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Abstract: This paper presents a study of the effect of a superabsorbent polymer (SAP) for autogenous
shrinkage control on the uniaxial tensile behavior of steel fiber reinforced concrete (SFRC). The use of
fibers and SAP potentially increases the durability of the concrete, preventing cracking by autogenous
shrinkage and enhancing post-cracking behavior. Furthermore, SAP can provide further hydration
for self-healing purposes and improve the ductility of the SFRC. In order to evaluate the effect of
the addition of SAP in SFRC, dog-bone SFRC specimens with different dosages of superabsorbent
polymers were cast and tested under uniaxial tension. The digital image correlation (DIC) technique
was used to understand the effect of SAP on the steel fibers’ crack-bridging mechanisms. Surface
strains and crack openings were inferred using the DIC technique. The effect of SAP and fibers on
fresh and hardened concrete was individually investigated by flow tests and compressive strength
tests. Autogenous shrinkage was measured in plain concrete to investigate the minimum SAP content
required to mitigate autogenous shrinkage of 0.3%. The use of 0.3% SAP was also sufficient to reach
multiple cracking behavior. This content of SAP completely suppressed the autogenous shrinkage
with minimal side effects on compressive strength. An analytical formulation for the tensile behavior
of SFRC was developed using the variable engagement model, presenting a mean correlation of R2 of
0.97 with the experimental results.

Keywords: superabsorbent polymer; steel fibers; high-performance fiber reinforced concrete; digital
image correlation; autogenous shrinkage; tensile behavior
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1. Introduction

The present investigation focused on the tensile behavior of steel fiber reinforced concrete (SFRC)
with superabsorbent polymer (SAP). In general, SAP is used to control autogenous shrinkage without
significantly affecting strength and workability [1–9]. Fibers are used in concrete for cracking control [10–15].

The synergic effect of SAP and fibers has been mainly studied with synthetic fibers [16–22].
The studies of concrete with synthetic fibers and SAP shows that the presence of the two constituents
modifies the tensile behavior of the composite, and improvements on the durability of the material can
be achieved [23–25]. The improvements are due to the reduction in the size of the crack by increasing
the number of cracks. This multi-cracking behavior is obtained not only from the presence of fibers,
but also by the multi-flaws provided by SAP [16].

Studies of concrete with fibers and SAP are scarce. The study presented by [26] showed promising
results on the use of SAP to densify the interfacial transition zone and reduce micro-cracks around the
fibers. Wang et al. [27] conducted a splitting tensile test study with SAP and steel fiber for cellular concrete
applications, although the concrete was not high strength. None of these studies were performed with
concrete direct tension.

The present document intends to contribute to the understanding of the overall behavior of the
composite subjected to direct tension by analyzing the crack formation and crack pattern with the
digital image analysis technique, which allows for simultaneously observing the behavior of a set
of fibers and flaws produced by the SAP addition, and the interaction between them. This type of
behavior cannot be observed when testing only one fiber in tension [26] nor with the splitting test [27].

The investigation also deals with other specific subjects: (1) Investigate the maximum SAP content
to be incorporated in high strength concrete (HSC) and steel fiber reinforced concrete (SFRC) regarding
the loss of compressive strength and workability; (2) Investigate a minimum SAP content that controls
the autogenous shrinkage of HSC; (3) Characterize the tensile properties of SFRC with different SAP
contents and complement the regular analysis with the crack pattern with full-field strain measurement
using DIC; and (4) Develop an analytical model for predicting the tension behavior of HSC with
varying SAP dosage.

2. Materials and Methods

2.1. Materials

Portland cement of high initial strength conforming to [28] Type CPV-ARI (CIPLAN, Brasília,
Brazil) was used for all mixes in this study. A silica fume, of the non-densified type, meeting the
requirements of the standard [29] was supplied by the national company Silmix (Breu Branco, Pará,
Brazilcountry). The physical and chemical properties of the cement and silica fume are shown in
Table 1. Locally available sand of the Corúmba River, with the maximum size of 4.75 mm and gradation
conforming to [30] standard usable zones, was used. The sand fineness module was 2.73, and the
specific mass was 2.65 kg/dm3. A water reducer of high-efficiency, superplasticizer ADVA CAST 129
from Grace Company (Sorocaba, São Paulo, Brazil), based on polycarboxylates, was used to maintain
the fluidity of the mortar within a fixed range for all mixes.

