and chemical processes [10].

In this work, we pyrolyze and activate, by two different methods (physical with CO2 and chemical
using KOH), the horse chestnut seeds (Aesculus hippocastanum L.). To the best of our knowledge,
activated carbons, obtained from this type of biomass, have not been investigated as electrode materials
for supercapacitors. Here we show the influence of activation method on the morphology, structure,
surface area and the resulted capacitive properties of the synthesized porous carbons. A thorough
electrochemical study of the chestnut-derived AC reveals the potential of this material for application
in high-power energy storage devices.

2. Materials and Methods

2.1. Materials

In this work, waste chestnuts were used to obtain activated carbon as a potential material for
energy storage. This type of biomass was selected because a horse chestnut (Aesculus hippocastanum L.),
with inedible, large seeds (chestnuts), is a popular tree in the Gdańsk urban area.

Hydrochloric acid and potassium hydroxide (Avantor Performance Materials Poland S.A., Gliwice,
Poland) were of analytical grade and used as received. Electrolyte for electrochemical studies (6 M KOH)
was prepared using deionized water. Polytetrafluoroethylene (PTFE) dispersion in water (60 wt%) was
obtained from Sigma Aldrich (Merck KGaA, Darmstadt, Germany).

2.2. Pyrolysis and Activation Process of Biochar

The methodology of preparation of biochar and activated carbon was described in details in our
previous work [11]. Briefly, before the pyrolysis process, the chestnuts were dried, ground using a
knife mill in two stages (without a sieve and using a sieve with a mesh diameter of 3 mm). The raw
material is shown in Figure 1a. The pyrolysis process was conducted in a batch reactor located inside a
laboratory-scale furnace (Neoterm MidiSUN lift 3.0 with thermoregulatory KXP3, Wrocław, Poland).
The biochar sample (Figure 1b) was obtained by fast pyrolysis process (heating rate 100 ◦C min−1,
dwell time 30 min. at 800 ◦C) under limited access of air without inert gas flow. The obtained biochar
sample was activated using two different methods: chemical (KOH) and physical (CO2).
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Figure 1. (a) Ground chestnut before pyrolysis, (b) biochar—chestnut after pyrolysis process.

For chemical activation, the biochar sample was mixed with solid KOH with a mass ratio of
1:3 and ground by mortar. The amount of an activating agent was selected based on literature
reports [44,45] where the dependence of the KOH amount on the surface area of activated carbon was
described. The activation process took place in a quartz tube inside the horizontal ceramic furnace,
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under controlled nitrogen flow (flow rate of 50 mL min−1) and temperature (800 ◦C for 1 h, the heating
rate of 10 ◦C min−1). The biochar after activation process (5 g) was put into a beaker with distilled
water (200 mL), sonicated for 30 min, and left for sedimentation for 24 h. The suspension was filtered
under reduced pressure, and the filtrate was washed with water and 5 M HCl alternately until a neutral
pH of the filtrate was achieved. The activated biochar was dried at 105 ◦C overnight.

The physical activation process of chestnut char was conducted in the steal horizontal reactor
placed in a ceramic furnace (ALGA, Gdańsk, Poland) equipped with resistance heaters, thermal
insulation and a control system. The temperature of the process was equal to 800 ◦C (heating rate
of 10 ◦C min−1, dwell time 1 h), and the CO2 flow was constant (10 dm3 h−1) for the whole process.
The amount of activation agent was set as the 0.5:1 molar ratio between the activated agent CO2 and
C content in biochar (Cbiochar-based on the elemental analysis of the biochar sample (Table 1)). A 1:1
molar ratio was also checked, but the higher amount of activated agent caused too intensive oxidation
of the chestnut-derived biochar and resulted in a lower SSA (21.2 compared to 105.7 m2 g−1 for 1:1 and
0.5:1 CO2:Cbiochar ratio, respectively). However, it is worth noticing that the amount of activated agent
needed for the effective activation depends largely on the type of biomass as well as the structure and
chemical composition of biochar [46].

