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Abstract: Recycled aggregate concrete (RAC) is a promising solution to address the challenges raised
by concrete production. However, the current lack of pertinent design rules has led to a hesitance
to accept structural members made with RAC. It would entail even more difficulties when facing
application scenarios where brittle failure is possible (e.g., beam in shear). In this paper, existing
major shear design formulae established primarily for conventional concrete beams were assessed for
RAC beams. Results showed that when applied to the shear test database compiled for RAC beams,
those formulae provided only inaccurate estimations with surprisingly large scatter. To cope with
this bias, machine learning (ML) techniques deemed as potential alternative predictors were resorted
to. First, a Grey Relational Analysis (GRA) was carried out to rank the importance of the parameters
that would affect the shear capacity of RAC beams. Then, two contemporary ML approaches, namely,
the artificial neural network (ANN) and the random forest (RF), were leveraged to simulate the beams’
shear strength. It was found that both models produced even better predictions than the evaluated
formulae. With this superiority, a parametric study was undertaken to observe the trends of how the
parameters played roles in influencing the shear resistance of RAC beams. The findings indicated
that, though less influential than the structural parameters such as shear span ratio, the effect of the
replacement ratio of recycled aggregate (RA) was still significant. Nevertheless, the value of vc/(f c)1/2

(i.e., the shear contribution from RAC normalized with respect to the square root of its strength)
predicted by the ML-based approaches appeared to be insignificantly affected by the replacement
level. Given the existing inevitable large experimental scatter, more shear tests are certainly needed
and, for safe application of RAC, using partial factors calibrated to consider the uncertainty is feasible
when designing the shear strength of RAC beams. Some suggestions for future works are also given
at the end of this paper.
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1. Introduction

Mountains of concrete waste are being generated from demolition sites. This fact, together with
the exceptional recent growth of concrete consumption, puts the construction sector into a dilemma.
Such a situation, though, in turn, urges the sector to facilitate the development of strategies to mitigate
concrete’s negative impacts [1]. Recycling concrete waste is one such attempt, in which recycled
aggregate (RA) crushed from concrete rubble is used to replace natural aggregate (NA) needed in new
concrete. The application of the resulting products, namely, the recycled aggregate concrete (RAC), is
attracting immense interest, and believed to be able to open up new vistas for sustainability [2,3].

Despite such benefits, the application of RAC in structures is still not widespread. This is caused
not only by the simple reluctance to the change of common practice, but also by many legitimate
concerns. One of the biggest concerns is the inferior properties of RA, which would result in significant
reductions in the mechanical properties of RAC [4–7]. This should impede the acceptance of RAC-based
members, though many laboratory studies have revealed their structural feasibility [8–14]. Another
wave of concern is around design and modeling, where the validity of previous code-based models
and analytical procedures developed for natural aggregate concrete (NAC) components is questioned
for their RAC counterparts; this issue has begun to be systematically addressed [15–17].

When it comes to RAC beams, the shear performance of the components is of particular concern.
This is simply because the shear failure is generally sudden and often catastrophic. Moreover, there are
additional worries that are quite understandable: owing to the inherent porosity and heterogeneity of
recycled aggregates, the response of a RAC beam in shear would differ markedly from that of a NAC
beam—the former is likely to exhibit weaker aggregate interlock action, smoother shear crack planes,
and consequently, lower shear capacity and less ductile behavior [1].

Up to now, significant efforts have been made worldwide in response to the doubts just
mentioned [18–38]. Early shear tests [18–20] indicated that RAC beams have similar cracking
pattern and failure modes with those of NAC ones, but present lower diagonal cracking load and
inferior shear-resisting capacity. From then on, interest has been sparked, providing more invaluable
experimental evidence into this area [21–38]. For example, Fathifazl et al. [24], Arezoumandi et al. [25,26],
and Knaack and Kurama [27] investigated the effects of replacement level and longitudinal
reinforcement ratio on the shear behavior of RAC beams. The results showed that an increased
amount of RA may erode the beams’ initial stiffness, but the effect on the shear strength is relatively
small; given the same volume of longitudinal reinforcement, the shear capacity of RAC beams is
clearly lower than that of NAC beams [25]. Comparisons were also made between RAC beams
with and without shear reinforcement [32,33]. An overall trend observed is that for shear-reinforced
beams, a great portion of resistance is contributed by web steel, and there is no such evidence that the
resistance is significantly affected by the use of recycled aggregates. Hence, in such cases (with shear
reinforcement), the detrimental effects are not as prominent as in beams without shear reinforcement.
Tošić et al. [39] added their own test data to a comprehensive database for RAC beams, and evaluated
the beams’ flexural and shear strengths using European design code. In the shear loading case, the
code can successfully predict the ultimate force of RAC beams without stirrups, but it fails for the
beams with stirrups. In this regard, much more investigations for RAC beams with web steel are
required. This is not surprising, since a recent study by Pacheco et al. [40] has confirmed that, after a
strict filtering of previous test data, only eighteen shear-reinforced RAC beams are considered suitable
for the examination of code provisions, indicating the very scarcity of such tests. It also turned out
that the code-based predictions for RAC beams with stirrups are more conservative and show higher
variability than those for RAC beams without stirrups [40]. Such a finding seemingly contradicts one’s
initial intuition, but just highlights the complex nature of RAC beams in shear.

Thus, the shear problem of RAC beams has not been fundamentally and conclusively solved yet.
This is particularly true given the intrinsic uncertainties involved—the amount of residual mortar
attached to RA is usually unknown (the main reason why recycled aggregate is more porous and
heterogeneous than natural aggregate), nor the RA source. Furthermore, limited understanding of the
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shear failure mechanism per se (even for the case of NAC) adds to the complexity, which encourages
further explorations for properly representing the beams’ shear behavior.

From another angle, it is noticed that machine learning (ML) techniques are being increasingly
used for complex material and structural problems [41–43]. Those problems often defy solutions
via traditional approaches but can get satisfactory answers by ML techniques. In these techniques,
an intelligent mathematical system is first trained by feeding a set of examples (data and answers),
with the aim of minimizing the difference between outputs and answers. By so doing, the system
with a predefined algorithm is enabled to come up with rules that can eventually deal with new input
data and give accurate predictive outputs. At the core of ML techniques is the transformation of the
data (inputs) into meaningful representations of hidden mechanisms, which is otherwise a grueling
challenge to conventional theoretical approaches.

The widely accepted ML approaches include, among many others, artificial neural network, kernel
methods like support vector machine, and decision trees like random forest [41–43]. These models
have been effectively used as predictive modeling approaches for normal concrete (e.g., [44]) as well as
recycled concrete [45–48].

This paper intends to quantify the shear capacity of RAC beams by means of machine learning
techniques. To this end, a comprehensive experimental database containing 264 beam specimens
was first constructed. Then, nine shear design methods collected from both code standards and
scientific publications were used to examine their effectiveness for the case of RAC shear beams.
After this appraisal, a Grey relational analysis (GRA) was carried out to rank the importance of potential
parameters that would affect the beams’ shear resistance. With this requisite information, two ML
approaches—the artificial neural network (ANN) and the random forest (RF)—were developed to
evaluate the shear capacity of RAC beams. Once trained and tested successfully, the two approaches
were finally utilized to conduct a parametric study, by which the overall trend can be well observed of
how the shear capacity of RAC beams is influenced by the selected parameters. This study helps to
understand the shear problem of RAC beams, and hence contributes to upscaling the use of RAC in
structural applications with confidence.

2. Shear Test Database and Existing Prediction Methods

2.1. Experimental Database

A comprehensive experimental database of RAC beams loaded in shear and their reference beams
made with NAC was constructed in this study, as detailed in Appendix A Table A1. This database
comprised 264 datasets (206 beams without steel stirrups and 58 beams containing steel stirrups)
collected from 28 published works across the world [18–27,29–38,49–56]. Experimental outcomes
published in Chinese [49–56] were also included as a complement. When constructing the test database,
the following criteria were applied:

1. Only beams experiencing shear failure were considered. Data related to flexural failure were
excluded. Note that in some test beams more stirrups were used in one shear span to control the
shear failure to occur in another span. For these cases, the maximum load recorded in the less
shear reinforced span was taken as the ultimate shear resistance of the specimen;

2. Key mix proportioning factors of RAC, especially the replacement ratio and the water-to-cement
ratio, must be reported; otherwise, the specimens were not included;

3. Beams incorporating waste materials other than the recycled coarse aggregate (e.g., bricks,
recycled fine aggregate) or fibers were not included; beams reinforced with FRP bars were also
not considered;

4. Finally, datasets with inadequate information for the construction of Appendix A Table A1
were removed.

Note that in the previous study by Pacheco et al. [40] beams with a shear span ratio less than 2.5
were excluded for properly evaluating the applicability of existing shear design provisions for RAC
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beams. Additionally, Pacheco et al. [40] found that a high longitudinal reinforcement ratio (approaching
4.0%) may influence the code validation. In this study, these test data were retained because we
intend to develop a unified ML-based predictive approach that adapts to various parameters with
a wide range. Still, when checking the appropriateness of shear design methods (see the next section),
the scope of each method will be strictly followed.

All of the specimens reported in Appendix A Table A1 were the simply supported rectangular
beams subjected to four-point loading. The table gives the following fundamental attributes for each
specimen: (1) their geometry characteristics (section width b, section height h, effective section height d,
and shear span ratio a/d); (2) replacement ratio of RA r; (3) water-to-cement ratio w/c; (4) maximum size
of RA pieces smax; (5) compressive strength of concrete f c; (6) longitudinal and transverse reinforcement
ratios, ρs and ρsv, respectively; (7) yield strengths of the longitudinal and transverse reinforcement,
f y and f yv, respectively; and (8) experimentally obtained ultimate shear force Vu. In this paper, the
normalized ultimate shear stress (i.e., vu = Vu/bd [57,58]) is used as a metric for evaluating the beam’s
shear resistance.

The shear resisting mechanism in RAC beams is controlled by a set of parameters, which can be
summarized as:

• The compressive strength of concrete, f c, is typically considered the most relevant factor to the
shear capacity;

• The replacement ratio of RA, r, is a unique factor for beams made with RAC, and would affect the
magnitude and variability of f c;

• The maximum size of RA, smax, influences the interlock action at shear cracking planes and hence
the ultimate shear resistance;

• The shear span ratio, a/d, and the beam section height, h, play vital roles in determining the shear
failure mode of beams and the size effect on shear strength, respectively [59,60].

