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Abstract: SnS2 as a high energy anode material has attracted extensive research interest recently.
However, the fast capacity decay and low rate performance in alkaline-ion batteries associated with
repeated volume variation and low electrical conductivity plague them from practical application.
Herein, we propose a facile method to solve this problem by synthesizing porous SnS2 microflowers
with in-situ formed sulfur vacancies. The flexible porous nanosheets in the three-dimensional
flower-like nanostructure provide facile strain relaxation to avoid stress concentration during the
volume changes. Rich sulfur vacancies and porous structure enable the fast and efficient electron
transport. The porous SnS2−x microflowers exhibit outstanding performance for lithium ion battery in
terms of high capacity (1375 mAh g−1 at 100 mA g−1) and outstanding rate capability (827 mA h g−1

at high rate of 2 A g−1). For sodium ion battery, a high capacity (~522 mAh g−1) can be achieved at
5 A g−1 after 200 cycles for SnS2−x microflowers. The rational design in nanostructures, as well as the
chemical compositions, might create new opportunities in designing the new architecture for highly
efficient energy storage devices.
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1. Introduction

The energy crisis brings about a challenge to human life and sustainable and clean energy storage
devices play a key role to overcome these issues [1]. Lithium-ion batteries (LIBs) dominate the
commercial portable energy storage devices, including cell phones. However, their low energy
density hinders them from some emerging applications such as electric vehicle (EVs) [2]. In
commercial LIBs, graphite is commercialized as an anode electrode and its limited theoretical capacity
(372 mAh g−1) is far from the increasing demand [3–5]. Thus, high capacity anode development
becomes crucial. Additionally, sodium-ion batteries (SIBs) have become promising alternative energy
storage devices for large-scale applications due to the low cost and earth-abundance of sodium
resources [6]. Nevertheless, due to the narrow lattice spacing of graphite and large radius of the Na+

ions (0.97 Å), graphite usually exhibits sluggish kinetics for Na+ ions and inferior performance as anode
for SIBs [7–9]. Therefore, development of high energy and long life anode materials is urgently needed.
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Tin-based materials have received more and more research interest due to the high theoretical
capacity and low charging/discharging potential platform [10,11]. Despite the high lithium/sodium
storage capability, the fast capacity loss during repetitive huge volume expansion–contraction
remains a major challenge to tin-based materials [12]. As a typical layered metal dichalcogenide
material, SnS2 is a typical two-dimensional layered structure and the large interlayer spacing
could not only store the intercalated Li+ or Na+ ions but also release the stress induced by
volume change [13]. However, as a ceramic semiconductor, tin disulfide suffers from low electronic
conductivities [14–19]. Different highly conductive materials have been added to composite with SnS2,
such as grapheme [20–25], PPy [18], and so on [26,27]. Another method is to decrease the feature size
of SnS2 and build nanostructures in order to reduce the length of ion transportation. Sulfur vacancies
have been recently reported to increase the electrical conductivity of SnS2 [28–34]. Thus, rational
design of hierarchical structures with sulfur vacancies would improve the electrochemical performance
of SnS2.

Herein, we designed three-dimensional hierarchical porous SnS2−x microflowers with
interconnected porous nanosheets as anode for LIBs and SIBs. The SnS2−x microflowers exhibit
excellent electrochemical properties for LIBs and SIBs. The excellent electrochemical performance of
SnS2−x microflowers can be attributed to the porous structure of SnS2−x nanosheets, which provide
more accessible active sites and shorten the length for alkaline ion diffusion and rich sulfur vacancy.
The rich sulfur vacancy would increase the electric conductivity and the formation of porous structure
would lead to the facile strain relaxation during battery cycling. In this way, the porous SnS2−x

microflowers exhibit promising performance in both lithium and sodium ion storage.

