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Abstract: Magnesium alloys are concerned for its mechanical properties and high damping
performance. The influence of Mn toward the internal organization morphology of long-period
stacking ordered (LPSO) second phase and the consistent damping performance in Mg-4.9Zn-8.9Y-xMn
have been studies in this work. It has shown that the addition of Mn tends to diffuse to the LPSO
interface and causes the LPSO phase to expand in the arc direction. The circular structure of LPSO
can optimize the damping property of the alloy better than the structure with strong orientation,
especially at the strain of 10−3 and 250 ◦C. With more additions of Mn, damping would have a
reduction due to the dispersed fine LPSO phases and α-Mn particles. When the Mn content is
higher than 1.02%, the grain is refined, and mechanical properties have been significantly improved.
Mg-4.9%Zn-8.9%Y-1.33%Mn shows the best mechanical property.

Keywords: magnesium alloys; Mg-Zn-Y-Mn alloys; damping; long-period stacking ordered structure

1. Introduction

Nowadays, with the rapid development of society and modern industries, such as aerospace [1,2],
weaponry, and transportation, the problems that have been induced by vibration and noise have
become much more important [3]. Under this condition, the current metal-based damping alloy is not
only a structural material [4], but also a functional material because it can reduce vibration and noise,
so it has attracted much attention in industrial applications [5,6].

The damping of the material is also called internal friction. It is not necessary to add damping
components and only consume energy through itself [7]. Studies have shown that high-purity
magnesium has very good damping performance [8,9], which is much higher than other metal materials.
However, the addition of most alloying elements will reduce its damping characteristics [10–12].
Presently, a series of damping alloys have been used in industry or prepared in the laboratory, such
as Mg-Zr, Mg-Mn, Mg-Ni, and Mg-Cu-Mn, but the mechanics of these damping magnesium alloys
are still not good enough [13–15], even when compared with common magnesium alloys. Therefore,
how to improve the mechanics of damping magnesium alloys or effectively improve the damping
characteristics of common magnesium alloys is a scientific question worthy of study [16].

According to previous studies [17], it is shown that, along with the increase of LPSO volume
percentage, both the damping and mechanical performance are improved. The LPSO phase that is
produced during solidification has a unique role in the damping and mechanics of magnesium alloys,
and it can improve both properties at the same time. As the most common ternary alloy with LPSO
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phase, Mg-Zn-Y series has attracted many attentions in damping alloys [18]. Some work indicate that
the LPSO second phase in the alloy are able to present a variety of morphological characteristics in
Mg-Zn-Y ternary series magnesium alloys; the formation of rod-shaped structure can improve the
damping characteristics of the alloy and also has a similar fiber-reinforced effect on mechanics [19,20].

However, direct cooling to obtain as-cast Mg-Zn-Y alloys has the comparatively large grain
dimension with a certain number of impurities. Usually, Zr is an excellent element in refining
the metallographic microstructure meanwhile improving mechanical properties, and Mg-Zn-Y-Zr
quaternary alloys also show better damping capacity [21,22]. As another grain refining element in
Mg alloys, the addition of Mn can adsorb Fe and other magazine elements in order to clean the melt.
Moreover, an appropriate Mn element is an effective element in Mg alloys with a lot of dispersed
phases which can cause in long dislocation introduce to the alloys, promoting the dislocation slipping
and improving their damping capacity [23–25].

As above, it provides new research ideas for design high damping alloys, which is to add Mn element
and appropriate heat treatment process to control the alloy morphology. In this study, the influence of the
addition of different content of Mn element on the damping of Mg-Zn-Y alloy was discussed.

2. Materials and Methods

Pure Mg, pure Zn, Mg-30wt%Y, and Mg-3%Mn (Regal-metal, Shanxi, China) were used as raw
materials in order to obtain the Mg-Zn-Y-Mn (Table 1) alloys. All of the master materials were mixed
and melted in an electrical-magnetic furnace while using a mild stainless steel crucible under a
protective argon gas environment of 820 ◦C. During the melting, the metal liquid was stirred by an
electromagnetic field. After being stirred uniformly, the melting liquid was standing and holding the
temperature for 15 min. Then the molten metal was poured into the metal mold placed in water, thus
obtaining the metal ingot. The nominal and actual chemical compositions were list in Table 1.