• The longitudinal reinforcement ratio, ρs, directly determines the dowel effect which constitutes an
important and integral part of the shear resisting mechanism;

• The parameter, ρsvfyv, represents the essential contribution from transverse reinforcement.

Table 1 shows the statistics of the above parameters (together with the ultimate shear stress vu).
Those parameters have relatively wide ranges, while their average values reflect common engineering
practice. The mean concrete strength (32.7 MPa), for instance, is a normal value commonly applied in
beams, the mean shear span ratio (2.71) falls within the range associated with shear-dominated failure,
and the mean longitudinal reinforcement ratio (0.0181) also represents ordinary flexural reinforcing
schemes for beams.

Table 1. Statistics of parameters in the database.

Parameter f c [MPa] r smax [mm] a/d h [mm] ρs ρsvf yv [MPa] vu [MPa]

Maximum 49.8 1.00 40.0 5.00 680.0 0.0409 3.3743 6.39
Mean 32.7 0.57 24.5 2.71 349.0 0.0181 0.2355 2.27

Minimum 16.8 0.00 12.5 1.00 120.0 0.0053 0.0000 0.69
Standard deviation 6.9 0.40 6.8 0.93 114.5 0.0079 0.5095 1.25

Standard error 0.5 0.03 0.5 0.06 7.9 0.0005 0.0352 0.09
Median 32.6 0.50 25.0 2.55 300.0 0.0165 0.0000 1.36
Mode 29.0 1.00 25.0 3.00 300.0 0.0161 0.0000 2.43

Kurtosis −0.6 −1.49 0.4 −0.28 0.7 0.8177 7.8658 −0.23
Skewness 0.3 −0.25 0.9 0.62 0.9 0.8972 2.5641 0.71

2.2. Shear Capacity Assessment with Existing Methods

In this section, nine classic shear design methods presented in existing codes or publications were
used to evaluate the shear strength of beams in the test database. Those methods, as tabulated in
Appendix A Table A2, correspond to the provisions in the ACI Building Code (ACI318-2014) [61], the
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British Standard EN1992-1-1:2004 [62], the Chinese Concrete Code (GB50008-2010) [63], the Japanese
Code (JSCE Guideline No. 15) [64], and the New Zealand Standard (NZS3101-2006) [65]. The Zsutty’s
early contribution [57,58], the simplified modified compression field theory [66,67] (note that the
simplified MCFT theory has been adopted in the CEB-FIP Model Code 2010 [68] and the Canada Code
CSA A23.3-19 [69]), the critical shear crack theory [70,71] and the Zhang’s plasticity theory [72] were
also chosen for the assessment. These nine methods have either been accredited by national standard
committees or well accepted by the professional community.

Comparisons between the experimental and the predicted shear strengths for RAC beams
without/with steel stirrups are, respectively, shown in the left and right columns of Figure 1. As seen
in the figure, the predicted-to-experimental ratio varies from one method to another. For beams
without stirrups, those ratios are located within the range of 0.306 to 0.726, indicating a poor predictive
performance for all of the shear design methods. As stirrups were incorporated, the results improve to
some extent (the predicted-to-experimental ratio ranges from 0.553 to 0.836). This is probably because
the presence of transverse reinforcement which participates in the shear resisting mechanism tends to
reduce the experimental brittleness (and hence increase the prediction accuracy) [22]. The outputs
in both cases (without and with stirrups) suggest an inaccuracy and over-conservatism for all the
evaluated methods. Moreover, for beams without stirrups, a high scatter is exhibited for all the
methods (their R2 are all below 0.8 except the ACI318-2014 method [61] and Zsutty’s equation [57,58]).
Combining the prediction results for RAC beams without/with stirrups, the best performance goes
to the Zsutty’s equation where its average value of R2 is equal to 0.883. Overall, the above results
indicate that the predictions of these existing methods are generally unsatisfactory (i.e., showing high
variability), especially for RAC beams without steel stirrups.
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Figure 1. Cont.



Materials 2020, 13, 4552 6 of 32

Materials 2020, 13, x FOR PEER REVIEW 6 of 32 

  
(c) GB50008-2010 [63] 

 
(d) JSCE Guideline No. 15 [64] 

  
(e) NZS3101-2006 [65] 

  
(f) Zsutty’s equation [57,58] 

-150 -100 -50 0 50 100 150
0

4

8

12

16

20

Relative error [%]

Avg. = -11.23%
Std. = 36.65%

Fr
eq

ue
nc

y

-150 -100 -50 0 50 100 150
0

2

4

6

8

10

Relative error [%]

Avg. = -23.78%
Std. = 25.00%

Fr
eq

ue
nc

y

-150 -100 -50 0 50 100 150
0

4

8

12

16

20

Relative error [%]

Avg. = -28.92%
Std. = 29.86%

Fr
eq

ue
nc

y

-150 -100 -50 0 50 100 150
0

2

4

6

8

10

Relative error [%]

Avg. = -31.23%
Std. = 24.29%

Fr
eq

ue
nc

y

-150 -100 -50 0 50 100 150
0

4

8

12

16

20

Relative error [%]

Avg. = -22.44%
Std. = 31.06%

Fr
eq

ue
nc

y

-150 -100 -50 0 50 100 150
0

2

4

6

8

10

Relative error [%]

Avg. = -25.49%
Std. = 23.62%

Fr
eq

ue
nc

y

-150 -100 -50 0 50 100 150
0

4

8

12

16

20

Relative error [%]

Avg. = -5.84%
Std. = 33.87%

F
re

qu
en

cy

-150 -100 -50 0 50 100 150
0

2

4

6

8

10

Relative error [%]

Avg. = -6.72%
Std. = 29.18%

Fr
eq

ue
nc

y

Figure 1. Cont.



Materials 2020, 13, 4552 7 of 32

Materials 2020, 13, x FOR PEER REVIEW 7 of 32 

  
(g) Simplified MCFT [66,67] 

 
(h) CSCT [70,71] 

  
(i) Zhang’s plasticity theory [72] 

Figure 1. Comparison between predicted and experimental shear strengths for different methods 
(Left column: beams without stirrups; Right column: beams with stirrups). 

The major contributing factors to the inadequacy of the evaluated methods may include: (1) the 
existing methods are established primarily for conventional concrete beams, and thus cannot convey 
the particular material characteristics of RAC; (2) due to the brittleness feature of shear failure, 
judicious and prudent considerations must be paid when developing shear equations [73–75]. This 
inevitably leads to a conservatism (more or less) for concrete beams in shear, irrespective of their 
concrete type; and (3) the detrimental impact of incorporating RA becomes more obvious with 
increasing concrete strength [40], consequently posing significant safety challenges when applying 
existing methods to these cases without any modification. As such, establishing an accurate shear 
resistance prediction for RAC beams is indeed a strenuous task and necessitates more effort. 
  

-150 -100 -50 0 50 100 150
0

4

8

12

16

20

Relative error [%]

Avg. = -34.22%
Std. = 25.91%

Fr
eq

ue
nc

y

-150 -100 -50 0 50 100 150
0

2

4

6

8

10

Relative error [%]

Avg. = -26.93%
Std. = 21.95%

Fr
eq

ue
nc

y

-150 -100 -50 0 50 100 150
0

4

8

12

16

20

Relative error [%]

Avg. = -12.87%
Std. = 35.02%

F
re

qu
en

cy

-150 -100 -50 0 50 100 150
0

2

4

6

8

10

Relative error [%]

Avg. = -14.39%
Std. = 24.42%

Fr
eq

ue
nc

y

-150 -100 -50 0 50 100 150
0

4

8

12

16

20

Relative error [%]

Avg. = -8.98%
Std. = 40.69%

Fr
eq

ue
nc

y

-150 -100 -50 0 50 100 150
0

2

4

6

8

10

Relative error [%]

Avg. = -11.06%
Std. = 28.68%

Fr
eq

ue
nc

y

Figure 1. Comparison between predicted and experimental shear strengths for different methods (Left
column: beams without stirrups; Right column: beams with stirrups).

The major contributing factors to the inadequacy of the evaluated methods may include: (1) the
existing methods are established primarily for conventional concrete beams, and thus cannot convey
the particular material characteristics of RAC; (2) due to the brittleness feature of shear failure, judicious
and prudent considerations must be paid when developing shear equations [73–75]. This inevitably
leads to a conservatism (more or less) for concrete beams in shear, irrespective of their concrete type;
and (3) the detrimental impact of incorporating RA becomes more obvious with increasing concrete
strength [40], consequently posing significant safety challenges when applying existing methods to
these cases without any modification. As such, establishing an accurate shear resistance prediction for
RAC beams is indeed a strenuous task and necessitates more effort.
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3. Parametric Importance Evaluation Using Grey Relational Analysis

3.1. Principle of Grey Relational Analysis

Prior to conducting the ML-based analysis, it is useful to identify the importance of various
parameters. Such a rehearsal can provide insights into whether the selected input parameters are
appropriate [12,13]. To achieve this objective, the powerful mathematical tool of Grey relational
analysis (GRA), which has been proposed to deal with poor, incomplete, and uncertain systems [76],
was used in this study.

Conceptually, the knowledge about a system is composed of white information (have been
well understood), black information (have not been grasped due to difficulties such as epistemic
uncertainty) and grey information (somewhere in between the white and black information). Although
the relationships between sequences (parameters and targets) are not clear, the grey information exists
in reality [76]. Nicely, the GRA is such a method that can capture those relationships between sequences
with grey information. It is particularly suitable for solving problems with complex interrelationships
between multiple variables, thus facilitating the developers to discern the relative importance of
candidate parameters.

