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Abstract: The high-temperature mechanical behaviors of SiO2-based ceramic cores for the directional
solidification of turbine hollow blades were investigated. Isothermal uniaxial compression tests of
ceramic core samples were conducted on a Gleeble-1500D mechanical simulator with an innovative
auxiliary thermal system. The stress–strain results and macro- and micro- structures of SiO2-based
ceramic cores were investigated experimentally. The microstructures were characterized by the
scanning electron microscope (SEM). Based on the experimental data, a nonlinear constitutive model for
high temperature compressive damage was established. The statistical results of Weibull moduli show
that the stability of hot deformation increases with the increase of temperature. The fracture type of the
SiO2-based core samples is brittle fracture, but when the temperature exceeds 1400 ◦C, the mechanical
behavior exhibits thermo-viscoelastic and viscoplastic property. Under high-temperature (>1400 ◦C)
and stress conditions, the strength of the ceramic core is weakened owing to the viscous slip of
SiO2, which is initially melted at the temperature of 1400 ◦C. The comparison results between the
predictions of nonlinear model and experimental values indicate that the model is applicable.
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1. Introduction

In response to the increasing worldwide need for reliable, low-cost, and environmentally
compatible generation of energy, the new generation of H-class gas turbines (GT) is developed [1,2].
Ni-based single-crystal (SX) superalloy turbine blades, which are the key hot-end assemblies of the
gas turbine engines, can be produced by using the directional solidification (DS) technology [3].
The complex inner cavity formed by the ceramic core provides the possibility for the development of
the hollow blade cooling technology. Nowadays, due to the complex thermal stress–strain interactions
during DS, the size of blades appears imprecise, and the ceramic core even appears cracked. As a
result, the performance of the SiO2-based ceramic core directly affects the dimensional accuracy of the
SX hollow turbine blade. Therefore, the high-temperature mechanical properties of the SiO2-based
ceramic core are crucial for the preparation of SX hollow turbine blade.

There are some studies focused on the high-temperature mechanical behaviors of SiO2-based
ceramic cores [4]. Xu et al. [5] investigated the flexural strength of silica-based ceramic cores doped with
different silica nanopowders at 1540 ◦C. The results showed that large quantities of cristobalite were
crystallized at 1540 ◦C, which might provide enhanced mechanical property in the casting. Niu et al. [6]
found that the ceramic cores with 3 wt% mullite fibers showed excellent properties, such as flexural
strength being 22.3 MPa at 1550 ◦C, owing to fiber reinforcing. At the same time, there are two
opposite conclusions about the high-temperature properties of SiO2-based ceramic core. For instance,
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Kazemi et al. [7] found that the increase of zircon content could result in the decrease of cristobalite
formed in situ, owing to cristobalite crystallized on the surface of fused silica particles during heat
treatment. This result is contrary to Wang and Hon’s report [8], but is in good agreement with the
result of Wilson et al. [9]. On the other hand, there are many examples in the literature exploring the
static and dynamic hot deformation behaviors of other types of ceramic materials in-depth, such as
ZrB2 [10], SiC [11], Al2O3 [12], and ceramic composite material [13]. The methods presented in these
articles can be applied to the study of SiO2-based ceramic core.

During the directional solidification process, the ceramic cores will be subjected to mechanical
loading at high temperature for a long time. In order to prevent the core fracture, it is very necessary to
investigate the high temperature behavior of ceramic core. In this study, an auxiliary thermal system
is employed to carry out the thermal compression tests of ceramic core. Constitutive modeling and
various characterization methods are used to understand the high-temperature mechanical property of
SiO2-based ceramic core.

2. Experimental Procedure

2.1. Experimental Methods and Design

The characteristics of fused silica and zircon used as raw materials are illustrated in Table 1.
According to the formulation used in actual production, the composition of the samples was 60 wt%
fused silica and 40 wt% zircon. Porous silica-based ceramic cores were prepared by using ceramic
injection molding. After a series of procedures, such as mixing, ball milling, adding adhesive,
and drying, the green bodies were obtained. The sintered samples were subsequently subjected to heat
treatment at 1500 ◦C for 30 min and then were removed from the furnace at 1000 ◦C, to the atmosphere
at 25 ◦C, for simulating the realistic rapid cooling process during the directional solidification from the
heating zone into the cooling zone.

Table 1. Characteristics of the used fused silica and zircon as raw materials.