Table 1. Basic chemical composition of cement and silica fume.

Component Cement (%) Silica Fume (%)

SiO2 24.41 93.95
Al2O3 7.09 0.16
CaO 53.74 0.74

Fe2O3 3.02 0.27
MgO 4.36 0.86
SO3 3.28 -

Na2O 0.28 0.37
K2O 0.77 0.84

Density (g/cm3) 3.03 2.21
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2.1.1. Steel Fibers

Steel fibers of DRAMIX OL 13/.16 mm from BEKAERT (Zwevegem, Belgium), illustrated in
Figure 1, with the content of 1.28% in volume, were used. These were made of smooth steel of 13 mm
in length, 0.16 mm in nominal diameter, aspect ratio of 81.25, Young’s modulus of 200 GPa, and tensile
strength of 2750 MPa.
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Figure 1. Dramix Ol 13/.16 steel fiber from Bekaert Company.

2.1.2. Superabsorbent Polymers (SAP)

The superabsorbent polymer used was an acrylic acid/acrylamide (Technical University of Denmark,
Lyngby, Denmark) with covalent cross-links produced by the reverse suspension polymerization
technique, with a mean particle size (D50) of 66.3 µm. It has an absorption in the cementitious medium
of 18 g of water for 1 g of SAP, and the density of 1.456 g/cm3. The particle size curve of the SAP
characterized by the portion of particles with diameters smaller than 27.3 µm is 10% (D10), and the
portion of particles with diameters below 101.7 µm is 90%. (D90). It was developed for particular use in a
high alkaline environment such as the cement suspension. It was supplied by Prof. Ole Mejlhede Jensen
and developed at the Technical University of Denmark (DTU). In Figure 2, the polymer is presented in
the dry and swollen state by using the scanning electron microscope and digital microscope H1000X /
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The water absorption capacity of SAP was measured by the slump flow consistency method and
by means of graduated cylinders proposed by [31]. Absorption of SAP was tested for deionized water
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and cement filtrate since the absorption of the mixing water by the SAP takes place with the addition
of water to the remaining components of the concrete mix, in a way that the activation of SAP takes
place in a highly active electrochemical environment. The absorption capacity in deionized water was
96 g of water per 1 g of SAP.

The smaller absorption of cement filtrate, when compared to absorption of water, caused by
calcium and magnesium ions present in the cementitious fluid (increase the cross-linking in SAP) [32,33],
is an advantage for self-healing purposes. This effect leads to a smaller void creation in the hardened
mortar and, after crack formation, when the SAP gets into contact with clean water, it will have swollen
larger and temporarily seal the crack. The saturated environment can then provoke self-healing of the
crack by hydration of the anhydrous cement under certain conditions and quantities of SAP.

2.1.3. Mix Proportions

In order to investigate the combined effect of the SAP and steel fibers, eight concrete mixtures
were prepared according to Table 2. These included three reference compositions, two without SAP or
fibers (REF-035 and REF-040), and another with fibers and without SAP (REF-035F). The remaining
five mixtures included SAP or SAP and fibers.

Table 2. Composition of the concrete mixtures, values in kg/m3.

Mixture (kg/m3) Cement Silica Sand SAP Fiber Superplasticizer w/c(basic) w/c(total)
1 Flow (mm)

REF-035 675.8 67.6 1306.5 0 0 11.15 0.35 0.35 183
REF-040 654.2 65.4 1264.5 0 0 8.50 0.40 0.40 200
SAP-0.2 675.8 67.6 1306.5 1.35 0 12.50 0.35 0.38 183
SAP-0.3 675.8 67.6 1306.5 2.03 0 12.50 0.35 0.40 180

REF-035F 675.8 67.6 1306.5 0 100 13.50 0.35 0.35 307
SAP-0.2F 675.8 67.6 1306.5 1.35 100 13.50 0.35 0.38 243
SAP-0.3F 675.8 67.6 1306.5 2.03 100 13.50 0.35 0.40 230
SAP-0.6F 675.8 67.6 1306.5 4.06 100 13.50 0.35 0.46 208

1 Including water absorbed by SAP.

All mixtures presented low w/c ratio and high strength. The total water–cement (w/c) ratio was set
at 0.35 or water–binder of 0.32. A reference mixture with w/c of 0.4 was also prepared for comparison
with the mixture where additional water was placed due to SAP. In the mixtures without fibers, the
content of the superplasticizer was adjusted in order to reach the required workability.