In the present GRA work, the ultimate shear stress vu of beam specimens in Appendix A
Table A1 was defined as the benchmark matrix X0. The possible influential parameters, including the
compressive strength of concrete f c, the RA replacement ratio r, the maximum aggregate size of RA
smax, the geometric characteristics of RAC beams (i.e., h and a/d), and the reinforcement properties (ρs

and ρsvfyv) were selected as the derivative matrix Xi. The following formulae relating the benchmark
matrix X0 and the derivative matrix Xi were employed to derive the grey relational factor γ0i, which
can be used as indicators to represent the parametric importance:

γ0i = γ(X0, Xi) =
1
n

n∑
w=1

γ0i(w) (1)

γ0i(w) = γ(x0(w), xi(w))

=
min

i
min

w
|x0(w)−xi(w)|+ξmax

i
max

w
|x0(w)−xi(w)|

|x0(w)−xi(w)|+ξmax
i

max
w
|x0(w)−xi(w)|

(2)



X0

X1

. . .
Xi
. . .
Xm


=



x0(1), x0(2), . . . , x0(n)
x1(1), x1(2), . . . , x1(n)

. . .
xi(1), xi(2), . . . , xi(n)

. . .
xm(1), xm(2), . . . , xm(n)


(3)

where ξ is a constant, and its value ranges from 0 to 1.0. Normally, ξ can be set as 0.5 [76].
The range of the Grey relational factor γ0i, is between 0 and 100%. It is noted that a value of

γ0i approaching 100% represents a very tight correlation between sequences; if γ0i is close to 70%,
there is still a strong correlation; if γ0i is less than 50%, the correlation can be regarded as loose to
negligible [76].

3.2. Results of Parametric Importance

Figure 2 shows the calculation results for the Grey relational factor. From the figure, the order of
the parametric importance is readily identified as: ρs > smax > f c > h > a/d > ρsvfyv > r.
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Figure 2. Parametric importance evaluated by Grey relational analysis (GRA).

Clearly, the three parameters ρs, smax and f c have the greatest impacts on the shear resistance
(their Grey relational factors are 84.89%, 83.92% and 82.51%, respectively). Next, the parameters h, a/d
and ρsvfyv also have considerable effects on the load-carrying capacity (their Grey relational factors are
all below 80% but higher than 75%). Last but not least, the GRA results indicate that the influence of the
RA replacement level, r, cannot be overlooked, since its Grey relational factor is over 70% (= 71.77%).
In view of the above results, all of the seven parameters were chosen as the input parameters in the
following ML modeling.

A note worthy of mentioning is that the replacement level, r, has been understood to influence the
compressive strength, f c, of RAC. Thus, one may suspect that the parameter r should not be considered
in the ML modeling. However, it is also believed that using f c alone is incapable of reflecting the
material variability of RAC but r does (at least to some extent). Moreover, the Grey relational analysis,
which has an extraordinary capacity of quantifying the correlative extent of sequences, has identified
the particular importance of r. Thus r was incorporated in conjunction with f c in the ML analysis, in
which the dependence of f c on r can be automatically determined by adjusting the internal relationships
of the two parameters.

4. Shear Resistance Evaluation Using Machine Learning Approaches

In the present study, two Machine Learning approaches, i.e., the artificial neural network (ANN)
and the random forest (RF), were employed to quantify the shear strength of RAC beams. The following
are brief descriptions of their basic principles.

4.1. Artificial Neural Network

Among all ML techniques, the artificial neural network (ANN) is perhaps the most widely adopted
model in simulating the structural or functional aspects of the human brain and nervous system [46,47].
This is due to the ANN’s high accuracy feature induced by the self-adjustment function for each
layer’s weight.

ANN is a powerful and versatile tool that can “learn” complex relationships between input
and output. When “trained” with a prepared database, ANN can predict the result instantaneously,
which makes it ideal for predicting the shear capacity of RAC beams. Figure 3a shows the classical
layered structure for an ANN model. As seen there, a total of three categories of layers (namely,
the input layer, the hidden layers and the output layer) exist. These layers are constituted by similar
fundamental elements called neuron (see Figure 3b). Commonly, neurons between adjacent layers
are highly-interconnected. They receive signals from the external environment or previous layer’s
neurons, and then process and pass the signals to the next layer’s neurons. Through such a way,
multiple layers of neurons with nonlinear transfer functions allow the network to predict complex
nonlinear relationships between input and output.
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As shown in Figure 3, neurons in the hidden layer(s) are connected to previous and next layers
by network weights w and biases b. Generally, these neurons are responsible for executing two
mathematical operations: (i) feed-forward and (ii) back-propagation. In a feed-forward operation,
the first step is to weight the inputs and the second to sum the weighted inputs, which can be
algebraically expressed as:

netj =
n∑

i=1

wijxi + bj (4)

where wij is the connection weight relating the neuron i in the previous layer to the neuron j in the
present layer; xi is the output of the neuron i; n is the total amount of neutrons in the previous layer; bj

is the bias value; and netj is the weighted sum (i.e., the collection of signals gathered at the neuron j).
Based on the weighted sum (netj), a transfer function f (outj) generating the outputs can be

determined using a sigmoid function:

f
(
outj

)
=

1

1 + e−netj
(5)

It should be highlighted that the initially-generated outputs obtained from Equation (5) are
unshaped and thus cannot be used to present the target performance due to the large random error.
Therefore, in an ANN algorithm, the back-propagation operation is frequently used to reduce that error
through adjusting the weights from the output layer back to the input layer until limiting the error to a
sufficiently small range, which can be written as:

∆wm = α∆wm−1 − η
∂E
∂w

(6)
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where w is the weight between any two neutrons; ∆wn and ∆wn-1 denote the variations in the weight
of w at m and m-1 iterations, respectively; η is the learning rate; α is the momentum coefficient. As
described, the ANN model is trained by applying the feed-forward and back-propagation operations
repeatedly in an iterative process. Once well trained, the ANN model can be used to predict new data.

To predict the RAC beam’s shear capacity, the ANN model developed in this study contained a
total of seven input parameters (as described in the previous section) and one output parameter (i.e.,
the ultimate shear strength). Additionally, the neuron number of the hidden layer was determined as
eight through multiple times of trial calculations.

Once developed, the numerical matrices of the input layer weights (IWs), the input layer biases
(IBs), the hidden layer weights (HWs) and the hidden layer bias (HB) of the ANN can be finally
fixed, as shown in Equations (7)–(10), respectively. They are extracted from the Matlab simulation
environment [77], and can be directly used for predicting the beam’s shear capacity (see Equation (11)).

IWs =



−0.3993 0.6980 −3.7035 −0.5282 2.7461 0.6763 −0.2151
−0.9876 2.3818 −2.4138 −4.0240 1.3073 −3.1235 −0.0118
1.9092 −0.7464 −1.8895 −1.3745 −1.6888 −3.1293 −1.3166
0.5613 0.2803 −6.3300 2.6985 −0.1238 −0.9169 −1.0698
1.3680 −1.0044 −0.9299 0.5248 2.5228 −0.7428 1.6202
0.0963 2.2766 2.5643 −2.5095 −0.8605 1.0952 1.9664
1.1415 0.0372 2.0690 −1.6744 −1.2017 −3.8665 0.4589
0.3155 0.9418 1.8594 2.8400 −0.1145 −4.9693 0.3829


(7)

IBsT =
{

4.4300 0.1357 0.8424 0.9661 0.0302 2.1665 0.7274 4.5897
}

(8)

HWs =
{

0.4199 −0.0308 0.1082 −0.2836 −0.0263 0.4277 −0.0424 −1.0742
}

(9)

HB = {0.4011} (10)

y = HWs× g(IWs · x + IBs) + HB where g(x) = 2/
(
1 + e−2x

)
− 1 (11)

4.2. Random Forest

Random forest (RF) is another effective ML approach aiming firstly to address the data storage
problem [78]. In fact, RF is a modification of the decision tree method, which is characterized by a
decision-making algorithm and its objective is to optimize the regression and classification procedure.
Among many variants of the decision tree method, the regression decision tree (RDT) is representative,
straightforward and easy-to-understand, as explained below.

Piece-wise regression is usually adopted to explain the mathematical features of RDT, in which
the exact regression equation used to evaluate a given dataset depends on the parameter features
of the dataset and the tree structure. To aid a clear description of RDT, an example tree using the
water-to-cement ratio parameter of a dataset about RAC specimens to predict their compressive
strength is shown in Figure 4a. In that figure, each circle represents a node in the tree. The uppermost
node is known as the root node, while the two nodes below are the leaf nodes. The arrows emanating
from the root node are arcs. As seen in the figure, only binary splits of a root node (or other non-leaf
nodes) are allowed. The tree can grow downward in that way (as shown in Figure 4a) continuously.

In an RDT, the prediction is proceeded by starting at the root node and then flowing down to the
leaf nodes. Each non-leaf node of the tree can be thought of as a question about the dataset, and each
arc is a possible answer to the question being asked. Taking the simple RDT in Figure 4a as an instance,
the root node examines the water-to-cement ratio of each data point. If that ratio is less than or equal
to a threshold (e.g., 0.45), the procedure travels down the left branch of the tree; otherwise the right
branch. Such a kind of decision (i.e., asking and answering) is repeated until arriving at a leaf node.
A solution is finally obtained once all leaf nodes are reached [78].
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Commonly, the RDT works by memorizing the training data. This however leads to a failure to
recognize the real patterns of the dataset; that is to say, the well-known phenomenon “overfitting”
occurs [79]. To tackle this problem, many decision trees can be combined to provide better predictions.
This advanced concept is known as RF (Figure 4b), which averages the results of many trees to overcome
the poor performance of any single tree. For this reason, RF is a representative of the state-of-the-art
ensemble methods [80]. Beyond the split criterion and the maximum tree depth for a single tree, RF has
several more parameters like the tree number in a forest and whether or not to utilize the bootstrapping
strategy for sampling trees from the forest. More details of the principle of RF can be found in [78,80]

The present study employed the RF approach which has been built in the M5PrimeLab Matlab
toolbox [81]. The following parameters were used during the calculation: the total number of trees in
the forest was set as 100; the bootstrap sampling method was adopted; the maximum depth of each
tree was 9; no pruning and no smoothing were applied to one single tree; the minimum observation
number a node has to be considered for splitting was 5; the minimum number of training observations
a leaf node may represent was set as 1; and the split threshold was set as 1 × 10−6.
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4.3. Prediction Results

As stated, in the present study the ML computing procedures were both implemented in
Matlab [77]. It is noted that there are no acceptable generic rules to determine the size of the training
data. In this study, the database presented in Appendix A Table A1 was randomly partitioned, with
a ratio of 3:1, into a training set for model building and a testing set for model assessment.

To evaluate the predictive performances of the ANN and RF models developed in this study,
the root mean squared error (RMSE), the mean absolute percentage error (MAPE) and the correlation
coefficient (R2) were adopted to examine the model prediction errors. The following equations are the
mathematical expressions of RMSE, MAPE and R2:

RMSE =

√√√√√ N∑
i
(pi − yi)

2

N
; MAPE =

1
N

N∑
i

(
pi − yi

yi
)

2
; R2 = 1−

N∑
i
(pi − yi)

2

N∑
i
(yi − yavg)2

(12)

where p and y respectively represent the predicted outputs and the measured outputs; yavg is the average
value of the measured outputs; and N is the total number of the training and testing records.