2.3. Characterization Techniques

Elemental composition of the raw and pyrolyzed materials was determined using the CHNS-O
analyzer Flash 2000 (Thermo Scientific, Waltham, MA, USA). Proximate analysis of the samples,
including determination of ash (PN-EN 15,403:2011) and volatile matter (PN-EN 15,402:2011),
was performed in the muffle furnace (LIFT3.0 + KXP4 R, Neoterm, Wrocław, Polska). Moisture content
was measured by a moisture analyzer (Mettler Toledo, Greifensee, Switzerland). The morphology of
the activated biochars was studied by scanning electron microscopy (SEM) using a PhenomTM XL
G2 Desktop SEM (Thermo Fischer Scientific, Waltham, MA, USA) with the accelerating voltage
of 10 kV. The microtextural characteristic of the activated samples was determined using the
Brunauer-Emmett-Teller (BET) method by N2 adsorption–desorption isotherms at 77 K using a
Micromeritics Gemini V200 Shimadzu (Kyoto, Japan) analyzer.

Electrochemical measurements were carried out using potentiostat/galvanostat SP-200 (BioLogic,
Grenoble, France). The materials were electrochemically characterized by three electrochemical
techniques: cyclic voltammetry at scan rates 5–500 mV s−1, galvanostatic charge-discharge (GCD)
at current densities 0.025–10 A g−1 and electrochemical impedance spectroscopy at frequency range
100 kHz–10 mHz with the amplitude VRMS equal to 10 mV. For long-term cycling, GCD at the current
density of 1 A g−1 was used. All the electrochemical investigations were carried out in the symmetric
two-electrode configuration in SWAGELOK® type cells made of polytetrafluoroethylene (PTFE) with
the stainless steel current collectors. The glass fibre with a thickness of 300 µm (Marcheley–Nagel,
MN GF-1), soaked with 6 M KOH electrolyte served as a separator.

2.4. Electrode Preparation

The electrodes for measurements were in the form of pellets prepared as follows: 80 wt.% of
chestnut-derived activated carbon, 10 wt.% of PTFE binder and 10 wt.% of carbon black (used as a
conductive additive) were mixed with isopropyl alcohol and stirred at elevated temperature (120 ◦C).
After evaporation of the excess solvent, the obtained dough was rolled to form the electrode sheet
(about 200 µm in thickness) and dried at 60 ◦C. Then, the electrodes with a diameter of 6 mm were cut
as self-standing disks. The mass loading of the electrodes ranged from 7 to 14 mg cm−2. Electrodes
with similar masses were chosen to assemble the symmetric cells.
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3. Results and Discussion

3.1. CHNS and Proximate Analyses

The proximate analysis of chestnut as a raw material was presented in our previous work [11].
The ash and volatile content was 3.5 wt.% and 74.6 wt.%, respectively. From 128.1 g of raw chestnut
biomass, 30.5 g of solid fraction remained after the pyrolysis process. Low efficiency of the carbonization
process (23.8%) is due to a high amount of starch (hydrocarbon) in this type of biomass, which degrades
at elevated temperature, mostly to volatile compounds (74.6 wt.%). The chemical composition of the
raw material, the resulted biochar and activated carbons (Table 1) proved that the investigated chestnut
type did not contain any inorganic impurities, such as chlorine or metals. The carbon content increased
after pyrolysis from 45.97 wt.% to 75.14 wt.%, whereas the amount of other elements such as oxygen,
hydrogen and sulfur decreased. Carbon content in the activated samples was equal to 75.04 and 60.54,
for CO2 activated and KOH activated sample, respectively. Carbon and oxygen contents for the sample
activated with CO2 were very similar to the starting biochar sample, whereas K–OH activated sample
differs significantly. Lower carbon content in C–KOH sample compared to C-non may result from a
higher degree of oxidation but may also come from impurities remaining after the activation process.

Table 1. Elemental analysis of the raw chestnut, biochar after pyrolysis and activated carbons.