The mortar compositions all had the same proportions of binder and aggregate and the content of
SAP varied from 0 to 0.6%. In the mixtures with fibers, the amount of superplasticizer was fixed at 2%
and the fibers content was set constant at 1.28% in volume.

The mortars were prepared in a mechanical mixer (Solotest São Paulo, Brazil) under the following
steps. The first step was dry mixing the cement, the SAP, and the sand for 5 min at a slow speed.
The second step was the water and superplasticizer addition for 2 min, and then mixing at a high speed
for 5 min. Then, the mixer was stopped, the edges of the bowl were scraped, and followed by mixing
for another 3 min at high speed. In the correspondent mixtures, the fibers were then added constantly
in motion for 5 min at slow speed, preventing the ball bearing effect, then the edges were scraped
again for 3 min. Finally, the mortar was mixed for 5 min at high speed to ensure a uniform consistency.
For proper compaction, the mixes were cast into molds placed on a vibrating table. The specimens
were moved to a room with 100% relative humidity and 22 ± 1 ◦C. They were demolded after 24 h and
continued in this room until the testing date.

2.2. Experimental Program

2.2.1. Measurement of Flowability and Compressive Strength

Slump flow tests were carried out right after mixing, following the procedure [34]. The fresh
mortar was poured into a Hagerman cone (larger base diameter of 100 mm, height of 60 mm, and a
smaller base of 70 mm) into two layers. Each layer was tamped 10 times evenly distributed, and then
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the cone was gently removed, and the spread was measured. The largest diameter was measured
along with the diameter in the perpendicular direction.

Compressive tests were carried out according to the standard [35]. Cylinder specimens (Ø 50 mm
× L 100 mm) were used, and an average of three tested samples was reported. The base of the specimens
was ground to ensure a smooth and plane surface. The test adopted a Microcomputer-controlled
electromechanical universal test systems (MTS), and the loading rate was 0.5 mm/min.

2.2.2. Autogenous Shrinkage

The autogenous shrinkage was assessed according to the methodology developed by [36], which
is a modified method of [37] using the [38] apparatus, shown in Figure 3. The test consists of the
measurement of the deformation of mortars, cast in a prismatic mold with nominal dimensions of
7.5 × 7.5 × 28.5 cm. Each mold was previously prepared, with polystyrene layers inside to decrease
friction, allowing the concrete to move freely. Additionally, two threaded metal pins were placed in
the extremities of the mold aligned with the specimen’s longitudinal axis. Strain gauges are couples in
these pins and connected to a computer to collect and store the data. The distance between these pins
is called G, and the measurement of this distance determines the shrinkage.
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After casting, to prevent the loss of water to evaporation, the mold with the mortar was wrapped
with multiple layers of polystyrene and adhesive tape. The weight of the mold with mortar was
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measured, and they were stored in a chamber with 50 ± 2% of humidity and 21 ± 2 ◦C for 28 days,
where the straingauges continuously recorded the G distance.

2.2.3. Uni-Axial Testing Equipment with Digital Image Correlation (DIC) Arrangement

In order to verify the strain-hardening behavior of all HPC mixtures at 28 days, a series of direct
tensile tests were performed following [39]. An INSTRON (Instron, São José dos Pinhais, Paraná,
Brazil) electronic universal testing machine with displacement control and load capacity of 100 kN
was used at a constant speed of 0.3 mm/min. The loading force was measured on a computerized
data recording system as for the strain was measured by two linear variable displacement transducers
(LVDT, HBM, São Paulo, Brazil), placed on both sides of the specimen. Additionally, the strain was
also measured by digital image correlation (DIC, Correlated Solutions, Irmo, United States of America).
The tensile setup and geometry of the specimen are shown in Figure 4.
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The DIC was used to analyze the crack pattern and the continuous deformation of the specimen
concerning the applied load to assist the investigation of the strain hardening behavior with the
addition of the SAP and steel fibers. The DIC setup included a digital camera, sufficient light in the
specimen, and the sample preparation. The sample preparation consisted of painting the specimen
with white paint and aleatory and heterogeneously painting dark dots to form distinct patterns that can
be recognized by the image correlation program. For the program to work well, these dots, the camera
configuration, and position were adjusted for each dot to have four to six pixels in the picture. Before
the test began, a calibration image was taken for each test to convert the pixel scale to a millimeter
scale. The camera, testing machine, and LVDT were all started simultaneously so that the data could
be correlated later on.