In order to develop unified and versatile predictive modeling approaches, the experimental
database was not split according to the presence of steel stirrups (as previously done for evaluating
the existing shear design methods). Figure 7 shows the comparison of the shear strength between the
ML predictions and the experimental measurements. It is noteworthy that lower RMSE and MAPE
and higher R2 values indicate a better accuracy of the model prediction [48]. Figure 6 compares the
results of the performance indicators for the two ML-based approaches and the previously evaluated
methods. It can be seen from the above figures that, the ANN and RF models have the lowest RMSE
and MAPE and the highest R2 values compared to the nine existing methods, indicating that the ML
models provide better predictive results in identifying the shear capacity of RAC beams. Moreover, the
RF model slightly outperforms the ANN model, due mainly to the former’s superior decision-making
capacity and bootstrapping strategy.
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From Figures 1 and 7, it is also found that: (i) the average relative errors of the nine existing
methods are all lower than zero (varying from –47.27% to –8.97%), suggesting various extents of
conservatism. Comparatively, the average relative errors for the ML approaches are closer to zero
(3.08% and 2.72%, respectively), representing higher accuracy but sacrificing a bit of conservatism;
(ii) for the prediction variability (i.e., precision) concerned, the two ML approaches surpass all of the
existing methods. Only a small portion of data is not well captured by the ML approaches.
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5. Parametric Study with Reference to the Shear Test Database

As presented in Section 4, the developed ANN and RF models can be used to realistically simulate
the shear capacity of RAC beams. In the current section, the results of a parametric study using the two
models are presented to understand how exactly the shear capacity of the RAC beams is influenced by
the parameters. In doing this, the compiled test database is referenced consistently for validation.

5.1. Effect of the Yield Strength and Amount of Shear Reinforcement

For NAC beams, the yield strength and the volumetric ratio of shear reinforcement (i.e., f y and
ρsv, respectively) have a similar effect on the shear capacity [82]. To see if the same effect holds, four
RAC beams were simulated using the ML approaches by varying the combined parameter ρsvf yv from
0 to 3.0 (specifically, ρsvf yv = 0, 0.5, 1.5 and 3.0). During the simulation, it was followed that: (i) the
above range of ρsvf yv (0–3.0) for the simulation was kept to be similar to that of the test database and
(ii) at the same time, other input parameters in the ML approaches were assigned approximately as their
experimental mean values, i.e., f c = 30 MPa, r = 50%, smax = 25 mm, a/d = 2.5, h = 300 mm and ρs = 1.5%.

Group I of Table 2 shows the predicted nominal ultimate shear stress vu using different models
(Model 1–11 in the table) as ρsvf yv varies. When using the nine existing methods, the predicted value of
vu was just linearly proportional to the parameter ρsvf yv, while a nonlinear dependence of vu on ρsvf yv

(i.e., the increasing rate of vu gradually slows down with increasing ρsvf yv) is observed for the two ML
approaches. Obviously, the ML approaches are more reasonable and consistent with the test results.

5.2. Effects of the RAC Compressive Strength and the Replacement Ratio of RA

Four compressive strengths of RAC (f c = 20 MPa, 30 MPa, 40 MPa and 50 MPa) at r = 50% were
used to check the effect of the RAC strength on the ultimate shear resistance. The other parameters
were set as: smax = 25 mm, a/d = 2.5, h = 300 mm, ρs = 1.5% and ρsvf yv = 0.5. Group II of Table 2 shows
the predictive results of vu when f c varies. As expected, all the ten methods correctly reflect the trend,
that is, the shear capacity increases with increasing the concrete strength.

As far as the replacement ratio is concerned, five additional beams were modeled using r = 0,
25%, 50%, 75% and 100% respectively. The remaining parameters were as follows: f c = 30 MPa,
smax = 25 mm, a/d = 2.5, h = 300 mm, ρs = 1.5% and ρsvf yv = 0.5. Group III of Table 2 reports the
predicted results. Figure 7a also presents the variation of the normalized parameter vc/(f c)1/2 as a
function of r, where vc is the shear strength contributed by the concrete (obtained by vu – ρsvf yv). The
experimental datasets, their linear regression line, together with the predicted results using the ANN
and RF, are all included in the figure.

It is noticed that: (i) the prediction results of the ML models for the shear capacity of RAC beams are
generally consistent with the linear regression line of the test data; (ii) when the concrete contribution
vc is normalized with respect to the square root of concrete strength, the two predicted trends using
the ML approaches seem almost independent of the replacement ratio of RA. The experimental scatter
also indicates that there is no definite correlation between vc/(f c)1/2 and the replacement level. Note
that when the concrete contribution is normalized, the difference of the resulting values (vc/(f c)1/2)
between different replacement ratios tends to get limited. This has been experimentally evidenced
by the investigation conducted by Ignjatovic´et al. [32], where only 5% difference was found when
comparing the vc/(f c)1/2 values among the beams with 0%, 50% and 100% replacement ratios. When
more test data are assembled (as done in this paper), it does become more difficult to draw quantitative
conclusions on the relationship between vc/(f c)1/2 and the RA replacement level.

Still, it should be emphasized that as the scatter plot of the test data (Figure 7a) indicates, large
experimental scatter exhibits for all of the replacement ratios, even when r is equal to zero. This
condition highlights the most sophisticated and challenging part of the shear resistance prediction
for concrete beams (i.e., capturing the experimental randomness). Though the ANN and RF models
agree with the average trend line (the existing design methods nonetheless underestimate it), the
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uncertainty is still a big problem. In this sense, it does require more experimental results to reinforce
the conclusion [40].

Table 2. Predicted nominal ultimate shear stress vu using different models.

Group Input Parameters Model No.

No. [f c, r, smax, a/d, h, ρs, ρsvf yv] 1 2 3 4 5 6 7 8 9 10 11

I

[30, 0.50, 25, 2.5, 300, 1.5%, 0.0] 1.23 1.02 0.72 1.18 0.99 1.18 1.01 1.35 1.23 1.43 1.80
[30, 0.50, 25, 2.5, 300, 1.5%, 0.5] 1.73 1.52 1.22 1.68 1.49 1.68 1.51 1.85 1.73 2.28 2.41
[30, 0.50, 25, 2.5, 300, 1.5%, 1.5] 2.73 2.52 2.22 2.68 2.49 2.68 2.51 2.85 2.73 3.20 2.80
[30, 0.50, 25, 2.5, 300, 1.5%, 3.0] 4.23 4.02 3.72 4.18 3.99 4.18 4.01 4.35 4.23 3.76 2.90

II

[20, 0.50, 25, 2.5, 300, 1.5%, 0.5] 1.57 1.35 1.09 1.29 1.37 1.46 1.48 1.80 1.50 1.18 2.33
[30, 0.50, 25, 2.5, 300, 1.5%, 0.5] 1.73 1.52 1.22 1.68 1.49 1.68 1.51 1.85 1.73 2.28 2.41
[40, 0.50, 25, 2.5, 300, 1.5%, 0.5] 1.85 1.66 1.31 2.01 1.59 1.86 1.53 1.90 1.92 3.18 2.64
[50, 0.50, 25, 2.5, 300, 1.5%, 0.5] 1.96 1.78 1.39 2.31 1.68 2.02 1.55 1.93 2.09 3.28 2.79

III

[30, 0.00, 25, 2.5, 300, 1.5%, 0.5] 1.73 1.52 1.22 1.68 1.49 1.68 1.51 1.82 1.73 2.22 2.32
[30, 0.25, 25, 2.5, 300, 1.5%, 0.5] 1.73 1.52 1.22 1.68 1.49 1.68 1.51 1.85 1.73 2.25 2.32
[30, 0.50, 25, 2.5, 300, 1.5%, 0.5] 1.73 1.52 1.22 1.68 1.49 1.68 1.51 1.85 1.73 2.28 2.41
[30, 0.75, 25, 2.5, 300, 1.5%, 0.5] 1.73 1.52 1.22 1.68 1.49 1.68 1.51 1.85 1.73 2.30 2.43
[30, 1.00, 25, 2.5, 300, 1.5%, 0.5] 1.73 1.52 1.22 1.68 1.49 1.68 1.51 1.85 1.73 2.34 2.46

IV

[30, 0.50, 8, 2.5, 300, 1.5%, 0.5] 1.73 1.52 1.22 1.68 1.49 1.40 1.18 1.35 1.73 1.01 2.31
[30, 0.50, 20, 2.5, 300, 1.5%, 0.5] 1.73 1.52 1.22 1.68 1.49 1.60 1.44 1.74 1.73 1.32 2.35
[30, 0.50, 25, 2.5, 300, 1.5%, 0.5] 1.73 1.52 1.22 1.68 1.49 1.68 1.51 1.85 1.73 2.28 2.41
[30, 0.50, 40, 2.5, 300, 1.5%, 0.5] 1.73 1.52 1.22 1.68 1.49 1.92 1.68 2.13 1.73 3.80 2.93

V

[30, 0.50, 25, 1.0, 300, 1.5%, 0.5] 4.67 1.67 1.22 2.15 1.49 1.68 1.71 2.06 2.90 4.16 3.33
[30, 0.50, 25, 1.5, 300, 1.5%, 0.5] 2.93 2.49 1.22 2.15 1.49 1.68 1.63 1.98 2.29 3.51 2.94
[30, 0.50, 25, 2.5, 300, 1.5%, 0.5] 1.73 1.52 1.22 1.68 1.49 1.68 1.51 1.85 1.73 2.28 2.41
[30, 0.50, 25, 4.0, 300, 1.5%, 0.5] 1.55 1.48 1.22 1.53 1.49 1.68 1.39 1.72 1.57 1.13 2.16

VI

[30, 0.50, 25, 2.5, 150, 1.5%, 0.5] 1.73 1.52 1.39 1.68 1.57 1.68 1.62 2.00 2.36 2.88 2.48
[30, 0.50, 25, 2.5, 300, 1.5%, 0.5] 1.73 1.52 1.22 1.68 1.49 1.68 1.51 1.85 1.73 2.28 2.41
[30, 0.50, 25, 2.5, 450, 1.5%, 0.5] 1.73 1.52 1.15 1.68 1.39 1.67 1.46 1.75 1.53 1.52 2.14
[30, 0.50, 25, 2.5, 600, 1.5%, 0.5] 1.73 1.52 1.11 1.68 1.32 1.58 1.41 1.67 1.42 1.08 2.13