2. Results and Discussion

SnS2−x microflowers were synthesized via a hydrothermal reaction and this was followed by
annealing process (Figure 1). After the hydrothermal reaction, SnS2 microflowers were formed.
The microflowers are composed of interconnected flexible thin SnS2 nanosheets. The additional
annealing process not only increases the crystallinity of the SnS2 microflowers but also introduces
sulfur vacancies in the SnS2−x nanosheets. XRD spectra were carried out to investigate the crystal
structure of the products (Figure 2a). All the diffraction peaks of the SnS2, SnS2-400, and SnS2-450 are
well indexed to the hexagonal structure of SnS2 (JCPDS No.01-089-2358). All of these well-defined
identified diffraction peaks at 15.0◦, 28.2◦, 32.1◦, and 41.9◦ can be well assigned to (001), (100), (011), and
(012) planes of hexagonal SnS2, respectively. When the annealing temperature was increased to 500 ◦C,
the impurity phase Sn4S3 (Orthorhombic, JCPDS No.00-030-1379) is generated accompanying with
the main phase SnS2. Furthermore, the morphologies of the as-prepared samples were characterized
by SEM and TEM. The SnS2 microflowers are composed of thin and smooth nanosheets (Figure 2b).
The SEM morphology of microflowers kept unchanged for SnS2−x-400 and SnS2−x-450 (Figure 2c and
Figure S1), while it became a mixture of microflowers and bulks for SnS2−x-500 (Figure S2). The energy
dispersive spectrometer (EDS) mapping confirms the homogeneous distribution of Sn and S elements
in the entire sample of SnS2−x microflowers (Figure S2). In order to further identify the pore size
and crystallographic structure of the SnS2−x microflowers, scanning transmission electron microscopy
(STEM) and high resolution scanning transmission electron microscopy (HRSTEM) were further carried
out. There are no obvious pores observed on SnS2 nanosheets (Figure S3). Pores become distinct on
the nanoflakes of SnS2−x-400 and SnS2−x-450, while the pore size of the SnS2−x-450 nanosheets is larger
than that in SnS2−x-400 nanosheets (Figure 2c, Figure S3). However, further increasing the annealing
temperature, no pores were observed on SnS2−x-500 due to the phase evolution to Sn3S4 (Figure S3).
HRTEM image in Figure 2d shows that the pore size is in the range of 2–20 nm. The side view of
the nanosheet suggests that the nanosheet is composed of 15 layers (Figure 2e). The HRSTEM image
reveals the typical 2H phase of SnS2 and no obvious lattice shift was observed, suggesting that the
formation of pores does not affect the crystal structure.
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Figure 1. Schematic of the synthesis of SnS2 microflowers. 
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Figure 2. (a) XRD patterns of SnS2, SnS2−x-400, SnS2−x-450, and SnS2−x-500. (b,c) SEM images of SnS2

microflowers and SnS2−x-450 microflowers. (d) TEM image and (e,f) canning transmission electron
microscopy (STEM) images of SnS2−x-450 microflowers, showing the atomic resolution of the 2H-SnS2.

In order to investigate the contents of sulfur vacancies in SnS2−x samples, thermogravimetric
(TG) analysis was carried out in the air (Figure 3a,b). For SnS2 microflowers, the total weight loss is
17.6%, while the total weight loss of SnS2−x microflowers is only 13.7%. During the annealing in air,
the SnS2 is oxided to SnO2. The much lower weight loss of SnS2−x microflowers corresponds to the
rich sulfur vacancies in SnS2−x microflowers, which is formed during the annealing process under
sulfur-deficient environment.
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To further study the formation of sulfur vacancies in SnS2−x microflowers during annealing
process, XPS measurements were conducted on the samples before and after the annealing (Figure 3).
In Figure 3c–f, both Sn 3d and S 2p peaks in XPS spectra were shifted to lower binding energies after
annealing, suggesting the formation of low-valance Sn2+ and sulfur vacancies [32]. In addition, the Sn 3d
spectrum shown in Figure 3c can be further deconvoluted into four peaks. The two dominating peaks at
495.3 eV and 487.0 eV correspond to Sn4+, while the two small peaks at 485.8 eV and 494 eV correspond
to Sn2+, indicating the coexistence of Sn4+ and Sn2+ in SnS2−x microflowers [35]. However, there are
only two peaks (Figure 3e) for the SnS2 microflowers (495.3 eV, 487.0 eV), suggesting the presence
of Sn4+ in the SnS2 microflowers. The N2 adsorption–desorption isotherms of SnS2 microflowers
and SnS2−x microflowers are shown in Figure S4. The specific surface area of porous SnS2−x-450
microflowers is 20.1 m2 g–1, which is much higher than SnS2 microflowers (5.8 m2 g−1), SnS2−x-400
(9.8 m2 g−1), and SnS2−x-500 (6.6 m2 g−1). The higher surface area is attributed to a greater number of
pores, as evidenced by the STEM images in Figure 2d.