Sample
Elemental Analysis (wt.%)

C H N S O *

Chestnut, raw material 45.97 6.65 2.53 0.2 44.65
Chestnut, biochar (C-non) 75.14 1.32 2.41 0.0 21.13

CO2 activated carbon (C–CO2) 75.04 1.11 2.61 0.0 21.24
KOH activated carbon (C–KOH) 60.54 0.85 2.63 0.0 35.98

* Calculated as the difference to 100% assuming no other elements present.

3.2. Surface Area Analysis

The effectiveness of both activation processes (chemical and physical) was assessed by comparing
the results of the SSA and total pore volume of the samples [11]. The analysis was performed according
to the BET theory for all the samples and presented in Table 2. The chestnut raw material sample,
before the activation process, had an SSA of 17.1 m2 g−1 and a total pore volume of 0.0094 cm3

g−1. After the physical activation of this sample, a significant increase of SSA from 17.1 m2 g−1

to 105.7 m2 g−1 was observed. On the other hand, the SSA and the total pore volume, after KOH
activation, were equal to 1221.2 m2 g−1 and 0.625 cm3 g−1, respectively. The results reveal much
higher efficiency of chemical activation compared to the physical one. This can be explained by the
mechanism of carbon degradation that occurs during the chemical activation process. KOH activation
is a complex process with many variables depending on precursor type, its reactivity and experimental
conditions. Therefore, the mechanisms of KOH activation, proposed by different groups of researchers,
slightly differ from each other [47–49]. However, it is established that the main stages, occurring
below 700 ◦C, are as follows: dehydration (2 KOH = K2O + H2O); water-gas reaction (C + H2O =

H2 + CO); water-gas shift reaction (CO + H2O = H2 + CO2); and carbonate formation (K2O + CO2 =

K2CO3) [48,49]. At temperatures above 700 ◦C, a formation of metallic potassium is observed due to
K2O reduction with hydrogen or carbon (K2O + H2 = 2K + H2O; K2O + C = 2K + CO) [49]. Metallic K
causes a deeper penetration of the activation agent in the carbon material. Moreover, the SSA is also
influenced by the presence of functional groups formed during the chemical activation of carbon.
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Table 2. The Brunauer-Emmett-Teller (BET) surface area (SBET) and total pore volume (Vp) of the
activated carbon obtained from the chestnut.

Sample C:Activating Agent Ratio SBET (m2 g−1) Vp (cm3 g−1)

C-non - 17.1 0.0094

C–CO2 1:0.5 * 105.7 0.056

C–KOH 1:3 ** 1221.2 0.625

* molar ratio, ** mass ratio.

3.3. SEM Analysis

Scanning electron microscopy was used to investigate the morphology of the biochar before
and after the activation process. SEM images with the corresponding specific surface area values
of the samples are shown in Figure 2. The biochar sample is characterized by a small number of
large pores, which results in low SSA (17.1 m2 g−1). Besides, surface contamination of raw biochar
is noticed in the form of small particles on the surface being residues (e.g., ash, organic impurities
such as aromatic compounds, hydrocarbons and polycyclic aromatic hydrocarbons (PAHs)) after the
pyrolysis process. During the activation process, the structure of the samples and their SSA change
noticeably. The physical activation with CO2 increases specific surface area to the value of 105.7 m2

g−1, which changes the structure of the sample; smaller pores appear, and the number of surface
contamination particles decreases (Figure 2b,e). The chemical activation of biochar has a much more
significant impact on the structure and surface area than the physical activation. Substantially more
pores of smaller diameter and various depth can be observed in SEM images of KOH activated carbon
(Figure 2 c,f), which results in two orders of magnitude higher SSA (1221.2 m2 g−1) compared to the
pristine biochar sample. Moreover, the edges of AC particles are smoother, and the structure resembles
a sponge, which is the result of the deeper penetration of the strong activating agent.
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3.4. Electrochemical Analysis Results

Electrochemical performance of chestnut-based activated carbons was conducted in a two-electrode
system with 6 M KOH electrolyte. The specific capacitance (Cs) values were calculated from cyclic
voltammograms and galvanostatic charge/discharge according to the Formulas (1) and (2):

Cs = 2·
i

m·ν
, (1)

where: i—current recorded in cyclic voltammetry; m—active mass of one electrode; and ν—scan rate.