VII

[30, 0.50, 25, 2.5, 300, 0.5%, 0.5] 1.35 1.45 1.00 1.68 1.19 1.21 1.18 1.49 1.50 1.56 2.34
[30, 0.50, 25, 2.5, 300, 1.5%, 0.5] 1.73 1.52 1.22 1.68 1.49 1.68 1.51 1.85 1.73 2.28 2.41
[30, 0.50, 25, 2.5, 300, 2.5%, 0.5] 1.96 1.58 1.35 1.68 1.68 1.68 1.68 2.01 1.96 3.10 2.68
[30, 0.50, 25, 2.5, 300, 4.0%, 0.5] 2.20 1.69 1.50 1.68 1.80 1.68 1.84 2.13 2.30 4.06 3.01

Note: (1) During the above calculations, the sectional width and concrete cover of each beam were supposed to be 150
mm and 25 mm, respectively; (2) Models 1~9 correspond, respectively, to the formulae by Zsutty [57,58], ACI318-2014
[61], EN1992-1-1:2004 [62], GB50010-2010 [63], JSCE Guideline No.15 [64], NZS3101-2006 [65], Simplified MCFT
[66,67], CSCT [70,71] and Zhang [72]. Models 10~11 are the developed ANN and RF models; (3) Red numbers with
a light yellow background indicate that the corresponding model contradicts the experimental trend.
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Overall, it is safe to say that, within the scope of the current test database, the ML approaches
provide statistically accurate shear strength predictions, whether the replacement ratio is 0 or 100%.
In addition, the above explanations justify that, in order to reduce the uncertainty and to achieve a
similar safety margin between RAC and NAC beams, design-oriented treatments such as using partial
factors calibrated to account for the detrimental influence of RA inclusion are reasonable and can be
applied when determining the shear strength of RAC beams (as investigated in [40]).

5.3. Effect of the Maximum Size of RA

Previous studies have found that larger coarse aggregates improve the shear capacity of beams due
to enhanced interlock action (e.g., [60,66,79]). The effect of the maximum size of RA was investigated
by varying the value of smax from 8 mm to 25 mm (see Group IV of Table 2 for detail). The other input
parameters were chosen as: f c = 30 MPa, r = 50%, a/d = 2.5, h = 300 mm, ρs = 1.5% and ρsvf yv = 0.5.

Figure 7b shows the effect of smax on vc/(f c)1/2. It can be identified that, for RAC beams, the
beneficial effect of the larger aggregate size can be represented by both ML approaches. Note, though,
that for the existing methods, only the NZS3101-2006 [65], the simplified MCFT [66,67] and the
CSCT [70,71] can account for such effect, as shown in Group IV of Table 2.

5.4. Effect of the Shear Span-to-Effective Height Ratio

Generally, the shear span-to-effective height ratio (a/d) is one of the most influential structural
factors determining the shear capacity. The effect of a/d was assessed by varying its values as 1.0, 1.5,
2.5 and 4.0 (see Group V of Table 2 for detail). The other input parameters were set as: f c = 30 MPa,
r = 50%, smax = 25 mm, h = 300 mm, ρs = 1.5% and ρsvf yv = 0.5.
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Figure 7c shows the variation of vc/(f c)1/2 with a/d. As anticipated, the shear capacity of RAC
beams decreased significantly with the increase of a/d. The prediction results of the ML approaches
exhibit good correlations with the trend of the test data.

From the results of Group V in Table 2, it can be found that the JSCE Guideline No.15 [64] and
the NZS3101-2006 [65] yield an identical shear capacity for all of the evaluated a/d values. Also, the
GB50010-2010 [63] gives the same result when a/d is equal to 1.0 and 1.5. This manifests the inadequacy
of these design standards in terms of considering the effect of the shear span ratio.

5.5. Effect of the Beam Height

The size effect of beam shear capacity is of significant concern [59,60], which is closely related
to the beam section height. Four cases of beam height, i.e., h = 150 mm, 300 mm, 450 mm and 600
mm, were considered in the parametric study. The other parameters were: f c = 30 MPa, r = 50%,
smax = 25 mm, a/d = 2.5, ρs = 1.5% and ρsvf yv = 0.5.

Figure 7d shows how the parameter h affects the normalized parameter vc/(f c)1/2. Evidently, the
size effect that the shear capacity decreases with increasing the beam height can be well reproduced by
the two ML approaches. Moreover, by inspecting the results of Group VI in Table 2, it can be found
that the three design codes of ACI318-2014 [61], GB50010-2010 [63] and NZS3101-2006 [65] cannot
explicitly capture the size effect on the ultimate shear strength.

5.6. Effect of the Longitudinal Reinforcement Ratio

As indicated by the GRA, the longitudinal reinforcement ratio has a great impact on the beams’
shear resistance. Four RAC beams with different longitudinal reinforcement ratio, i.e., ρs = 0.5%,
1.5%, 2.5% and 4.0%, were modeled. The other parameters were kept constant: f c = 30 MPa, r = 50%,
smax = 25 mm, a/d = 2.5, h = 300 mm and ρsvf yv = 0.5.

Figure 7f shows the effect of ρs on vc/(f c)1/2. The trend is within the expectation that an increased
longitudinal reinforcement ratio leads to an improved shear capacity of RAC beams, since the dowel
effect becomes more significant.

As to the prediction capacity of the existing methods, the results of Group VII in Table 2 clearly
show that the GB50010-2010 [63] and NZS3101-2006 [65] fall short in representing the role of the
longitudinal reinforcement.

6. Conclusions and Remarks

This study intends to quantify the shear capacity of RAC beams by means of two typical Machine
Learning approaches (the artificial neural network (ANN) and the random forest (RF)). The model
training and validation are based on 264 RAC beam shear tests collated from the open literature. Nine
existing shear design methods are also appraised. The following conclusions can be drawn base on
the presented investigation results:

(1) The existing design methods show conservative, inaccurate shear strength estimations for RAC
beams with large scatter, especially for RAC beams without stirrups. These methods generally
cannot take full account of all the influential parameters investigated in this study. The simplified
MCFT and CSCT models are relatively comprehensive, but the effect of the replacement ratio of
RA is not (of course) considered in both;

(2) The parametric importance is ranked by the GRA, which shows that the longitudinal reinforcement
ratio, the maximum size of RA and the RAC compressive strength are the most relevant parameters
that affect the shear resistance of RAC beams; the beam section height, the shear span ratio,
and the yield strength and volumetric ratio of shear reinforcement have the secondary importance;
the significance of the replacement ratio of RA comes last of all, but it is still considerable since its
related Grey relational factor is over 70%;
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(3) The developed ANN and RF models provide better predictive outputs than the nine existing
methods, with the R2 above 0.930. These two models are easy-to-implement and bypass
complicated theoretical derivations and numerical implementations, thus can serve as alternative
predictors for designing RAC components;

(4) A parametric study is conducted using the two developed ML approaches. The results show
that the ML approaches can correctly reflect the effects of the main parameters on the shear
capacity of RAC beams. This is also confirmed by the experimental trends. In particular, once
the shear contribution from RAC (i.e., vc) is normalized with respect to the square root of its
strength, the resulting expression (vc/(f c)1/2) of the shear capacity of RAC beams appears to,
at least in a statistical sense, be insignificantly affected by the replacement ratio of RA. This
implies that the shear design of RAC beams can be processed almost the same as that of NAC
beams, as long as the compressive strength of RAC is specified and guaranteed. Note that this
conclusion is valid only within the scope of the documented experimental database. Furthermore,
for safety purposes and cautious application, design-oriented treatments such as using partial
factors adjusted to account for the uncertainty of RA inclusion are practical when determining
the shear strength of RAC beams (as studied in [40]).

Despite the above-achieved results, more works need to be done in the future, which may include
the following:

• The present ML-based study relies heavily upon an overall limited number of RAC beam shear
tests. As emphasized by the previous study [40], test data of RAC beams with stirrups is still
scant. Also, the large scatter presented in the plots of this study (such as Figure 7a) exposes
the lack of new experimental evidence. Thus more relevant tests are required to consolidate
the findings, including the beams incorporating more heterogeneous CDW aggregates and the
beams of full-scale size; those tests not only can come in handy, but also are the basis of more
robust, dynamically updated data-driven approaches;

• In the present study, only two ML models are investigated. In the future, more advanced ML
models or other ensemble methods (besides the Random Forest) [80] should be considered.
The approaches that can give explicit design equations (e.g., the gene expression programming
method [83]) also deserve to be paid more attention. This effort can partially overcome the “black
box” disadvantage of the ML models. Furthermore, the artificial intelligent agents are usually
problem-dependent. It thus requires a priori experience and extensive comparative analyses.
This also direct future studies. Finally, it is noteworthy that the ML models attempt to optimize
their predictive capabilities so as to minimize over-predictions. This shows the need for fine-tuning
these models to achieve a rational balance between accuracy and conservatism;

• The ML-based models, howsoever accurate or “advanced”, are not intended to discredit
conventional mechanics-based methods. In fact, the former approaches are only alternative
tools at the present development stage. They provide an opportunity in this “big data” time to
solve the structural problems that the conventional methods have difficulties. Ideally, the two
kinds of approaches are expected to complement and support each other. For example, empirical
coefficients in the conventional methods can be refined by the ML approaches. Anyway, it is still
valuable and intriguing that more contributors can delve into the theoretical studies trying to
reveal the hidden mechanisms of RAC beams in shear; this is probably the only way that would
shed direct light on this complex problem.

Machine Learning (or more broadly, Artificial Intelligence) is a big tech buzzword in today’s
industry; it is also a big challenge for policymakers, developers and users. Carefulness is surely
required when using those techniques, particularly for the case where new scenarios are out of the
scope of the training data. Due to the limitation of space, more details of our work cannot be presented.
Readers with interest are encouraged to contact the authors for more information or discussion.
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Appendix A

Table A1. Database of RAC beam specimens.