Sulfur vacancies are believed to stabilize this material for alkaline ion storage. Cyclic voltammetry
(CV) of SnS2−x microflower sample was measured at 0.1 mV s−1 in the potential range of 0.01–3 V
vs. Li/Li+, which is shown in Figures S5 and S6. In the initial sweeping process, the CV curves
show two broad peaks located at ~1.4 V and ~0.2 V, ascribing to the conversion reaction of SnS2 into
metallic Sn and Li2S (reaction 1) and the alloying reaction of Li-Sn alloy (reaction 2), respectively.
Cycling performances of the samples are one of the most important parameters for batteries and are
evaluated by a galvanostatic charging/discharging test as in Figure 4a. SnS2−x-450 exhibits much
better cycling stability than those of SnS2, SnS2-400, and SnS2-500. At 100 mA g−1 (corresponding
to 0.06C), the initial discharging capacity of SnS2−x-450 is 1375 mA h g−1, surpassing those of SnS2

(1311 mAh g−1), SnS2-400 (1128 mAh g−1), and SnS2-500 (1306 mAh g−1). The 50th capacity of
SnS2−x-450 is 865 mA h g−1 corresponding to a capacity retention of 62.9%, which is much higher
than that of SnS2 (362 mA h g−1, 27.8%), SnS2−x-400 (643 mA h g−1, 57.0%), and SnS2−x-500 (575 mA h
g−1, 44.0%), manifesting the increased capacity and enhanced cycling stability. Figure 4b displays the
galvanostatic charging/discharging curves of the SnS2−x-450 at 100 mA g−1. The initial discharging
capacity is 1375 mA h g−1, and the initial charging capacity is 1176 mA h g−1. Figure 4c summarizes
the rate performances of all samples. At rates of 100, 200, 500, 1000, 2000, and 200 mA g−1 (Figure 4d),
the discharging capacities of the SnS2−x-450 microflowers were 1130, 1010, 954, 899, 827, and 1005
mA h g−1, respectively. Notably, even at a high current density of 2000 mAh g−1, the SnS2−x-450
microflowers still retain a high capacity of 827 mAh g−1. Besides, the capacity at each current density
was far higher than that of the SnS2, SnS2−x-400, and SnS2−x-500. The cycling stability at 1000 mA g−1

was further measured. (Figure 4c). After 100 cycles, the SnS2−x-450 still maintained a high capacity of
712 mA h g−1, surpassing those of SnS2 (111 mA h g−1, 19.0%), SnS2−x-400 (431 mA h g−1, 57%), and
SnS2−x-500 (91 mA h g−1, 13.0%). The capacity of SnS2−x-450 is still more than twice that of graphite.

To further investigate the charge storage mechanism in SnS2−x microflowers, the kinetics of the
charging process was studied to gain more quantitative charge storage processes [36]. Figure 4e shows
the contributions from the diffusion-controlled process. When the scan rates were increased from 0.1
to 1.0 mV s−1, the proportions of the capacitive contribution increased. The capacitive contribution
reaches 62.6% at 1.0 mV s−1. Figure 4f shows the capacitive and diffusion-controlled contributions
to charge storage in the SnS2−x-450-based lithium-ion battery at 1 mV s−1. The diffusion-controlled
regions are mainly located around the peaks of the CV, revealing that the redox peaks are governed by
the diffusion, while the rest of the regions are capacitive-controlled. In order to further investigate the
electrochemical kinetics, electrochemical impedance spectra (EIS) in Figure S7 shows that SnS2−x-450
holds enhanced kinetics for Li-ion insertion/extraction. The TEM images and the EDS mapping of the
sample after 100 cycles are carried out to reveal the stability of the SnS2−x nanostructure in Figure S8.
It is found that the microflowers tend to aggregate together, while the nanosheet morphology keeps
stable. The EDS mapping in Figure S8 shows the homogeneous distribution of the Sn and S elements
in the area, which confirms the excellent stability of SnS2−x nanostructure.
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Figure 4. (a) Cycling performances at 100 mA g−1. (b) Charge and discharge curves of
SnS2−x-450. (c) Rate performances and (d) Cycling performances at 1000 mA g−1. (e) Capacitive and
diffusion-controlled contributions to charge storage in SnS2−x-450 at different scan rates of 0.1, 0.5, 0.8,
and 1 mV s−1. (f) Capacitive contributions of SnS2−x-450 to charge storage at 1 mV s−1. The shaded
region is the pseudocapacitive contribution in SnS2−x-450.