Cs = 2·
i·∆t
m·U

, (2)

where: i—discharge current; m—active mass of one electrode; ∆t—discharge time; and U—cell voltage.
Figure 3a,b show the CV curves recorded for biochar without activation (sample marked as C-non),

biochar after physical activation (C–CO2) and KOH-activated biochar (C–KOH). Activation process
increases the capacitance values of the investigated carbon samples. The increase is more pronounced
in the case of C–KOH sample, which is related to the exceptionally high surface area. Chemical
activation of carbon materials leads to the formation of micropores, and it has been well demonstrated
that the ion confinement in the micropores can lead to the higher capacitance [50–53]. The increase of
the scan rate from 10 mV s−1 to 100 mV s−1 leads to the significant distortion of the CV curve shape
and the essential decrease of capacitance values for C-non and C–CO2 samples. At the same time,
CV curve of C–KOH preserves almost unchanged rectangular shape at 100 mV s−1, which indicates
good capacitive behavior of KOH-activated carbon. This result proves that more developed porosity
causes better penetration of the electrolyte through the sample.

Cyclic voltammograms recorded for C–KOH at various scan rate are presented in Figure 3c.
CV shape up to 20 mV s−1 is ideally rectangular, at 50–100 mV s−1, the sample still exhibits excellent
capacitive behavior. In contrast, at scan rates higher than 200 mV s−1, the diffusion limitation is noticed,
resulting in the deterioration of the ideal rectangular shape. Elemental composition of our AC samples
revealed relatively high oxygen content (see Table 1), indicating the presence of oxygen-rich surface
functional groups, which can contribute to the capacitance values. However, the CV curve at low scan
rate exhibits a rectangular shape with no visible redox activity. Pseudocapacitive behavior coming
from oxygen-rich functional groups such as quinone/hydroquinone would show broad redox peak in
CV curve of a symmetric capacitor at about 0.35 V in 6 M KOH as presented by Fic et al. [54]. Moreover,
the oxygen content was calculated as a difference to 100%, assuming no other elements present. In the
case of C–KOH sample, some potassium impurities might have remained in the micropores, which may
have caused an overestimation of oxygen content. Based on electrochemical data, we assume that
the contribution from the surface functional groups is not so significant and the essential part of the
capacitance value comes from the electric double layer formation.

Based on the CV curves of C–KOH at 10 mV s−1 for different cell voltages (Figure 3d), 0.5 V
and 0.8 V were selected for further electrochemical tests. 0–0.8 V voltage range was the maximum,
where our symmetric capacitor operated without a drastic capacitance decrease upon cycling.