Table 1. The chemical composition Mg-Zn-Y-Mn alloys.

Alloy No. Nominal Composition (wt.%) Chemical Composition (wt.%)
Mg-4.9%Zn-8.9%Y-x%Mn Mg Zn Y Mn

Alloy I x = 0 Bal. 4.42 9.50 -
Alloy II x = 0.33 Bal. 4.36 9.58 0.44
Alloy III x = 0.66 Bal. 4.99 9.54 0.64
Alloy IV x = 1 Bal. 4.89 9.65 1.02
Alloy V x = 1.33 Bal. 5.13 9.73 1.37

The metallographic microscope was observed by optical microscope (OM, Leica Microsystems,
Marseille, France). The internal organization was observed after further magnification by scanning
electron microscope. The equipment is Vega II LMU scanning electron microscope (SEM, Vega II,
Brno, Czech Republic). The phase composition of different parts of the interior was analyzed by
energy-dispersive spectrometer (EDS, Vega II, Brno, Czech Republic). Use X-ray diffractometer (XRD,
Rigaku D/MAX2500PC, Tokyo, Japan) and standard PDF card to identify and analyze the phase, the
radiation is carried out in the range of 20◦–90◦ at a speed of 1.5◦/min. The XRD results were phase
calibration by using the Jade 6.0 software (Philips, New Zealand, Christchurch).

A dynamic mechanical analyzer (TA-DMA Q800, Chicago, USA) was used in order to test the
damping performance in single-cantilever vibration mode. The damping performance is evaluated
using formula Q−1 = tanθ; here, θ is defined as the hysteresis angle between the added strain and the
corresponding stress. Q−1 is the inverse of the quality factor, used to measure the capacities of the
material damping. A damping sheet test sample with a size of 45 mm × 5 mm × 1.2 mm was prepared
with a wire-cut electric discharge machine. To obtain the dependence of damping performance on
strain, test on strain amplifiers in the range of 1 × 10−5 to 1 × 10−3 at room temperature and the
vibration frequency (f = 1 Hz). The room temperature tensile testing machine (Shimadzu CMT-5105,
Tokyo, Japan) at the stable tensile speed of 3 mm/min. and the primary strain speed of 1.2 × 10−3 s−1.
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3. Results and Discussion

3.1. Microstructure of the As-Cast Mg-Zn-Y-Mn Alloys

Figure 1 shows the OM images of the as-cast Mg-Zn-Y-Mn alloys. The figures show that the
alloy metallography contains two parts of the structure, one is equiaxed dendrites of α-Mg (Yellow
dotted line) and the other is the second phase structure at the grain boundary. The average grain
dimension of alloy I is about 20 µm. The Mg-4.9Zn-8.9Y alloy without Mn addition contains a large
amount of dendrites, as indicated by the yellow dotted line in Figure 1a. Figure 1b shows that the
grains and dendrites became finer, and some particles are presented in alloy II. It also shows that the
grains gradually changed from dendrites to equiaxed grains (the area indicated by the red arrow).
The particles gathered to form a cluster structure in alloy III (the red circle in Figure 1c,d). While Mn
reached 1.02% in alloy IV, the grain of the alloy is more refined to 12 µm. At this time, it was found that
the orientation of the phase growth weakened described by the yellow circle, which may be caused
by the divorced growth of the phase. While Mn reached 1.37% in alloy V, the second phase increases
significantly (the red circle in Figure 1e); meanwhile, the divorced growth pattern that is related to the
increase of Mn content is more significant (yellow dotted line).
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Figure 2 shows the XRD patterns of these Mg-Zn-Y alloys with different Mn content. The result
shows that all of the alloys are mainly constituted of α-Mg and Mg12YZn (LPSO) phases two parts.
The LPSO phase has a strong diffraction peak at 2θ of about 32◦, 35◦, and 40◦.

Materials 2020, 13, x FOR PEER REVIEW 4 of 15 

 

Figure 1. Optical micrographs of the as-cast Mg-Zn-Y-Mn alloys. (a) Alloy I; (b) Alloy II; (c) Alloy 
III; (d) Alloy IV; and, (e) Alloy V. 