Powder (%) SiO2 ZrO2 Al2O3 K2O CaO TiO2 Powder Density (g/cm3) Open Porosity (%) Source

Fused Silica 99.99 - 0.002 - 0.004 0.001 1.99 0.8 HongDa
Zircon 33.21 62.5 0.82 0.90 0.55 1.94 4.54 1.1 XinTai

Thermal process of ceramic shell/core during directional solidification is shown in Figure 1a.
Since the tendency of core breakage is mainly concentrated at temperatures above 800 ◦C, the hot
compression temperatures of ceramic cores were set at 700 ◦C (ST700), 1100 ◦C (ST1100), and 1400 ◦C
(ST1400). The sample ST25 was tested at 25 ◦C. The average size of the ceramic cores is 14.77 mm in
diameter and 15.25 mm in length (ϕ14.77 mm × 15.25 mm). The stain rate of 0.001 s−1 was chosen.
After taking into consideration the inhomogeneity of the ceramic core, we tested three parallel samples
for each deformation temperature. The whole process can be represented by Figure 1 and Table 2.

2.2. High-Temperature Experimental System for Mechanical Behaviors

The Gleeble system has been widely employed in the research of material constitutive model [14,15].
It mainly includes three parts: heating system, mechanical system, and computer control system.
The heating system forms a current loop with a loaded metal sample (as a resistor) to heat the
metal sample. The heating rate and heating temperature are varied by controlling the current in
the sample. Therefore, the Gleeble system is generally unable to measure the high-temperature
mechanical properties of non-conductive materials, such as ceramic materials. In order to realize the
high-temperature mechanical measurement of non-conductive materials on the Gleeble simulator,
we designed and developed an auxiliary thermal device that could expand the measurement material
range of the Gleeble simulator [16]. The schematic diagram of the auxiliary thermal system of the
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Gleeble testing is shown in Figure 2. The measured temperature can reach 1600 ◦C. The temperature
control accuracy is ±4 ◦C.Materials 2020, 13, x FOR PEER REVIEW 3 of 11 
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Figure 1. (a) Thermal process of directional solidification; and (b) the schematic diagram illustrating 
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bars, ③  silicon carbide screw tube, ④  corundum tube, ⑤  insulation fiber box, ⑥  S-type 
thermocouple for temperature control, ⑦  temperature S-type thermocouple for temperature 
calibration, and ⑧ temperature control cabinet). 

Figure 1. (a) Thermal process of directional solidification; and (b) the schematic diagram illustrating
the compression process of SiO2-based ceramic cores.

Table 2. Heat treatments of ceramic cores to simulate the directional solidification process and
test conditions.

Ceramic Core Samples Sintering Heat Treatment Test Temperature

ST25 1000 ◦C @ 60 min - 25 ◦C
ST700 1000 ◦C @ 60 min 1500 ◦C @ 30 min 700 ◦C

ST1100 1000 ◦C @ 60 min 1500 ◦C @ 30 min 1100 ◦C
ST1400 1000 ◦C @ 60 min 1500 ◦C @ 30 min 1400 ◦C
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Figure 2. Schematic diagram of the auxiliary thermal system ( 1O ceramic sample, 2O compression bars,
3O silicon carbide screw tube, 4O corundum tube, 5O insulation fiber box, 6O S-type thermocouple

for temperature control, 7O temperature S-type thermocouple for temperature calibration,
and 8O temperature control cabinet).