As shown in Figure 4a, galvanostatic charge-discharge profiles of all three types of carbons,
recorded at a low current density of 0.1 A g−1, had triangular symmetrical distribution. The lowest
specific capacitance of 57.4 F g−1 was recorded for non-activated carbon and slightly higher capacitance
of 67.30 F g−1 for CO2-activated carbon (increase by 17%). Chemical activation of the chestnut-derived
carbon with KOH, in turn, led to the 3-fold increase of the discharge capacitance (173 F g−1) in comparison
to non-activated carbon and a 2.5-fold increase compared to the physically activated carbon. However,
at higher current density (1 A g−1) (Figure 4b) only C–KOH sample preserves the triangular shape of
GCD curve, proving that it has good capacitive properties for electrochemical capacitors in contrast to
C–CO2 and C-non samples. The specific capacitance values of non-activated, CO2- and KOH-activated
carbons, calculated from the GCD upon polarization with 1 A g−1, are equal to 2.8 F g−1, 24.5 F g−1
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and 161 F g−1, respectively. C–KOH exhibits the highest specific capacitance compared to C–CO2 and
C-non, which is mainly attributed to the well-developed porosity of this sample and the resulting
high specific surface area. C–KOH sample, contrary to C-non and C–CO2, shows outstanding rate
capability (see Figure 5 and Figure S1 in Supplementary Materials). Its specific capacitance hardly
decreases with an increase of the current density, and at 10 A g−1 reaches 140 F g−1. Moreover, the IR
drop (in GCD curve recorded at 1 A g−1) for C–KOH is significantly smaller (30 mV) compared to
C–CO2 (245 mV) and C-non (350 mV) samples. IR drop refers to the potential induced by the resistance
of the electrode/electrolyte interface. Lower IR, achieved for the KOH-activated chestnut-derived
carbon, results from the microporosity introduced to the material, which creates diffusion paths for the
ions, hence, lowers the resistance at the interface between electrode and electrolyte.
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Figure 3. CV curves of the chestnut-derived activated carbons recorded at 10 mV s−1 (a), and at
100 mV s−1 (b). CV curve for chemically activated carbon (3:1 by weight with KOH) recorded at
different scan rates (c), and for various potential windows (d), CV at 0.8 V (marked red) was selected
for further experiments in the two-electrode setup.
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Figure 4. Charge-discharge profiles of C–KOH, C–CO2 and C-non samples at 0.1 A g−1 (a) and
1 A g−1 (b).Materials 2020, 13, x FOR PEER REVIEW 9 of 17 
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Figure 5. Specific capacitance values recorded for C–KOH sample at different current densities. Inset:
galvanostatic charge-discharge (GCD) profiles at high current densities (1–10 A g−1).

The Nyquist plots, representing imaginary part (−Z”) versus real part (Z’) of the impedance
recorded at the open-circuit voltage for C–KOH, C–CO2 and C-non samples, are given in Figure 6a.
A semicircle at a high frequency region, representing charge transfer resistance (RCT), is present for all
the samples. The RCT value is the highest for the non-activated carbon and decreases for the activated
samples characterized by the higher porosity, resulting in the enhanced diffusion of the electrolyte.
The activation process improves the capacitive character of the samples, which is observed as a change
of the curve slope in the low-frequency region for activated samples—the more vertical the slope,
the better capacitive behavior of the electrode. In case of non-activated carbon, a line at an angle of 45◦

is seen, which is related to the diffusion-controlled processes. Interestingly, no such feature can be
found for C–KOH sample, which presents a vertical line, indicating the purely capacitive response
of the electrode material. Well-developed porosity of the KOH-activated carbon material provides
channels for the electrolyte; hence diffusion of ions is not a limiting process. The Nyquist plot shape
of C–CO2 sample reveals an intermediate character between C-non and C–KOH samples, which is
consistent with the electrochemical results obtained by CV and GCD techniques.
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Figure 6. Nyquist plots (a) and dependence of the specific capacitance from the frequency (b) of the
investigated carbon samples.

Based on the EIS measurements, the specific capacitance Cs of the investigated electrode materials
was evaluated using the Equation (3):

Cs = 2·
1

2π· f ·(−Z”))·m
(3)

where: f is the frequency (Hz), −Z” is the imaginary part of the impedance (Ω) and m is the active
mass of one electrode (g).

Capacitance values obtained from the impedance spectroscopy are consistent with those calculated
from cyclic voltammetry and galvanostatic charge-discharge measurements. Specific capacitance
values drop at high frequencies due to too short time for ions to access the whole carbon surface.
In other words, part of the surface of the activated carbon, especially deep in the pores is not reached
by the ions, and therefore is ionically more resistive. The capacitance dependence on the frequency
presented in Figure 6b proves that the porosity of the C–KOH sample is far more developed than of
the C–CO2 and C-non samples.

Another essential aspect for the supercapacitor performance is the cycling stability that determines
the lifetime of the device. Capacitance values of three symmetric capacitors prepared from the carbon
samples (C–KOH, C–CO2 and C-non) during 1000 galvanostatic charge-discharge cycles are shown in
Figure 7. The capacitance of the C–KOH electrode decreases after 1000 cycles by 7.8%.
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The capacitance retention of the capacitor can be improved by reducing the cell voltage.
As presented in Figure 8, the capacitance retention after 10,000 cycles is equal to 83.4 and 88.3%,
when the cell operates at 0.8 and 0.5 V, respectively. Specific energy (E) and specific power (P) of the
symmetric electrochemical capacitor were calculated from the Equations (4) and (5), respectively:

E =
1
2

CU2, (4)

where: C—capacitance of the device (calculated per active mass of both electrodes) and U—cell voltage.