Figure 2 shows the XRD patterns of these Mg-Zn-Y alloys with different Mn content. The result 
shows that all of the alloys are mainly constituted of α-Mg and Mg12YZn (LPSO) phases two parts. 
The LPSO phase has a strong diffraction peak at 2θ of about 32°, 35°, and 40°. 

 
Figure 2. X-ray diffractometer (XRD) patterns of Mg-Zn-Y-Mn alloys. 

Figure 3 shows the SEM images of the alloys, it can clearly see the dendrite structure and second 
phase. The secondary phase presents a continuously distributed gray body on the grain boundary 
and forms a network structure. Some bright white particles are dispersed in the matrix. Figure 3a 
shows that the second phase of the alloy without Mn has an obvious orientation, the layered LPSO 
in each grain is parallel to each other. Figure 3b,c show that, with the addition of Mn, the orientation 
of LPSO arranged at the grain boundary decreases. Interestingly, the main LPSO phases do not grow 
parallel to each other, and their morphology expands toward the arc of the yellow arrow. In Figure 
3d, the preferential growth of LPSO is no longer obvious, and the secondary phase expands and 
connects to form a network along the arc direction, as shown in the yellow dotted line. This 
phenomenon is consistent with the speculated results of the metallographic observation. While Mn 
reached 1.37% in alloy V, it is observed that bright white dots are surrounded by the LPSO phase in 
Figure 3e. With the addition of Mn, the as-cast morphology of the alloy changed slightly. 

Figure 2. X-ray diffractometer (XRD) patterns of Mg-Zn-Y-Mn alloys.

Figure 3 shows the SEM images of the alloys, it can clearly see the dendrite structure and second
phase. The secondary phase presents a continuously distributed gray body on the grain boundary and
forms a network structure. Some bright white particles are dispersed in the matrix. Figure 3a shows
that the second phase of the alloy without Mn has an obvious orientation, the layered LPSO in each
grain is parallel to each other. Figure 3b,c show that, with the addition of Mn, the orientation of LPSO
arranged at the grain boundary decreases. Interestingly, the main LPSO phases do not grow parallel
to each other, and their morphology expands toward the arc of the yellow arrow. In Figure 3d, the
preferential growth of LPSO is no longer obvious, and the secondary phase expands and connects
to form a network along the arc direction, as shown in the yellow dotted line. This phenomenon is
consistent with the speculated results of the metallographic observation. While Mn reached 1.37% in
alloy V, it is observed that bright white dots are surrounded by the LPSO phase in Figure 3e. With the
addition of Mn, the as-cast morphology of the alloy changed slightly.
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Figure 3. Scanning electron microscope (SEM) images of the as-cast Mg-Zn-Y-Mn alloys. (a) Alloy I; (b)
Alloy II; (c) Alloy III; (d) Alloy IV; (e) Alloy V.

Figure 4 shows the structure morphology observed by SEM and EDS element spectrum of the
as-cast alloy V. Table 2 shows the EDS elemental analysis of the as-cast Alloy V specified in Figure 4.
The gray net-shaped bulk phase, as the main secondary phase, is observed with RE/Zn of 3/2 in point
A, E, and F respectively. According to the XRD patterns in Figure 1, it could be suggested as an LPSO
phase. The bright particles display two main morphologies. The snowflakes-shaped particles contain
a lot of Mn, which attached to the gray LPSO in Figure 4a. The solute atoms will deform the crystal
lattice, change the lattice parameters, and form clusters with surrounding atoms. Because of the
diversity of electronegativity, a variety of atomic clusters will be produced [9]. Based on the EDS results
in Table 2, the particles could be inferred as α-Mn particles or Y-rich particles. It could be concluded