Image processing software VIC-2D was used in this study to correlate different images and the
corresponding deformations. The software relates the deformed images by dividing the area of interest
(AOI) into many small regions, called subsets, where each subset is unique and identified by the program
via the dots pattern. The program detects the change in the first image subset, set as a reference, with
the images taken during the test and calculates the distance, which is used to calculate the full-field
displacement and strains by interactive techniques [40].
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Due to the brittle behavior, it is not possible to obtain the strain–stress curve of plain concrete
specimens with the direct tension test with displacement control. In this case, the splitting tensile
strength test was carried out based on [41]. This method was used mainly to evaluate the effect of
SAP incorporation on tensile strength. Three cylindrical samples (Ø 100m × 200 mm) were used to
measure the splitting tensile strength of concrete on the seventh and 28th day. The machine for testing
the splitting tensile strength was a MTS microcomputer-controlled electromechanical universal test
systems, with the loading speed of 0.2 MPa/s.

3. Results and Discussions

3.1. Influence on Mortar Flow

The flow values of each mix and the corresponding superplasticizer content are presented in
Table 2. The results of mixture REF-35 and SAP-02, without fibers, showed that to keep the same
flow (183 mm) in both mixtures, 0.2% of SAP required an increase of 12% in the superplasticizer
dosage. Mixture SAP-0.3, with the same superplasticizer dosage but another 0.1% of SAP, led to a
reduction in the flow (180 mm). This effect on flow is expected, as the increase of SAP content also
increased the particle concentration, but the effect was limited and manageable. Paiva [42] proposed
that a water-reducing agent could be efficient at maintaining the flowability since SAP particles do not
interfere with the plasticizer chains.

The adverse effects of steel fibers on the workability of concrete have been widely discussed
by [43], and reinforced by recent publications with high strength concrete such as [44,45]. In order to
have good workability after the incorporation of fibers, the superplasticizer content was increased to
2% of the cement weight, which led to a reference flow of 307 mm (REF-035F).

The effect of SAP on the flow can be more clearly seen in the last four mixtures of Table 2, since the
water content and the superplasticizer dosage were kept constant. The flow progressively decreases as
the addition of SAP increases. The reduction was 20.85%, 25.1%, and 32.2% for 0.2%, 0.3%, and 0.6% of
SAP, respectively.

The decrease in the workability suggests that the additional water provided to fill the SAP is
actually being absorbed by the SAP, and the flow decrease is due to lesser free water per unit of volume.
Some extra water absorption by the SAP may also be occurring, these findings were supported by [46].
The opposite effect was reported by [47–49], which leads to a gap in the literature as the effect of
the SAP in the workability is not entirely understood. The authors in [4,31,50] explained that the
broad diversification of results would depend on the methodology used to accurately estimate the
amount of water absorbed by SAP in the cementitious environment. The over or underestimated
amount of additional water can affect the workability and the total w/c. Another hypothesis of the
loss of workability was provided by [51], who believed that the swollen SAP particles behaved as soft
aggregates and offered a restraining effect in the rheology of the mortar. Nevertheless, all the mixtures
maintained good workability and no signs of segregation.

3.2. Compressive Strength

A summary of the compressive strength results for the fiber reinforced concrete and the plain
concrete at 28 days is provided in Figure 5 and Table 3. Each compressive strength result is the average
of six specimens.

Increases in SAP dosage for the same w/c(basic) tended to almost linearly decrease the compressive
strength for both mixture series (with and without fiber reinforcement). However, comparing the
compressive strength of mixtures with same w/c(total), REF-040, and SAP-0.3, the values were similar.
This indicates the major role of the total volume of pores on strength, regardless of the presence or
absence of SAP.

Strictly speaking, in order to individually evaluate the influence of the SAP, a specific reference
mixture should be manufactured containing the same total w/c ratio, but for the purposes of the present
work, this information was not considered necessary.
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Figure 5. Compressive strength results at 28 days of the fiber reinforced concrete of the w/c(basic) of 0.35;
plain concrete without fiber reinforcement with the w/c(basic) of 0.35, and the plain concrete without
fiber reinforcement with the w/c(basic) of 0.40.