P =
E
∆t

, (5)

where ∆t—time of the discharge from galvanostatic charge/discharge.Materials 2020, 13, x FOR PEER REVIEW 11 of 17 
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recorded for the symmetric capacitor with C–KOH electrodes.

The highest capacitance recorded at 0.1 A g−1 for C–KOH sample was equal to 173 F g−1. The value
is moderate compared to other biomass-derived activated carbons reported in the literature (see Table 3).
However, as mentioned above, our C–KOH sample is characterized by outstanding rate capability,
which is crucial for the high-power application. The energy density values achieved for our chestnut
seed-derived AC are average compared to AC derived from chestnut [31,33,34,39,55], as shown in
Ragone plot (Figure 9). However, the energy and power densities should be calculated for the system,
which is close to a real device as they are essential parameters from the technological point of view.
Our electrodes were in the form of pellets with mass loading of approximately 10 mg cm−2, which is
high compared to other works [31,33–35,55,56]. In many papers, the electrodes are deposited on
nickel foam with very low mass loading of 1.5–5 mg cm−2 [31,33–35,55,56], which improves charge
propagation and diffusion of the electrolyte through the electrode. Besides, Ni foam as a current
collector in the strong alkaline medium may contribute to the capacitance values due to the oxidation
of nickel to Ni(OH)2 and NiOOH [57–59]. Thus, some reported values are considerably higher than
one could expect for the same material working in the real system. Moreover, there are mistakes in
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literature reports regarding calculation of capacitance of the cell. The authors sometimes recalculate
the values per mass of single electrode instead of mass of both electrodes, which make the reported C,
E and P values significantly overestimated (e.g., [35,56]).Materials 2020, 13, x FOR PEER REVIEW 12 of 17 
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Figure 9. Ragone plot showing the comparison between the specific energy and power obtained for
activated carbon from horse chestnut seeds (this work) and chestnut-shells (literature).

Furthermore, preparation of biomass-derived activated carbons varies significantly in literature
reports and often involves complicated and expensive multistage procedures. It is worth noticing that
biomass type is important for the morphology, structure, porosity and surface area of the resulted char.
Thermal treatment and activation conditions are other parameters that are crucial for the characteristics
of the final carbon material. Although a lot of work has been done so far on biomass-derived activated
carbons, it is still important to explore this topic in order to convert biomass into a useful product.

Table 3. Comparison of specific surface area (SSA) and capacitance values for activated carbons derived
from various biomass types, treated with different pyrolysis and activation conditions.

Biomass Type Thermal Treatment
Activation Process (C:
Activated Agent Ratio,

Temp., Time)
SSA/m2 g−1

C/F g−1

(in 6 M KOH,
Symmetric Device)

Reference

Tobacco rods HTC * (200 ◦C, 12 h,
autoclave) 1:3 C:KOH, 800 ◦C, 1 h 2115 263 @ 0.5 A g−1 [60]

Cornstalk core Pre-carbonization 300 ◦C
2 h; pyrolysis 800 ◦C 3 h 1:6 C:KOH, 800 ◦C, 3 h 2139 186.8 @ 2 A g−1 [61]

Rice bran Pyrolysis 700 ◦C 1:4 C:KOH, 850 ◦C, 1 h 2475 323 @ 0.1 A g−1 [62]

Ginkgo shells Pyrolysis 600 ◦C
1:2 C:KOH, 700 ◦C, 1 h;
1% Co(NO3)2 for 12 h;

900 ◦C for 2 h
1775 237 @ 2 mV s−1 [32]

Celtuce Pyrolysis 600 ◦C 1:4 C:KOH, 800 ◦C, 1 h 3404 273 @ 0.5 A g−1 [63]