Materials 2020, 13, 4654 6 of 14

that α-Mn particles are a loose structure and they often accumulate at the grain boundary, as marked
in point B. However, Y-rich particles usually appear in the matrix with regular shape and almost do
not gather into large pieces, marked as C. Some dark phase (point D) in the alloys are determined to be
α-Mg matrix. Figure 4d,e show the distribution of element of SEM microstructure in alloy V, alloy II
respectively. The existence of Mg is mainly Mg-Zn-Y phase. It shows when the Mn content is added
to 1.37%, the Mg12YZn phase transition becomes more uniform due to the divorced growth leading
to the transformation of the LPSO phase morphology. There is a clear trend of aggregation for the
distribution of Mn.
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Figure 4. (a–c) SEM images of the as-cast Alloy V; (A–F) energy-dispersive spectrometer (EDS) element
spectrum at different positions corresponding to Figure 4 (a–c), respectively; (d,e) Distribution of
element of SEM microstructure in Alloy V, Alloy II respectively.
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Table 2. EDS elemental analysis of the as-cast Alloy V specified in Figure 4.

Point
Composition (at.%)

Mg Zn Y Mn

A 89.34 4.39 6.27 0
B 77.45 1.70 5.03 15.82
C 86.81 1.98 11.21 0
D 97.45 0.58 1.97 0
E 89.15 4.62 6.23 0
F 94.99 1.98 2.70 0.33

Figure 5 is a simplified diagram of the effect of Mn on the microstructure of Mg-4.9Zn-8.9Y series
alloys. Figure 5a,b show the schematic diagram of divorced growth of Mg-4.9Zn-8.9Y alloy without
Mn addition. When the solidification α-Mg is basically completed, the second phase is first formed
in the remaining liquid phase, then Y particles. Figure 5c,d show that, after the addition of the Mn
element, the Mn element tends to diffuse to the LPSO interface, which hinders the LPSO orientation
growth and causes the LPSO phase to expand in the arc direction. The LPSO phase also drives out the
surrounding Mn elements during the growth process. When the Mn content is added enough, part of
the Mn atoms gather at the grain boundaries and Y atoms are wrapped in the LPSO second phase, as
shown in Figure 5e, and the actual situation is just like Figure 4d,e. This growth mode describes that
the Mn element can change the shape of the LPSO structure and improve its growth orientation.

Materials 2020, 13, x FOR PEER REVIEW 7 of 15 

 

Table 2. EDS elemental analysis of the as-cast Alloy V specified in Figure 4. 

Point 
Composition (at.%) 

Mg Zn Y Mn 
A 89.34 4.39 6.27 0 
B 77.45 1.70 5.03 15.82 
C 86.81 1.98 11.21 0 
D 97.45 0.58 1.97 0 
E 89.15 4.62 6.23 0 
F 94.99 1.98 2.70 0.33 

Figure 5 is a simplified diagram of the effect of Mn on the microstructure of Mg-4.9Zn-8.9Y series 
alloys. Figure 5a,b show the schematic diagram of divorced growth of Mg-4.9Zn-8.9Y alloy without 
Mn addition. When the solidification α-Mg is basically completed, the second phase is first formed 
in the remaining liquid phase, then Y particles. Figure 5c,d show that, after the addition of the Mn 
element, the Mn element tends to diffuse to the LPSO interface, which hinders the LPSO orientation 
growth and causes the LPSO phase to expand in the arc direction. The LPSO phase also drives out 
the surrounding Mn elements during the growth process. When the Mn content is added enough, 
part of the Mn atoms gather at the grain boundaries and Y atoms are wrapped in the LPSO second 
phase, as shown in Figure 5e, and the actual situation is just like Figure 4d, e. This growth mode 
describes that the Mn element can change the shape of the LPSO structure and improve its growth 
orientation. 

  

  

 

Figure 5. The diagram of divorced growth of Mg-4.9Zn-8.9Y series alloys. In the alloy without Mn, (a) 
α-Mg solidifies first, and then (b) precipitate LPSO phase and Y particles. After the addition of the 

(a) (b) 

(c) (d) 

(e) 

Figure 5. The diagram of divorced growth of Mg-4.9Zn-8.9Y series alloys. In the alloy without Mn, (a)
α-Mg solidifies first, and then (b) precipitate LPSO phase and Y particles. After the addition of the Mn
element, (c) the Mn element tends to diffuse to the LPSO interface at first; (d) Mn element will hinder
the growth of LPSO; (e) The growth of LPSO drive Mn element to gather together.
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3.2. Damping Performance of the Mg-Zn-Y-Mn Alloys