Table 3. Mechanical properties of the high strength concrete and steel fiber reinforced concrete.

Mixture Mean Compressive
Strength (MPa)

Strength Reduction
Considering the w/c(basic) (%)

Mean Tensile Stress
(MPa–First Cracking

Ratio of Tensile to
Compressive Strength

REF-035 82.80 ± 2.1 - 5.39 0.065
REF-040 72.32 ± 3.6 - 4.92 0.068
SAP-0.2 71.36 ± 1.4 13.82 5.04 0.071
SAP-0.3 68.24 ± 2.0 17.58 5.07 0.074

REF-035F 86.20 ± 4.4 - 6.01 ± 0.45 0.070
SAP-0.2F 77.09 ± 4.8 10.57 4.59 ± 0.25 0.060
SAP-0.3F 72.78 ± 4.8 16.47 5.92 ± 0.04 0.081
SAP-0.6F 63.60 ± 4.1 26.22 3.23 ± 0.23 0.051

This subject leads to a discussion presented in the literature that has yet to be enlightened. Many
authors have reported the loss of compressive strength in the literature. However, as published by [50],
this loss of strength could be provoked by the excess of water addition due to a misleading measure of
the SAP absorption in the cementitious environment. Simple methods have been used to estimate the
SAP absorption capacity and could be overestimating the water of absorption, increasing the water
in the mixture, and lowering the compressive strength. However, this hypothesis was not validated
by the slump results obtained in this research. If there were an excess of water in the fresh state, the
slump would not decrease since it would facilitate the workability.

Another explanation and more common for the loss of strength, supported by [4,51–53], and
others, determined that the initial swelling of SAP creates a reasonable amount of macropores due to
the SAP swelling. Snoeck et al. [51] further explained that in the fresh mix, macropores spontaneously
form and become occupied by swollen SAP particles. Following this, the concrete pore solution is
consumed by cement hydration, which decreases the ambient moisture where the SAP is located.
Afterward, SAP slowly releases the inside water, causing the SAP to shrink. After SAP voids form, they
result in increases in the total porosity of the concrete system. However, some studies have reported a
straight gain due to effective internal curing, where the later hydration of the cement provided by the
SAP entrapped water densified the pore structure, which was not the case in this study.

The addition of steel fibers in the mixture increased the compressive strength in 4.11%, 8.03%, and
5.51% when compared with the reference without fiber reinforcement and w/c(basic) of 0.35 for the 0.2%,
0.3%, and 0.6% of SAP incorporation, respectively. The 0.6% of SAP was determined to be the highest
SAP incorporation for this mix design. Given that, according to [54,55], the lower limit of strength to
be classified as HSC is 55 MPa, for this research, it was stipulated to reach a minimum value of 60 MPa
so that the concrete can be classified as high strength.
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3.3. Autogenous Shrinkage

The deformation measured in the test was considered as autogenous shrinkage since minimum
moisture exchange occurred between the specimens and environment due to the coat of aluminum
and plastic tape applied to the specimens before starting the test.

The scope of the research was to find the content of SAP that could mitigate or control autogenous
shrinkage. Therefore, the worst-case scenario was to carry out the test without fiber reinforcement.
The autogenous shrinkage for the mixtures without fiber reinforcement up to 28 days are shown in
Figure 6. Each value represents an average of three specimens. As displaced in Figure 6, the reference,
REF-035, presented autogenous shrinkage much higher than that of ordinary concrete, and increased
significantly in the first seven days due to the absence of coarse aggregate and low water/binder ratio.
REF-035 presented a maximum deformation of 424 µm/m and an initial expansion of 106 µm/m, which
was overcome by autogenous shrinkage after 10 h.
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The general trends of the curves in Figure 6 tended to be stable after 10 days. When studying
the SAP-containing mixtures, the percentage of 0.3% completely mitigated the autogenous shrinkage
and presented a maximum expansion of 248 µm/m at six hours after setting. The shrinkage did not
counterbalance the expansion and, after 28 days, still presented 42 µm/m of expansion. The expansion
phenomenon is not yet fully understood, but there are several attempts at explanation, for example,
involving expansive pressure by forming hydration products (the high MgO content of the cement
used may be a source of early expansion). This can be beneficial for some prestressed applications
since the concrete compressive strength is higher than its tensile strength. The material is likely to
withstand the maximum compression efforts induced by the expansion. Additionally, this expansion
can be helpful and contribute to preventing cracking from drying shrinkage.