3. Results and Discussion

3.1. High-Temperature Mechanical Properties

Figure 3 shows the stress–strain curves variation ranges of the samples ST25, ST700, ST1100,
and ST1400, from which can be found ST25, ST700, and ST1100 are all brittle fractures, while ST1400
shows thermo-viscoelastic and viscoplastic property. The average compressive strengths of ST25,
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ST700, and ST1100 are 51.83, 55.82, and 80.46 MPa, respectively, as shown in Figure 4. It is worth noting
that the compressive strength of ST1100 is higher than that of ST25 and ST700. This is mainly due
to the conversion of α-cristobalite to β-cristobalite. The densities of α-cristobalite and β-cristobalite
are about 2.32 and 2.22 g/cm3, respectively, and the expansion of the β-cristobalite volume makes the
sample more compact [17]. More α-cristobalite is transformed into β-cristobalite at 1100 ◦C, and the
strength of β-cristobalite is stronger than that of α-cristobalite [18]. At the same time, Zener pinning
would be more pronounced at higher temperatures [9].
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In the elastic stage, the stress–strain curve of sample ST25 has a good linear-elastic regime. With the
increase of temperature, the stress–strain curves of ST700 and ST1100 have a large amplitude and
demonstrate a certain degree of dispersion. The elastic moduli of ST25, ST700, ST1100, and ST1400 are
2726, 2259, 2316, and 1442 MPa, respectively. The elastic modulus of the SiO2-based ceramic core shows
a decreasing trend when the temperature is increased. There is a small change in the range of 25~1100 ◦C,
while the elastic modulus decreases rapidly at the range of 1100~1400 ◦C. The stress–strain curve of
ST1400 at the viscoplastic stage is narrow, indicating that the high-temperature experimental result
achieves high repeatability and reproducibility. However, the overall high-temperature mechanical
property of the sample ST1400 decreases significantly.
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On the other hand, it can be found from Figure 4 that the dispersion properties of compressive
strengths vary greatly with the increase of temperature. The samples ST25 and ST700 demonstrate large
dispersion, while samples ST1100 and ST1400, especially sample ST1400, show less dispersion.
To quantify this result, a universal empirical model called Weibull approach is introduced.
The three-parameter Weibull distribution function can be simplified to a two-parameter Weibull
distribution function without affecting its accuracy [10,19]:

P(x) = 1− exp
[
−(σ/σ0)

m
]

(1)

where P(x) is the failure probability, σ0 is shape factor, and m is Weibull modulus. Generally speaking,
the larger m indicates the material is more uniform and less dispersion.

From Figure 5, it can be found the Weibull moduli of ST25, ST700, ST1100, and ST1400 are
12.24, 10.87, 18.65, and 38.39, respectively. Obviously, ST1400 demonstrates the largest modulus,
indicating that the hot deformation of sample at 1400 ◦C tends to exhibit certain stable and repeatable
characteristic. At the same time, as the moduli of ST700 and ST25 are relatively small, it can be
concluded that the deformation at 700 and 25 ◦C will be quite unstable. In fact, these results furtherly
confirm the difference of stress–strain curves in Figure 3 from the angle of data.
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3.2. Microstructures Evolution

As is well-known, the mechanical properties are always associated with microstructures evolution.
Figure 6 exhibits the macrostructural investigations of the samples (ST25, ST700, ST1100, and ST1400)
fracture surfaces. The difference in the fracture patterns of ST25, ST700, ST1100, and ST1400 can be
clearly distinguished (Figure 6a–d). ST25, ST700, and ST1100 are crushed brittle fractures. As the
temperature increases, the average size of residual pieces increases. When the strain of ST1400 reaches
0.04, the sample can maintain a substantially complete shape, and only minor fragments occur on the
cylindrical surface. At the same time, a sliding plane of approximately 45◦ with the bottom surface of
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the cylindrical sample can be clearly seen. It is this kind of viscous slip that causes the stress plateau
of ST1400 after the strain is greater than 0.02 at 1400 ◦C. The main reason of this sticky slip can be
explained in the microstructure morphology.
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and (d) ST1400.

Figure 7 shows the XRD patterns of various samples after hot compression at different temperatures.
It can be found that all samples are composed of zircon and α-cristobalite. With the increase of
deformation temperature, the peak intensities of two phases have a little change. In order to clarify the
phase distribution in the microstructure, EDS point elemental analysis was employed and the results
are shown in Figure 8. As shown in Figure 8, the point 1 with gray-black color is SiO2 and the point 2
with bright white color is ZrSiO4 in the image of backscattered electron (BSE).
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point 2.

Figure 9a,c,e,g shows the images of secondary electrons (SE), and Figure 9b,d,f,h shows the
images of the BSE. In the BSE images, the major component of the white-gray phase is ZrSiO4,
and the major component of the black-gray phase is SiO2. From the micro-topography of ST25, ST700,
and ST1100, it can be seen that the SiO2 particles mainly undergo cleavage fracture, the ZrSiO4 particles
mainly undergo dimple fracture. Most penetrated cracks are distributed in larger SiO2 particles.
However, there are almost no cleavage fractures in SiO2 particles of the ST1400, and there are little
dimple-like ZrSiO4 sections. The surfaces of the small SiO2 particles have a smooth curved shape.
The occurrence of material fracture usually has great uncertainly, which is also the reason for the
divergence of the stress–strain curves. As mentioned before, the Weibull modulus of ST1400 is much
larger than that of ST25, ST700, and ST1100, meaning that the deformation of ST1400 is more stable.
Therefore, the microstructure observation results of samples above are relatively consistent with the
stress–strain curves.