Broad beans Carbonization 800 ◦C 1:3 C:KOH, 650 ◦C, 1 h 655
202 @ 0.5 A g−1

measured in
3-electrode cell

[64]

Pistachio shell Pyrolysis 750 ◦C 1:3 C:KOH, 750 ◦C, - 1069 261 @ 0.2 A g−1 [65]

Rice husk Carbonization 450 ◦C, 1 h 1:4 C:KOH, 800 ◦C, several
hours 3145 367 @ 2.27 A g−1 [66]

Rice husk 1:1.6 (C: NaOH)
400 ◦C, 4 h 1:5 C:KOH, 850 ◦C, 1 h 2696 147 @ 0.1 A g−1 [67]

Lignin
1000 ◦C, 15 min

(1 ◦C min−1 to 400 ◦C and
2 ◦C to 1000 ◦C)

1:2 C:KOH, 1000 ◦C, ramp rate
10 ◦C min−1 1148

91.7 @ 2 mV s−1,
measured in

3-electrode cell
[68]

Rotten carrot 100 ◦C, 24 h 1:2 C:ZnCl2, 900 ◦C, 2 h 1155 137 @ 10 mV s−1 [69]
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Table 3. Cont.

Biomass Type Thermal Treatment
Activation Process (C:
Activated Agent Ratio,

Temp., Time)
SSA/m2 g−1

C/F g−1

(in 6 M KOH,
Symmetric Device)

Reference

Starch

Pretreatment with 10 wt.%
(NH4)2HPO4 aqueous
solution, 210 ◦C, 3 h;

carbonization 600 ◦C, 2 h

1:4 C:KOH, 800 ◦C, 2 h 3251 304 @ 0.05 A g−1 [70]

Chestnut shell Drying 80 ◦C 1:2 C:ZnCl2, 700 ◦C, 1.5 h 1987 105.4 @ 0.1 A g−1 [33]

Chestnut shell Freeze-dried, 12 h 1:0.25 C:melamine, 800 ◦C, 2 h 691.8
402.8 @ 0.5 A g−1

measured in
3-electrode cell

[35]

Chestnut shell 90 ◦C, 24 h 1.8:1 C:K2SO4, 800 ◦ C, 2 h 1412
265 @ 0.1 A g−1

measured in
3-electrode cell

[34]

Chestnut shell 60 ◦C, 2 h 1:3 (C:KHCO3), 850 ◦C;2.5, 2 h 2298
387 @ 2A g−1

measured in
3-electrode cell

[31]

Chestnut shell 1 M HNO3, 24 h 1:2.5, 750 ◦C, 4 h 1347.9 174 @ 0.5 A g−1 [55]

Horse chestnut
seed

Pyrolysis 800 ◦C, 30 min 1:3, 800 ◦C, 1 h 1252.5
173 @ 0.1 A g−1

This work161 @ 1 A g−1

140 @ 10 A g−1

* HTC—hydrothermal carbonization.

4. Conclusions

Here we demonstrate, for the first time, the use of horse chestnut seeds-derived activated carbons
as electrode material for electrochemical capacitors. Chestnut-derived biochar was activated by two
methods, the physical one by CO2 treatment, and the chemical one using KOH. BET and SEM analyses
confirmed high surface area and well-developed porosity of the KOH activated sample. Electrochemical
measurements using cyclic voltammetry, galvanostatic charge-discharge and impedance spectroscopy
gave comparable results. The high capacitance value of 160 F g−1 (at 1 A g−1) outstanding rate capability
of 140 F g−1 at 10 A g−1 and good cycling stability (83.4% of initial capacitance after 10,000 GCD cycles)
were achieved. The specific energy of 3.12 Wh kg−1 at a specific power of 2030 W kg−1, make the
obtained AC a promising candidate as electrode material for supercapacitors, which is one of the
potential applications of biomass-derived activated carbons of well-developed surface area.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/20/4658/s1.
Figure S1. Specific capacitance values recorded for C-non (a) and C–CO2 (b) samples at different current densities.
Inset: GCD profiles at high current densities (1–10 A g−1).
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