Figure 6 shows the damping performance of the Mg-Zn-Y-Mn series alloys at room temperature.
Magnesium damping is generally regarded as a dislocation-type damping mechanism, which conforms
to the Granato-Lücke theory [26,27]. When the strain is low, the damping has nothing to do with
the strain, and the mechanical energy will be consumed by the bowing motion of the dislocation
line in the alloy. When the strain outrides the critical place, the damping performance of the alloy
is greatly increased. This state is regarded as the dislocation line breaking free from the bondage
of the weak pinning point and dragging the pinning point to move together. For complex systems,
the critical unpinning strain is often not obvious. In this experiment, it can be observed that, when
the strain reaches 10−4~2*10−4, the damping begins to increase significantly. By deeply studied, all
of the damping capacities (Q−1) of as-cast alloys reached 0.02 at the critical strain of 10−3, meaning
high damping alloys. Among these, alloy III shows the better damping capacities on the low strain
area (when the strain is 10−4) with the Q−1 value of 0.003, while no obvious difference happened on
the other four alloys. On high strain area (when the strain is 10−3), with the increment in strain, Q−1

values of the five alloys show clearly different and show the trend where alloy II, alloy III, and alloy IV
exhibited slightly higher damping values than the other two. Especially in the high strain stage, this
performance is more obvious.
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Figure 6. Damping capacities of as-cast Mg-Zn-Y-Mn alloys with different Mn contents.

Figure 7 shows the damping performance of these five alloys at strain 10−3. Alloy II with 0.44% Mn
shows the best damping performance. There are two reasons for this phenomenon, first, the addition
of a small amount of Mn causes a large number of dislocations around the Mn to appear due to the
different thermal expansion coefficients during the alloy cooling process, which provides movable
dislocations for the alloy, which is beneficial for improving the damping; on the other hand, the Mn
content is low, at 0.44%, the anisotropy of the second phase is more obvious, the LPSO morphology
has not been completely rounded, and the energy absorption effect on the alloy is not good. Combined
with the schematic diagram of OM and SEM organization changes, it can be known that the Mn
element increases the divorced growth pattern and makes the second phase shows a more pronounced
change in the arcing trend results from the improved energy absorption of the alloy. Small amounts of
Mn can change the shape of the LPSO phase and improve the damping capacities in Mg-Zn-Y alloys.
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Therefore, when Mn is 0.44%, the increase in damping comes from the change of the second phase
morphology and dislocation content, and these two factors are closely related to the Mn element.
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According to the previous studies of Mg-Mn binary alloys [14], appropriate Mn particles that
dispersed uniformly in α-Mg matrix could result in longer dislocation and improving the damping
capacity, but excessive Mn element will cause the mutual blocking of dislocations, thereby reducing
damping. It is precisely because of such a complicated situation that, as the Mn content increases,
the damping of alloys III and IV is indistinguishable from that of alloy II, but it is still higher than
that of alloy I. The damping performance of the alloy is struggling in three factors: the LPSO phase
morphology, increase of dislocations, and pinning of dislocations.

With more Mn, the damping performance of alloy V is significantly reduced. Combined with
the microstructure, it can be inferred damping values would have a reduction due to the dispersed
fine LPSO phases and excessive α-Mn particles. On the contrary, it will promote the morphological
transformation of the LPSO phase, reduce the anisotropy of the second phase, and improve the
damping performance.

Figure 8 shows the Q−1 of the Mg-4.9Zn-8.9Y-1.33Mn alloy and the other comparatively protruding
damping materials, such as Mg-Ni alloy [28], AZ63 alloy [29], Mg-8Li-Al alloy [30], CM31 alloy [31],
and so on. The current Mg-4.9Zn-8.9Y-1.33Mn alloy exhibits an excellent overall performance with Q−1

of 0.02, which almost reached the level of high damping alloy Q−1 of 0.01.
The temperature-dependent damping capacities of Mg-Zn-Y-Mn alloys were tested and are displayed