In the cross-section of ST25, ST700, and ST1100, the surfaces of the large SiO2 particles are clean,
and almost no adhesion of fine SiO2 particles is observed. However, in addition to penetrating
cracks on the surface of the large SiO2 particles in ST1400, a large number of smooth and fine SiO2

particles are attached to the surface (Figure 9h). It is generally believed that the melting temperature of
β-cristobalite is 1720 ± 10 ◦C [17,20]. However, some studies have shown that, when the temperature
reaches 1400~1450 ◦C, it will slowly melt on the surface of the SiO2, and the presence of other elements
or impurities may reduce the β-cristobalite transformation temperature [21,22]. Therefore, in the
high-temperature environment of 1400 ◦C, the main reason for the viscous slip of the SiO2-based
ceramic core samples is that the surfaces of the fine SiO2 particles are initially melted, which plays a
role in lubrication between large particles. The SiO2, which is initially melted at the temperature of
1400 ◦C, adheres to the surface of the large SiO2 particle. When the temperature drops further to the
room temperature, it combines with the large particles, to form a unitary body.

3.3. Nonlinear Constitutive Models for High-Temperature Compressive Damage

It can be seen from Figures 4 and 5 that the compressive strength and modulus are basically
negatively correlated with temperature. The macro-effect of temperature on the properties of ceramic
core includes two aspects. On the one hand, the intermolecular forces decrease with increasing
temperature. On the other hand, the change of structure caused by the variation of temperature will
greatly affect the properties of the material, such as thermal mismatch. Therefore, the thermal damage
D(T) is employed to describe the temperature effect on the property [23]:

D(T) = 1− ET/E0 (2)

where E0 is elastic modulus at room temperature, and ET is the elastic modulus at T. The elastic
modulus denoted by thermal damage is expressed as follows:

ET = [1−D(T)]E0 (3)
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According the analysis of the experimental results at different temperatures, the thermal damage
value, D(T), at each temperature point is calculated, as shown in Figure 10. Through data fitting,
the expression of thermal damage with temperature variation can be written as follows:

D(T) = −0.0328 + 0.00125T − 2.136× 10−6T2 + 1.068× 10−9T3 (4)
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According to the author’s previous research [24], the continuous damage constitutive model
based on Weibull distribution method, at room temperature, is summarized as follows:

σ1 = Eε1 exp
[
−

(
ε1

ε0

)m]
. (5)

where ε1 is the axial strain, and ε0 is a constant. In order to obtain the nonlinear constitutive model
for high-temperature compressive damage, the E in Equation (5) can be substituted by ET, and the
formula can be rewritten as follows:

σ1 = [1−D(T)]E0ε1 exp
[
−

(
ε1

ε0

)m]
(6)

The experiment results of typical compression stress–strain of SiO2-based ceramic core and the
simulation results based on thermo-visco damage model are presented in Figure 11.Materials 2020, 13, x FOR PEER REVIEW 10 of 11 
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Figure 11. The comparison between the experimental results and nonlinear constitutive model
prediction: (a) ST700, (b) ST1100, and (c) ST1400.

From Figure 11, it can be found that the nonlinear constitutive model has a good generalization
property. In other words, this model could reflect the uniaxial compression behaviors of ceramic cores
deformed at various temperatures.

4. Conclusions

(1) In the temperature range from 25 to 1400 ◦C, the elastic moduli of the SiO2-based ceramic cores
range from 1442 to 2726 MPa at the elastic stages. The statistical results of Weibull moduli show
that the stability of deformation increases with the increase of temperature.

(2) The SiO2-based ceramic core samples are all brittle fractures, while, when the temperature
exceeds 1400 ◦C, the mechanical behaviors of the samples are characterized by thermo-viscoelastic
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and viscoplastic properties, which mainly can be ascribed to the initial surface melting of SiO2

fine particles.
(3) Nonlinear constitutive model for high-temperature compressive damage is established to predict

the hot deformation of ceramic core. The comparison results between the nonlinear model
predictions and experimental values indicate that the model is applicable.
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