Source b [mm] h [mm] d [mm] a/d r w/c smax [mm] f c [MPa] ρs [%] f y [MPa] ρsv [%] f yv [MPa] Vu [kN]

Han et al. [18]

170 300 270 1.50 1.00 0.40 25.0 39.6 1.11 430 0 – 144.1
170 300 270 2.00 1.00 0.40 25.0 30.6 1.11 430 0 – 117.5
170 300 270 3.00 1.00 0.40 25.0 31.2 1.11 430 0 – 55.1
170 300 270 4.00 1.00 0.40 25.0 31.9 1.11 430 0 – 50.9
170 300 270 2.00 1.00 0.40 25.0 32.6 1.11 430 0 – 113.4
170 300 270 2.00 0 0.40 25.0 37.4 1.11 430 0 – 118.0
170 300 270 2.00 1.00 0.40 25.0 41.9 2.21 430 0.09 410 150.1
170 300 270 2.00 1.00 0.40 25.0 41.1 2.21 430 0.24 410 153.3
170 300 270 2.00 1.00 0.40 25.0 31.6 2.21 430 0.51 410 174.4
170 300 270 2.00 1.00 0.40 25.0 41.1 2.21 430 0.82 410 174.4
170 300 270 2.00 1.00 0.40 25.0 37.4 2.21 430 0.24 410 141.8
170 300 270 2.00 0 0.40 25.0 49.8 2.21 430 0.24 410 154.2

Etxeberria et al. [19]

200 350 300 3.3 0 0.55 25 41.9 2.92 500 0 – 100.5
200 350 300 3.3 0.25 0.55 25 42.4 2.92 500 0 – 104.0
200 350 300 3.3 0.50 0.52 25 41.3 2.92 500 0 – 89.0
200 350 300 3.3 1.00 0.55 25 41.9 2.92 500 0 – 84.0

González &
Martínez [20]

200 350 303 3.30 0 0.55 25.0 40.2 2.98 571 0 – 190.3
200 350 303 3.30 0.50 0.55 25.0 39.7 2.98 571 0 – 233.6
200 350 303 3.30 0 0.55 25.0 39.2 2.98 571 0.12 571 150.8
200 350 303 3.30 0.50 0.55 25.0 39.2 2.98 571 0.12 571 177.0
200 350 303 3.30 0 0.55 25.0 39.1 2.98 571 0.17 571 128.0
200 350 303 3.30 0.50 0.55 25.0 41.5 2.98 571 0.17 571 164.3
200 350 303 3.30 0 0.55 25.0 37.7 2.98 571 0.22 571 88.9
200 350 303 3.30 0.50 0.55 25.0 40.5 2.98 571 0.22 571 90.6

Fathifazl et al.
[21,22]

200 375 309 2.59 0.64 0.45 19.0 36.9 1.43 407 0 – 104.0
200 375 306 2.61 0.64 0.45 19.0 36.9 2.57 418 0.25 530 172.0
200 385 301 2.66 0.64 0.45 19.0 36.9 3.98 442 0.5 473 341.0
200 385 301 2.66 0.74 0.45 19.0 43.5 3.98 442 0.5 473 327.0
200 375 309 2.59 0 0.45 19.0 38.0 1.43 407 0 – 93.0
200 375 309 2.59 0 0.45 19.0 35.9 1.43 407 0 – 150.0
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Table A1. Cont.

Source b [mm] h [mm] d [mm] a/d r w/c smax [mm] f c [MPa] ρs [%] f y [MPa] ρsv [%] f yv [MPa] Vu [kN]

Choi et al. [23]

200 400 360 1.50 0 0.50 25.0 24.7 1.61 456 0 – 176.4
200 400 360 2.50 0 0.50 25.0 24.7 1.61 456 0 – 90.7
200 400 360 3.25 0 0.50 25.0 24.7 1.61 456 0 – 71.1
200 400 360 1.50 0.30 0.50 25.0 24.6 1.61 456 0 – 161.7
200 400 360 2.50 0.30 0.50 25.0 24.6 1.61 456 0 – 81.3
200 400 360 3.25 0.30 0.50 25.0 24.6 1.61 456 0 – 80.9
200 400 360 1.50 0.50 0.50 25.0 24.2 1.61 456 0 – 152.9
200 400 360 2.50 0.50 0.50 25.0 24.2 1.61 456 0 – 87.9
200 400 360 3.25 0.50 0.50 25.0 24.2 1.61 456 0 – 71.5
200 400 360 1.50 1.00 0.50 25.0 22.6 1.61 456 0 – 107.8
200 400 360 2.50 1.00 0.50 25.0 22.6 1.61 456 0 – 84.8
200 400 360 3.25 1.00 0.50 25.0 22.6 1.61 456 0 – 57.8
200 400 360 2.50 0 0.50 25.0 24.7 0.53 522 0 – 66.2
200 400 360 2.50 0 0.50 25.0 24.7 0.83 486 0 – 72.0
200 400 360 2.50 0 0.50 25.0 24.7 1.61 456 0 – 90.7
200 400 360 2.50 0.30 0.50 25.0 24.6 0.53 522 0 – 56.7
200 400 360 2.50 0.30 0.50 25.0 24.6 0.83 486 0 – 78.4
200 400 360 2.50 0.30 0.50 25.0 24.6 1.61 456 0 – 81.3
200 400 360 2.50 0.50 0.50 25.0 24.2 0.53 522 0 – 57.8
200 400 360 2.50 0.50 0.50 25.0 24.2 0.83 486 0 – 67.1
200 400 360 2.50 0.50 0.50 25.0 24.2 1.61 456 0 – 87.7
200 400 360 2.50 1.00 0.50 25.0 22.6 0.53 522 0 – 59.8
200 400 360 2.50 1.00 0.50 25.0 22.6 0.83 486 0 – 70.1
200 400 360 2.50 1.00 0.50 25.0 22.6 1.61 456 0 – 84.8

Fathifazl et al. [24]

200 375 300 1.50 0.64 0.45 19.0 41.6 1.00 418 0 – 186.7
200 375 300 2.00 0.64 0.45 19.0 41.6 1.50 418 0 – 169.5
200 375 309 2.59 0.64 0.45 19.0 41.6 1.62 407 0 – 103.9
200 375 309 2.59 0 0.45 19.0 38.0 1.62 407 0 – 92.8
200 375 305 3.93 0.64 0.45 19.0 41.6 2.46 418 0 – 83.2
200 375 300 1.50 0.74 0.45 19.0 49.1 1.00 418 0 – >195.3
200 375 300 2.00 0.74 0.45 19.0 49.1 1.50 418 0 – 179.0
200 375 309 2.59 0 0.45 19.0 34.1 1.62 407 0 – 150.0
200 375 305 3.93 0.74 0.45 19.0 49.1 2.46 418 0 – 105.6
200 250 201 2.69 0.64 0.45 19.0 41.6 1.99 416 0 – 89.3
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Table A1. Cont.

Source b [mm] h [mm] d [mm] a/d r w/c smax [mm] f c [MPa] ρs [%] f y [MPa] ρsv [%] f yv [MPa] Vu [kN]

Fathifazl et al. [24]

200 375 309 2.59 0.64 0.45 19.0 41.6 1.62 407 0 – 103.9
200 375 309 2.59 0 0.45 19.0 38.0 1.62 407 0 – 92.8
200 450 381 2.73 0.64 0.45 19.0 41.6 1.83 425 0 – 99.5
200 550 476 2.73 0.64 0.45 19.0 41.6 1.68 426 0 – 104.6
200 250 201 2.69 0.74 0.45 19.0 49.1 1.99 416 0 – >122.6
200 375 309 2.59 0 0.45 19.0 34.1 1.62 407 0 – >150.0
200 450 381 2.73 0.74 0.45 19.0 49.1 1.83 425 0 – 111.7
200 550 476 2.73 0.74 0.45 19.0 49.1 1.68 426 0 – 119.6

Arezoumandi et al.
[25,26]

300 460 407 3.00 0 0.40 25.0 37.2 1.27 414 0 – 121.0
300 460 407 3.00 0 0.40 25.0 34.1 1.27 414 0 – 129.9
300 460 407 3.00 0 0.40 25.0 37.2 2.03 414 0 – 143.2
300 460 407 3.00 0 0.40 25.0 34.1 2.03 414 0 – 166.8
300 460 407 3.00 0 0.40 25.0 37.2 2.71 414 0 – 173.5
300 460 407 3.00 0 0.40 25.0 34.1 2.71 414 0 – 170.8
300 460 407 3.00 0.50 0.40 25.0 32.0 1.27 414 0 – 117.4
300 460 407 3.00 0.50 0.40 25.0 35.5 1.27 414 0 – 111.6
300 460 407 3.00 0.50 0.40 25.0 32.0 2.03 414 0 – 151.2
300 460 407 3.00 0.50 0.40 25.0 35.5 2.03 414 0 – 148.6
300 460 407 3.00 0.50 0.40 25.0 32.0 2.71 414 0 – 171.7
300 460 407 3.00 0.50 0.40 25.0 35.5 2.71 414 0 – 168.6
300 460 407 3.00 1.00 0.40 25.0 30.0 1.27 414 0 – 114.8
300 460 407 3.00 1.00 0.40 25.0 34.1 1.27 414 0 – 113.0
300 460 407 3.00 1.00 0.40 25.0 30.0 2.03 414 0 – 143.2
300 460 407 3.00 1.00 0.40 25.0 34.1 2.03 414 0 – 124.1
300 460 407 3.00 1.00 0.40 25.0 30.0 2.71 414 0 – 131.2
300 460 407 3.00 1.00 0.40 25.0 34.1 2.71 414 0 – 140.1

Knaack & Kurama
[27]

150 230 200 3.83 0 0.44 19.0 31.2 1.34 572 0 – 31.1
150 230 200 3.83 0 0.44 19.0 31.2 1.34 572 0 – 36.9
150 230 200 3.83 0 0.44 19.0 46.4 1.34 572 0 – 40.4
150 230 200 3.83 0 0.44 19.0 46.4 1.34 572 0 – 42.3
150 230 200 3.83 0.50 0.44 19.0 41.8 1.34 572 0 – 44.0
150 230 200 3.83 0.50 0.44 19.0 41.8 1.34 572 0 – 39.1
150 230 200 3.83 0.50 0.44 19.0 37.4 1.34 572 0 – 43.7
150 230 200 3.83 0.50 0.44 19.0 37.4 1.34 572 0 – 41.2
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Table A1. Cont.