in Figure 9. The alloys show no damping peaks, except alloy II in the curves. When the temperature is
lower than 300 ◦C, it has less effect on the damping capacities in alloy I and alloy III. When the temperature
is higher than 300 ◦C, the values of internal friction (Q−1) grow exponentially. In alloy II, an internal
friction peak appears in the range of 100 ◦C from 70 ◦C to 170 ◦C appears, which could be indexed as a
dislocation damping peak [32–34]. The low height of the peak shows that only a small amount of movable
dislocations was induced by Mn particles. At low working temperature (before 300 ◦C), it can be found
that the Q−1 difference between the alloys is obvious, which shows that the damping value gradually
decreases with the increase of Mn. The main reason is that the addition of Mn element promotes the
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morphological transformation of the LPSO phase and increase of dislocations. The high Mn-content alloy
(alloy V) shows 0.0015 of Q−1 and only 16% of that of alloy II (0.009).
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The temperature-dependent damping performance is also affected by many factors, such as the
movement of dislocations, changes in morphology, and the increase of the second phase. Figure 10
shows the Q−1 values of the alloys at 250 ◦C and 400 ◦C. The change trend of alloy damping performance
with Mn content at 250 ◦C is consistent with the test results at room temperature, both of which increase
first and then decrease. The Q−1 at 400 ◦C shows that the change trend of the damping of the five alloys
at high temperature is opposite to that at low temperature. The damping behavior at high temperature
is very complicated, and it is related to grain boundary movement, dislocation slip or climbing, and
phase transition.
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3.3. Mechanical Properties

Figure 11 is the stress–strain curve of this experiments Mg-Zn-Y-Mn alloys. The mechanical
performance of the alloys almost monotonously increases with the addition of Mn content, as shown
in Table 3. The results indicate that the addition of a small amount Mn element cannot effectively
improve the mechanical properties in the Mg-Zn-Y alloy. When the Mn content is more than 1.02%, a
large number of Mn particles will be dispersed in the alloy matrix, and they have the effect of grain
refinement. According to Figures 1 and 2, it can also be clearly found that alloy V has the finest grain
structure, so the mechanical performance of the alloys has been significantly improved. It can be
explained by the Hall–Petch formula [35]:

σs = σ0 + Kd−
1
2

Table 3. Mechanical properties of Mg-Zn-Y-Mn alloys.

Alloy No. Mechanical Properties
Ultimate Tensile Strength (MPa) Yield Stress (MPa) Elongation (%)

Alloy I 263 140 6.8
Alloy II 253 145 4.6
Alloy III 271 167 5.3
Alloy IV 282 158 8.5
Alloy V 292 167 9.4
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σs represents yield strength, σ0 represents the resistance to deformation inside the crystal, d
represents the average grain size, and K represents the influence coefficient of grain boundary on
deformation. Alloy V shows the best mechanical property in this experiment, its ultimate tensile
strength (UTS) is 292 MPa, yield strength (YS) is 167 MPa, and elongation (δ) is 9.4%.

4. Conclusions

In this study, we design high performance Mg-Zn-Y-Mn series alloys with traditional casting.
The microstructure, damping performance, and mechanical performance were discussed. The main
conclusions were summed up, as follows:

1. The addition of Mn can affect the morphology of LPSO second phase in Mg-Zn-Y alloy. The Mn
element tends to diffuse to the LPSO interface, hinders the LPSO orientation growth, and causes
the LPSO phase to expand in the arc direction. When the content of Mn is more than 1.02%, the
morphology of LPSO phase shows a tendency of arc.

2. The second phase morphology also has a significant effect on the damping performance of
magnesium alloys. The circular structure of LPSO can improve the damping property of the alloy
better than the structure with strong orientation, especially at the strain of 10−3 and 250 ◦C.

3. While Mn is less than 0.44%, it has a positive influence on the damping behavior. With greater
additions of Mn, damping values would have a reduction due to the dispersed fine LPSO phases
and α-Mn particles. Alloy II shows the best damping property at room temperature.

4. When the Mn content is higher than 1.02%, the Mn element can obviously refine the grain, and
the mechanical performance of the alloys has been significantly improved. Alloy V shows the
best mechanical property, its ultimate tensile strength (UTS) is 292 MPa, yield strength (YS) is
167 MPa, and elongation (δ) is 9.4%.
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