The content of 0.2% of SAP addition reduced 90% of the autogenous shrinkage compared to the
reference at the age of seven days and reduced 50% at 28 days. It also presented an expansion of
262 µm/m at four hours after time 0. The authors in [1,2,56] described the water releasing mechanism
of the SAP after setting of the cement-based material, which explained the reduction of autogenous
shrinkage. The incorporation of SAP leads to the formation of controlled water-filled microscope
inclusions, which prevent internal moisture evaporation from compensating water loss for curing,
promote the hydration of unhydrated cement, and reduce the autogenous shrinkage.

The use of more than 0.3% of SAP addition is considered to ensure autogenous shrinkage control,
with beneficial properties such as the expansion, which can avoid cracking and produce a more durable
concrete, as seen in [57].
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3.4. Tensile Properties

For the unreinforced specimens, the splitting tensile test was performed, and the tensile strength
with the ratio of tensile to compressive strength for all mixtures is presented in Table 3. The specimens
failed as expected, releasing almost all the energy soon after the peak load. The average tensile strength
of the specimens without fiber reinforcement was 5.11 ± 0.2 MPa.

Typical stress-strain/load-displacement curves of the developed SFRC with SAP particles at 28 days
are presented in Figure 7a. A diagrammatic sketch of the strain-softening behavior presented by [10] is
shown in Figure 7b, who classified the composites based on their tensile response. The parameters
regarding Naaman (2006), chosen to characterize the tensile behavior and to implement the analytical
model described in the next section, were: first structural cracking stress (σcc) and force (Fcc); first
structural cracking strain (εcc) and displacement (dcc); maximum post-cracking stress (σpc) and force
(Fpc); crack opening (wpc); and tension toughness index (TTI), as presented in Table 4. Before the crack
opening, the acquired displacement was calculated as a strain of the composite; after the first crack, it
was evaluated as a crack opening.
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Table 4. Tensile properties of SFRC specimens at 28 days.

Mixture Fcc
(kN)

Fpc
(kN)

σcc
(MPa)

σpc
(MPa)

dcc
(mm)

εcc
(%)

wpc
(mm)

TTI
(MPa)

REF-035F 2.45 1.63 5.87 3.86 0.023 0.029 0.325 0.1336
SAP-0.2F 1.85 0.99 4.29 2.31 0.050 0.064 0.404 0.0491
SAP-0.3F 2.38 2.26 5.62 5.35 0.035 0.044 1.169 0.1623
SAP-0.6F 1.92 1.41 4.50 3.31 0.038 0.048 1.235 0.1491

The main aspect to be witnessed by the SAP incorporation was the increase in the ductility of the
composite. This behavior could be better observed by the DIC analysis shown in Figure 8 as the crack
pattern of the SFRC. According to [10], the higher the strength, the lower the strain at the peak stress.
This phenomenon could be observed in this experiment. Therefore, the general trade-off that exists in
most materials between strength and ductility also applies to the developed composites. The tension
toughness index (TTI) is a measurement of toughness calculated by area under the stress × strain curve
until the specimen ultimately failed. In general, higher tension toughness (or energy absorption) was
tightly related to higher SAP content, except for the SAP-0.2F. Compared to the reference, the TTI for
SFRC increased by 21% for SAP-03F, 12% for SAP-06F, and decreased 37% for SAP-02F.
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From Figure 8, the images of the DIC in the first cracking point were named A. The point soon
after the cracking occurrence was named B. These points were correlated between the camera and the
data acquisition. It was possible to observe that at the first cracking stress (σcc), point A, the composite
without SAP produced one transverse localized crack and propagated later on at point B. As for the
composites with SAP, they produced a different damage mode, leading to the creation of several cracks
in the first peak stress (σcc). Moreover, when the stress concentration opens a single crack, the cracking
evolution, shown in point B, produces a different morphology with more branches, releasing more
energy and in accordance with the TTI results.