Source b [mm] h [mm] d [mm] a/d r w/c smax [mm] f c [MPa] ρs [%] f y [MPa] ρsv [%] f yv [MPa] Vu [kN]

Knaack & Kurama
[27]

150 230 200 3.83 1.00 0.44 19.0 39.1 1.34 572 0 – 36.4
150 230 200 3.83 1.00 0.44 19.0 39.1 1.34 572 0 – 38.0
150 230 200 3.83 1.00 0.44 19.0 39.2 1.34 572 0 – 39.9
150 230 200 3.83 1.00 0.44 19.0 39.2 1.34 572 0 – 36.1

Katkhuda &
Shatarat [29]

206 300 260 2.00 0 0.50 20.0 28.3 1.90 457 0 – 69.3
206 300 260 2.00 0.50 0.50 20.0 25.2 1.90 457 0 – 59.0
206 300 260 2.00 1.00 0.50 20.0 23.2 1.90 457 0 – 55.0
206 300 260 2.00 0.50 0.50 20.0 28.1 1.90 457 0 – 73.0
206 300 260 2.00 1.00 0.50 20.0 26.6 1.90 457 0 – 66.8
206 300 267 2.00 0 0.50 20.0 28.3 1.85 457 0 – 52.5
206 300 267 2.00 0.50 0.50 20.0 25.2 1.85 457 0 – 49.1
206 300 267 2.00 1.00 0.50 20.0 23.2 1.85 457 0 – 46.5
206 300 267 2.00 0.50 0.50 20.0 28.1 1.85 457 0 – 55.1
206 300 267 2.00 1.00 0.50 20.0 26.6 1.85 457 0 – 55.6

Choi and Yun [30]

400 600 525 2.0 1.00 0.44 25.0 * 29.0 1.88 433 0 – 862.7
400 600 525 2.5 1.00 0.44 25.0 * 29.0 1.88 433 0 – 518.7
400 600 525 3.0 1.00 0.44 25.0 * 29.0 1.88 433 0 – 454.2
400 600 525 3.0 1.00 0.44 25.0 * 29.0 1.88 433 0 – 478.0
400 600 525 4.0 1.00 0.44 25.0 * 29.0 1.88 433 0 – 501.8
400 600 525 4.0 1.00 0.44 25.0 * 29.0 1.88 433 0 – 434.0
400 600 525 5.0 0 0.44 25.0 * 29.0 1.88 433 0 – 460.3
400 600 525 5.0 0 0.44 25.0 ** 37.0 1.88 433 0 – 440.5
400 600 525 5.0 0.30 0.44 25.0 * 34.0 1.88 433 0 – 470.9
400 600 525 5.0 0.30 0.44 25.0 * 34.0 1.88 433 0 – 478.4
400 600 525 5.0 0.60 0.44 25.0 * 32.0 1.88 433 0 – 411.8
400 600 525 5.0 0.60 0.44 25.0 * 32.0 1.88 433 0 – 412.2
400 600 525 5.0 1.00 0.44 25.0 * 29.0 1.88 433 0 – 413.0
400 600 525 5.0 1.00 0.44 25.0 * 29.0 1.88 433 0 – 438.6

Rahal & Alrefaei
[31]

150 420 388 3.00 0 0.50 12.5 35.6 0.79 534 0 – 54.5
150 420 388 3.00 1.00 0.54 12.5 32.2 0.79 534 0 – 42.5
150 420 388 3.00 0.10 0.50 12.5 34.2 0.79 534 0 – 44.5
150 420 388 3.00 0.20 0.51 12.5 33.4 0.79 534 0 – 40.1
150 420 388 3.00 0.20 0.51 12.5 34.7 0.79 534 0 – 48.9
150 420 388 3.00 0.35 0.52 12.5 33.7 0.79 534 0 – 45.1
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Table A1. Cont.

Source b [mm] h [mm] d [mm] a/d r w/c smax [mm] f c [MPa] ρs [%] f y [MPa] ρsv [%] f yv [MPa] Vu [kN]

Rahal & Alrefaei
[31]

150 420 388 3.00 0.50 0.53 12.5 36.2 0.79 534 0 – 47.0
150 420 388 3.00 0.75 0.53 12.5 35.7 0.79 534 0 – 47.4
150 420 388 3.00 0.05 0.50 12.5 37.6 0.79 534 0 – 56.0
150 420 388 3.00 0.10 0.53 12.5 33.3 0.79 534 0 – 52.5
150 420 388 3.00 0.16 0.53 12.5 33.2 0.79 534 0 – 54.2
150 420 388 3.00 0.23 0.53 12.5 32.8 0.79 534 0 – 47.3
150 420 388 3.00 0.35 0.51 12.5 35.3 0.79 534 0 – 42.5

Ignjatović et al. [32]

200 300 235 4.20 0 0.60 31.5 33.3 4.09 560 0 – 106.3
200 300 235 4.20 0.50 0.60 31.5 37.0 4.09 560 0 – 91.8
200 300 235 4.20 1.00 0.58 31.5 33.9 4.09 560 0 – 104.8
200 300 235 4.20 0 0.60 31.5 33.3 4.09 560 0.14 300 140.7
200 300 235 4.20 0.50 0.60 31.5 37.0 4.09 560 0.14 300 142.0
200 300 235 4.20 1.00 0.58 31.5 33.9 4.09 560 0.14 300 135.0
200 300 235 4.20 0 0.60 31.5 33.3 4.09 560 0.19 300 160.0
200 300 235 4.20 0.50 0.60 31.5 37.0 4.09 560 0.19 300 156.9
200 300 235 4.20 1.00 0.58 31.5 33.9 4.09 560 0.19 300 163.4

Pradhan et al. [33]

200 300 269 2.60 0 0.45 20.0 42.8 0.75 591 0 – 94.1
200 300 269 2.60 0 0.45 20.0 42.8 0.75 591 0 – 94.9
200 300 269 2.60 0 0.45 20.0 42.8 1.31 519 0 – 107.2
200 300 269 2.60 1.00 0.45 20.0 42.8 0.75 591 0 – 81.1
200 300 269 2.60 1.00 0.45 20.0 42.8 0.75 591 0 – 81.3
200 300 269 2.60 1.00 0.45 20.0 42.8 1.31 519 0 – 92.3
200 300 269 2.60 1.00 0.45 20.0 42.8 1.31 519 0.20 352 161.9
200 300 269 2.60 1.00 0.45 20.0 42.8 1.31 519 0.20 352 162.1

Wardeh et al. [34]

200 250 225 1.50 0 0.49 20.0 37.3 1.79 600 0 – >150.0
200 250 225 3.00 0 0.49 20.0 37.3 1.79 600 0 – 63.6
200 250 225 3.00 0 0.49 20.0 37.3 1.79 600 0 – 60.6
200 250 225 3.00 0 0.49 20.0 37.3 1.79 600 0 – 60.0
200 250 225 1.50 1.00 0.41 20.0 34.5 1.79 600 0 – 130.0
200 250 225 1.50 1.00 0.41 20.0 34.5 1.79 600 0 – 150.3
200 250 225 1.50 1.00 0.41 20.0 34.5 1.79 600 0 – 140.4
200 250 225 3.00 1.00 0.41 20.0 34.5 1.79 600 0 – 50.2
200 250 225 3.00 1.00 0.41 20.0 34.5 1.79 600 0 – 49.0
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Table A1. Cont.

Source b [mm] h [mm] d [mm] a/d r w/c smax [mm] f c [MPa] ρs [%] f y [MPa] ρsv [%] f yv [MPa] Vu [kN]

Sato et al. [35]

150 200 160 4.4 1.00 0.6 19.0 46.5 1.06 331 0 – 21.0
150 200 160 4.4 1.00 0.45 19.0 32.9 1.06 331 0 – 21.7
150 200 160 4.4 1.00 0.60 19.0 46.6 1.06 331 0 – 21.4
150 200 160 4.4 1.00 0.60 19.0 30.4 0.59 331 0 – 12.1
150 200 160 4.4 1.00 0.60 19.0 28.4 0.59 331 0 – 12.6
150 200 160 4.4 1.00 0.60 19.0 34.5 0.59 331 0 – 13.2
150 200 160 4.4 1.00 0.60 19.0 31.8 0.59 331 0 – 13.5
150 200 160 4.4 1.00 0.60 19.0 30.4 1.06 331 0 – 19.7
150 200 160 4.4 1.00 0.60 19.0 28.4 1.06 331 0 – 20.0
150 200 160 4.4 1.00 0.60 19.0 34.5 1.06 331 0 – 20.0
150 200 160 4.4 1.00 0.60 19.0 31.8 1.06 331 0 – 21.4
150 200 160 4.4 1.00 0.60 19.0 30.4 1.65 342 0 – 27.3
150 200 160 4.4 1.00 0.60 19.0 28.4 1.65 342 0 – 27.7
150 200 160 4.4 1.00 0.60 19.0 34.5 1.65 342 0 – 28.3
150 200 160 4.4 1.00 0.60 19.0 31.8 1.65 342 0 – 31.1

Kim et al. [36]

200 350 300 2.5 0 0.46 25.0 31.8 2.85 651 0 – 75.5
200 530 450 2.5 0 0.46 25.0 31.8 2.85 610 0 – 106.9
200 680 600 2.5 0 0.46 25.0 31.8 2.85 651 0 – 125.9
300 530 450 2.5 0 0.46 25.0 31.8 3.02 600 0 – 156.7
400 680 600 2.5 0 0.46 25.0 31.8 2.85 651 0 – 256.4
200 350 300 2.5 0.50 0.46 25.0 32.6 2.85 651 0 – 60.6
200 530 450 2.5 0.50 0.46 25.0 32.6 2.85 610 0 – 108.9
200 680 600 2.5 0.50 0.46 25.0 32.6 2.85 651 0 – 126.1
300 530 450 2.5 0.50 0.46 25.0 32.6 3.02 600 0 – 154.2
400 680 600 2.5 0.50 0.46 25.0 32.6 2.85 651 0 – 261.5
200 350 300 2.5 1.00 0.45 25.0 34.9 2.85 651 0 – 72.9
200 530 450 2.5 1.00 0.45 25.0 34.9 2.85 610 0 – 96.4
200 680 600 2.5 1.00 0.45 25.0 34.9 2.85 651 0 – 125.1
300 530 450 2.5 1.00 0.45 25.0 34.9 3.02 600 0 – 159.8
400 680 600 2.5 1.00 0.45 25.0 34.9 2.85 651 0 – 256.6

Al-Zahraa et al. [37]
100 200 180 2.0 0 0.45 20.0 31.7 1.90 560 0 – 63.0
100 200 180 2.0 0.25 0.45 20.0 30.4 1.90 560 0 – 86.5
100 200 180 2.0 0.50 0.45 20.0 29.6 1.90 560 0 – 71.0
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Table A1. Cont.