In addition, we studied the electrochemical performance of SnS2−x microflower electrodes for
sodium ion storage. The Na-storage behavior of the SnS2−x microflower electrode was measured
based on the half cell with Na metal anode and SnS2−x microflower cathodes in the range of 0.01–3 V.
CV curves of SnS2−x microflower-based SIB were first tested at 0.1 mV s−1. As shown in Figure 5a,
the cathodic peak located at 1.74 V is attributed to the sodium intercalation into SnS2 host, while the
peak at 0.73 V to the conversion reaction, alloying reaction, and solid electrolyte interface (SEI)
film formation [35]. Figure S9 shows the galvanostatic charging/discharging profiles of the SnS2−x

microflower electrode at a current density of 200 mA g−1 at different cycles. The initial discharge
capacity is 984 mAh g−1, and the first charge capacity is 793 mAh g−1. The observed potential plateaus
in the charging/discharging curves correspond to the redox peaks in the CV curves. Figure 5b shows
the cycling performance of SnS2−x microflower-based SIB at 200 mAh g−1. The initial capacity of
SnS2−x-450 and SnS2 is 984, 641 mAh g−1, respectively. After 30 cycles, the SnS2−x-450 still retained
a capacity of 608 mAhg−1, which was much higher than SnS2 (340 mAh g−1), demonstrating the
improved capacity and cycling stability. Furthermore, the rate performances were investigated in
Figure 5d. Notably, even at a high current density of 5000 mA g−1, the SnS2−x-450 still keeps a high
capacity of 491 mAh g−1, showing an excellent rate capability. Besides, the capacity of SnS2−x-450 was
much higher than that of the SnS2, SnS2−x-400, and SnS2−x-500 at each current density. As displayed in
Figure 5c, at current density of 1000 mA g−1, SnS2−x-450 could maintain a capacity of 522 mA h g−1

after 200 cycles, with a capacity retention of 89.5% from 3 to 200 cycles, surpassing those of SnS2

(84 mAh g−1, 14.8%), SnS2−x-400 (96 mAh g−1, 21.6%), and SnS2−x-500 (43 mAh g−1, 7.0%).
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and SnS2−x-500 at 2000 mA g−1 (d) Rate performances of SnS2, SnS2−x-450 and SnS2−x-500 at current
densities ranging from 200 to 5000 mA g−1. (e) EIS spectra of the SnS2, SnS2−x-400, SnS2−x-450,
and SnS2−x-500.

3. Conclusions

In summary, we have successfully fabricated porous SnS2−x microflower structure through a facile
solvothermal method, followed by the thermal treatment. The porous structure and sulfur vacancies are
formed mainly due to the partial loss of sulfur during the annealing under sulfur-deficient environment.
The rich sulfur vacancy increases the electric conductivity and the formation of porous structure leads
to the facile strain relaxation during battery cycling. In this way, the porous SnS2−x microflowers exhibit
promising performance as the anode for LIBs in terms of high capacity (1375 mAh g−1 at 100 mA g−1)
and outstanding rate capability (827 mA h g−1 at 2 A g−1). For SIBs, a high capacity of ~522 mAh g−1

is achieved at 5 A g−1 after 200 cycles for SnS2−x microflowers. The simultaneous rational structural
design and chemical composition control of SnS2−x microflowers in this work brings new insight to
the synthesis of advanced functional electrode materials and offers great potential for next-generation
energy storage devices.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/2/443/s1,
Figure S1: SEM images of SnS2 (a, b), SnS2−x-400 (c, d), SnS2−x-450 (e, f) and SnS2−x-500 (g, h). Figure S2: SEM
image of a representive SnS2−x nanoflower and its elemental mapping images of S (b), and Sn (c). Figure S3. TEM
images of SnS2 (a, b), SnS2−x-400 (c, d), and SnS2−x-500 (e, f). Figure S4. Nitrogen adsorption-desorption isotherms
and pore size distributions (insets) of SnS2 (a), SnS2−x-400 (b), SnS2−x-450 (c) and SnS2−x-500 (d). Figure S5. CV
curves of the LIB based on SnS2−x-450 nanoflowers. Figure S6. CV curves of SnS2−x-450 at different scan rates
ranging from 0.1 to 1 mV s−1. Figure S7. EIS of of LIBs based on SnS2, SnS2−x-400, SnS2−x-450 and SnS2−x-500
nanoflowers. Figure S8. Charge and discharge curves of SnS2−x-450 at different cycles as SIBs.
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