The authors in [16] incorporated SAP to control and improve the performance of fiber-reinforced
concrete with polyvinyl alcohol (PVA) fibers. SAP improved the ductility of the material by the
insertion of a mechanical flaw. According to the micromechanical theory developed by [24,25], one of
the criteria to increase the toughness and multiple cracking in the cementitious composite is when σcc

≤ σpc. This criterion can be achieved by decreasing the strength of the matrix by inserting a flaw in the
matrix. The matrix tensile strength equals the stress of the bond between the fiber and matrix, and the
composite develops a more ductile behavior.

This behavior was intensely studied with PVA fibers. However, for steel fibers, it was observed
that as soon as the specimen cracked on reaching the σcc, there was a sudden drop in stress resistance,
leading to extensive cracking, widening before the stresses were transferred from the matrix to the
fibers (σpc). Nevertheless, it was also noted from Figure 8 that the SAP incorporation enhanced the
toughness of the composite as it increased the multiple-crack behavior when the difference of σcc and
σpc was lower. The 0.3% SAP addition achieved the best behavior because the regain of strength after
the first cracking was significant. The difference between the two stresses was 0.3 MPa. However, for
the developed SFRC, the σpc was not higher than the σcc, and the multiple-cracking behavior was not
achieved. Still, the fibers fulfilled their purpose to increase the toughness and produce a progressive,
yet gradual decrease in the load-carrying capacity.

The overall trend of the tensile strength presented a decrease as the SAP addition increased.
The mixture with a content of 0.2% SAP was the exception. Despite following the general tendency to
decrease the tensile strength by the insertion of SAP, it presented, in both cases of the concrete with and
without fiber reinforcement, a higher reduction than the ones with more SAP insertion. This behavior
was not expected and no reasonable explanation was found since, for the results of compressive strength
and slump, it was inside the pattern of decrease. As for the autogenous shrinkage, it also presented
results inside the expected trend.

Liu, Farzadnia and Shi [27] along with Wang et al. [26], are the few articles investigating the tensile
behavior of steel fiber reinforced concrete with superabsorbent polymers. Wang et al. [27] focused on
investigating different steel fibers types and contents with an established SAP content in the mixture,
as opposed to our research that fixed the fiber type and content to investigate the influence of different
SAP additions.

As reported by [26], the addition of SAP increased the flexural to compressive strength ratio of
their ultra-high performance concrete (UHPC). For the UHPC with small size SAP, the increase in the
ratio regarding the reference was 8% with 0.3% of SAP and 22% with 0.6% of SAP. Despite the difference
in the tensile measurement, flexural strength is an indirect measure of the tensile strength. This
phenomenon could also be observed for the concrete without fiber reinforcement (Table 3). The ratio
increased by 9% for the addition of 0.2% SAP and 14% for the increase with 0.3%. The increment in
the tensile to compressive strength ratio means that the SAP’s internal cure is more beneficial for the
development of tensile than compressive strength. Liu, Farzadnia and Shi [26] raised the hypothesis
that the addition of SAP increased the interstitial bonding strength of steel fibers. Additionally, this
could be one of the critical factors in increasing the tensile to compressive results. However, for SFRC,
only the 0.3% of SAP addition showed an improvement in the ratio of 16%; as for the other content, no
improvement was observed.
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Analytical Tensile Evaluation of SAP Incorporation

There are many analytical models to describe the behavior of fiber reinforced concrete, especially
regarding steel fiber reinforcement, for example, [58–60]. It was not within the scope of this work
to evaluate the best analytical model to describe the experimental obtained curves. Instead, a more
contemporary and consolidated model was chosen to describe and predict the SFRC. The variable
engagement model (VEM) has been extensively used to investigate fiber reinforcement, even in DIC
analyses of direct tensile test such as in [61], more details of the model can be found in [62,63]. This
model gives an approach for modeling strain softening behavior on uniaxial tension, where the fibers
are randomly orientated in three dimensions.

For modeling the developed SFRC, the fibers were straight, so the mechanical anchorage was
dismissed for the model. The total tensile stress developed by the model was composed by the sum of
the stress of the matrix and the stress provided by the frictional bond between fiber and matrix, as
exemplified in Figure 9a and Equation (1).

ft = fct + fst (1)

where ft is the total tension stress carried by the fiber reinforced concrete; fct is the stress carried by the
matrix; and fst is the stress carried by the fiber.Materials 2020, 13, x FOR PEER REVIEW 15 of 19 
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VEM considers that the embedded fiber is pulled out from the crack’s side with the shorter
embedded fiber length, and ignores the axial elastic deformation of the fibers. An exponential tension
softening relationship is provided as:

fct = f ′t · exp(−c ·w) (2)

where f’t is the tensile strength of the specimens without fibers; w is the crack width of the specimen
at a given load; and c is an attenuation factor for the concrete matrix undergoing tension decay after
cracking. The c parameter was a variable to the model fitting into the experimental curves.