Source b [mm] h [mm] d [mm] a/d r w/c smax [mm] f c [MPa] ρs [%] f y [MPa] ρsv [%] f yv [MPa] Vu [kN]

Ikegawa et al. [38]

200 300 260 2.3 0 0.46 25.0 * 32.5 1.00 359 0 – 143.8
200 300 260 2.3 0.88 0.46 25.0 * 34.8 1.00 359 0 – 114.3
200 300 260 2.3 0.70 0.46 25.0 * 44.1 1.00 359 0 – 130.8
200 300 260 2.3 1.00 0.46 25.0 * 42.4 1.00 359 0 – 162.8

Deng et al. [49] &
Luo [50]

150 300 259 1.89 0 0.56 40.0 28.1 1.55 380 0.25 348 145.0
150 300 259 1.89 0.40 0.56 40.0 26.7 1.55 380 0.25 348 136.0
150 300 259 1.89 0.60 0.56 40.0 25.4 1.55 380 0.25 348 130.0
150 300 259 1.89 0.80 0.56 40.0 23.5 1.55 380 0.25 348 113.0
150 300 259 1.89 1.00 0.56 40.0 22.1 1.55 380 0.25 348 107.6
150 300 259 1.89 0 0.43 40.0 22.6 1.55 380 0.25 348 157.0
150 300 259 1.89 1.00 0.43 40.0 27.5 1.55 380 0.25 348 128.0

Zhang et al. [51]

151 300 263 3.00 0 0.57 20.0 24.6 2.49 357 0 – 57.0
154 300 263 3.00 1.00 0.60 20.0 27.3 2.49 357 0 – 59.5
153 302 265 2.50 0 0.57 20.0 24.4 2.49 357 0 – 67.5
152 307 270 2.50 1.00 0.60 20.0 23.7 2.49 357 0 – 66.5
152 305 268 2.00 0 0.57 20.0 31.0 2.49 357 0 – 90.0
151 305 268 2.00 1.00 0.60 20.0 27.0 2.49 357 0 – 70.0
152 309 272 1.50 0 0.57 20.0 28.3 2.49 357 0 – 188.5
153 306 269 1.50 1.00 0.60 20.0 28.3 2.49 357 0 – 133.5
153 308 271 1.00 0 0.57 20.0 24.7 2.49 357 0 – 265.0
154 306 269 1.00 1.00 0.60 20.0 23.0 2.49 357 0 – 254.5
153 306 269 1.50 0.30 0.60 20.0 24.7 2.49 357 0 – 168.0
152 308 271 1.50 0.50 0.60 20.0 25.9 2.49 357 0 – 175.0
152 307 270 1.50 0.70 0.60 20.0 26.6 2.49 357 0 – 150.0

Zhao et al. [52]

120 120 105 1.71 1.00 0.34 20.0 42.7 1.25 481 0 – 43.2
120 180 158 1.71 1.00 0.34 20.0 42.7 1.25 459 0 – 53.0
120 240 212 1.70 1.00 0.34 20.0 42.7 1.25 421 0 – 62.4
120 300 266 1.69 1.00 0.34 20.0 42.7 1.25 414 0 – 88.9

Xiao & Lan [53]
150 300 258 1.50 0 0.43 25.0 * 24.8 1.96 358 0.25 560 165.0
150 300 258 1.50 0.50 0.39 25.0 * 28.0 1.96 358 0.25 560 149.0
150 300 258 1.50 1.00 0.37 25.0 * 27.2 1.96 358 0.25 560 137.0
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Table A1. Cont.

Source b [mm] h [mm] d [mm] a/d r w/c smax [mm] f c [MPa] ρs [%] f y [MPa] ρsv [%] f yv [MPa] Vu [kN]

Ni et al. [54]

150 300 267 1.85 0 0.50 31.5 24.8 0.90 370 ** 0 – 169.0
150 300 267 1.85 0.25 0.50 31.5 26.8 0.90 370 ** 0 – 170.0
150 300 267 1.85 0.25 0.50 31.5 26.8 0.90 370 ** 0 – 156.0
150 300 267 1.85 0.25 0.50 31.5 26.8 0.90 370 ** 0 – 169.0
150 300 267 1.85 0.50 0.50 31.5 23.7 0.90 370 ** 0 – 155.0
150 300 267 1.85 0.50 0.50 31.5 23.7 0.90 370 ** 0 – 165.0
150 300 267 1.85 0.50 0.50 31.5 23.7 0.90 370 ** 0 – 160.0
150 300 267 1.85 0.75 0.50 31.5 23.4 0.90 370 ** 0 – 152.0
150 300 267 1.85 0.75 0.50 31.5 23.4 0.90 370 ** 0 – 142.0
150 300 267 1.85 0.75 0.50 31.5 23.4 0.90 370 ** 0 – 155.0

Wu et al. [55]

120 200 165 1.50 1.00 0.42 40.0 31.6 1.60 394 0.24 302 54.5
120 200 165 1.50 0 0.42 40.0 33.2 1.60 394 0.32 302 61.5
120 200 165 1.50 1.00 0.52 40.0 24.4 1.60 394 0.24 302 49.6
120 200 165 1.50 0 0.52 40.0 25.0 1.60 394 0.24 302 50.0
120 200 165 1.50 1.00 0.42 40.0 32.9 1.60 394 0.26 302 57.3
120 200 165 1.80 1.00 0.42 40.0 33.7 1.60 394 0.32 302 57.8
120 200 165 1.20 0 0.52 40.0 24.2 1.60 394 0.24 302 53.6
120 200 165 1.50 1.00 0.38 40.0 36.5 1.60 394 0.24 302 57.5
120 200 165 1.50 1.00 0.63 40.0 16.8 1.60 394 0.24 302 43.8
120 200 165 1.50 0 0.42 40.0 33.3 1.60 394 0.24 302 54.7
120 200 165 1.20 1.00 0.42 40.0 32.5 1.60 394 0.32 302 66.1
120 200 165 1.50 1.00 0.42 40.0 32.6 1.60 394 0.32 302 61.1

Liao [56]

150 300 265 2.00 0 0.47 37.5 24.3 1.91 407 0.25 424 162.0
150 300 265 1.50 0.50 0.55 37.5 23.6 1.91 407 0.25 424 182.0
150 300 265 1.50 0.50 0.55 37.5 23.6 1.91 407 0.38 424 171.0
150 300 265 2.00 0.50 0.55 37.5 23.6 1.91 407 0.25 424 200.0
150 300 265 2.00 0.50 0.55 37.5 23.6 1.91 407 0.38 424 192.0
150 300 265 2.50 0.50 0.55 37.5 23.6 1.91 407 0.25 424 160.0
150 300 265 2.50 0.50 0.55 37.5 23.6 1.91 407 0.38 424 145.0
150 300 265 1.50 1.00 0.53 37.5 24.7 1.91 407 0.25 424 168.0
150 300 265 1.50 1.00 0.53 37.5 24.7 1.91 407 0.38 424 154.0
150 300 265 2.00 1.00 0.53 37.5 24.7 1.91 407 0.25 424 149.0
150 300 265 2.00 1.00 0.53 37.5 24.7 1.91 407 0.38 424 138.0
150 300 265 2.50 1.00 0.53 37.5 24.7 1.91 407 0.25 424 153.0
150 300 265 2.50 1.00 0.53 37.5 24.7 1.91 407 0.38 424 140.0

* The maximum aggregate size was not available. It was assumed to be 25 mm, which is a common size in practice. ** The strength grade of the longitudinal steel reinforcement was Q335,
but the measured yield strength was not provided; it was assumed as 370 MPa per Chinese codes.
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Table A2. Shear strength design equations.

References Concrete’s Contribution Stirrups’
Contribution

ACI318-2014 [61]
vc = (0.167

√
fc + 17ρs

d
a ) (a/d ≥ 2.5)

vc = (3.5− 2.5 d
a )(0.167

√
fc + 17ρs

d
a ) (a/d < 2.5)

vs = ρsv fyv

EN1992-1-1:2004 [62]
vc = 0.12(1 +

√
200/d)[100ρs( fc − 8)]1/3

≥ 0.035(1 +
√

200/d)
2/3 √

fc − 8
(d : in mm)

GB50008-2010 [63] vc =
1.75

a/d+1 ft a
d = min[max( a

d , 1.5), 3.0]

JSCE Guideline No. 15 [64]
vc = min(1.5, 4√1000/d)×

min(1.5, 3
√

100ρs) × 0.2 3
√

fc
(d : in mm)

NZS3101-2006 [65] vc = (0.70 + 0.015smax) ×min
{
1.0, ( 400

d )
0.25

}
k
√

fc
0.08 ≤ k = 0.07 + 10ρs ≤ 0.20 (d : in mm)

Zsutty [57,58]
vc = 2.175( fcρs

d
a )

1
3 (a/d ≥ 2.5)

vc = 2.175(2.5 d
a )( fcρs

d
a )

1
3 (a/d < 2.5)

Simplified MCFT
[66,67]

vc = β
√

fcdv/d
β = 0.4

1+1500εx

1300
1000+sxe

εx = Vc
2Esρsbd (1 +

a
dv
)

sxe = dv ×min(1.0, 35
16+smax

) dv = max(0.9d, 0.72h)

CSCT [70,71]
vc =

1
6

2
1+120 εd

16+smax

√
fc

ε =
Vc(a− d

2 )

Esρsbd(d−c/3)
0.6d−c

d−c c = dρs
Es
Ec
(
√

1 + 2Ec
ρsEs
− 1)

Zhang’s Plasticity Theory
[72]

vc = 0.25v0 fc(
√

1 + ( a−x
h )2
−

a−x
h )h/d

v0 = 1.512 15ρs+0.58
√

fc
(1 + 1

√
h/1000

) (h : in mm)

x ≈
{

0.74(a− 2h), a
h ≥ 2.0

0, a
h < 2.0

Note: (a) Elastic modulus of steel reinforcement is taken as 200 GPa; (b) Elastic moduli of NAC and RAC are
estimated as: Ec = 22,000 × (f c/10)0.3 and Ec = 0.71 × 22,000 × (f c/10)0.3, respectively [61]; (c) RAC’s tensile strength
is estimated as: f t = 0.30 × (f c – 8)2/3 [73].
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