The stress carried by the fiber is given by:

fst = K fα fρ fτb (3)
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where Kf is the global orientation factor; αf is the aspect ratio; ρf is the volumetric ratio; and τb is the
mean shear stress between the fiber and the matrix.

The aspect ratio is given by:

α f =
l f

d f
(4)

where lf is the length of the fiber and df the diameter, and the global orientation factor is given by:

K f =
(tan−1(w/α))

π

(
1−

2w
l f

)2

(5)

where α is the engagement parameter, which for fiber composites with straight or end hooked steel
fibers is of α = df/3.5.

For the model to work without the fiber fracture, the following equation must be satisfied. For
the present case, it was fulfilled, and the model without fiber fracture was chosen. Additionally, by
observing the cracked section after the tensile test was performed, no fiber fracture was observed.

l f < lc =
d f

2

σ f u

τb
(6)

where lc is the critical fiber length and σfu is the ultimate tensile strength of the fiber.
The analytical model presented using Equations (1)–(6) was plotted with the experimental results

in Figure 9b, where EXP designates the experimental and ANA represents the analytical curves.
Since the composites presented the same fiber content and type, in order for the model to fit the

experimental results, only three parameters could vary: the parameter c that is dependent of the type
of concrete; the stress of the fiber bond; and the tensile stress of each composite at 28 days. The tensile
stress was provided by the results obtained. The other parameters were initially based on the literature
and then modified to adjust the model to the experimental curves better.

The fitting of these parameters revealed that the bond between the fiber and matrix was enhanced
with the SAP addition, except for the 0.2% as already discussed, to eventually be an out layer. The
initial value set for the bond strength was 10 MPa, tested by [64]. The interpolation to better fit the
experimental curve to the model presented the following results: for the reference, the stress bond was
9 MPa, and SAP-0.2F, SAP-0.3F, and SAP-0.6F were 8, 13.5, and 11.2 MPa, respectively. This confirmed
that SAP-0.3F presented a superior bond between the fiber and matrix, consequently enhancing the
toughness and presenting the best behavior. Furthermore, SAP-0.6F validated that the SAP addition
enhanced the bond between the matrix and steel fiber.

The parameter c can be physically interpreted as the behavior of the concrete or mortar undergoing
tension decay after cracking; the typical value of concrete is 15 and 30 for mortar. Furthermore, the
interpolation revealed that the SAP addition modified the matrix to be more likely to be a mortar than
concrete. The REF-035 was 15 as a result of the fitting, which is the typical value of concrete. The
addition of 0.2, 0.3, and 0.6 presented the values of 6, 18, and 22, respectively.

Overall, the proposed models presented a good correlation, indicated by a mean correlation R2 of
0.97. Future work to investigate the pull-out behavior and confirm the indicated values should be
performed. Furthermore, the analytical model can describe the behavior of the SFRC with SAP and
can be applied in the future analysis of elements under uniaxial tension.

4. Conclusions

This study established the framework to investigate the tension behavior of a durable steel
fiber reinforced concrete with increasing dosage of SAP and to develop a HSC with SAP to mitigate
autogenous shrinkage and develop an analytical model for predicting the tension behavior of HSC
with varying SAP dosage. Based on the results presented, the following conclusions can be drawn:
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• HSC can incorporate a dosage of 0.6% of SAP, keeping high strength and workability.
• Autogenous shrinkage can be adequately mitigated with the content of 0.3% of SAP. However, a

content of 0.2% may give sufficient reduction to avoid cracking.
• The content of 0.3% of SAP was shown to be beneficial in different aspects. It successfully mitigated

autogenous shrinkage, can be used without major influence on workability, is compatible with
high compressive strength, and significantly enhanced the SFRC’s ductile performance.

• The variable engagement model used was capable of describing the behavior of the SFRC with
SAP. Moreover, it can be used in future finite element applications.
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