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Abstract: This paper presents the effects of laser treatment (fiber laser YLS-4000) on the microstructure
and selected mechanical properties of the surface layer of AlMg (AlMg9) foundry alloy obtained by
alloying with boron carbide (B4C). The correlation between laser alloying process parameters and
selected properties of the formed layer was discussed. The studies were supported by microstructural
analysis of the remelted zone (RZ), heat affected zone (HAZ), undissolved carbide particles, substrate
material, and precipitates formed during rapid solidification. Metallographic investigations of the
laser-treated layer were performed using optical microscopy and scanning electron microscopy (SEM).
The elemental composition and a detailed analysis of chemical composition in micro-areas were
carried out using energy dispersive X-ray spectroscopy (EDS). The remelting thickness, heat-affected
zone (HAZ), and amount of base material in surface layers were determined. Microhardness tests
were performed on transverse cross-sections of the remelted zone to obtain the hardness profiles in
the base material (BM), remelted zone (RZ), and heat affected zone (HAZ). The hardness, roughness,
and wear resistance measurements showed that the highest tribological properties of the obtained
surface layer were achieved using 0.5 Bar protective gas (Ar) during alloying with B4C powder.
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1. Introduction

The good ductility and lightweight nature of aluminium and its alloys have permitted their broad
use in aerospace, automotive, and transportation industries. Aluminium also has high thermal and
electrical conductivities, good machinability, and is easily recycled; however, this group of materials
has relatively low mechanical and wear properties. Because of this, there is a need to improve the
functional properties of these materials [1–4]. One of the primary methods to obtain materials with
better mechanical properties is surface treatment technology. Laser surface alloying (LSA) is used
for lightweight metals to improve their properties because the surface layer formed on the metal has
different properties than the substrate material, for example, higher hardness, fatigue, and corrosion
resistance; however, the surface is usually rougher than the original alloyed material [2]. LSA consists
of enriching the surface layer with alloying elements, accompanied by structural changes. Usually,
the alloying elements used in the laser treatment are metal alloys, superalloys, stellits, carbides, borides,
and nitrides. LSA involves simultaneously melting and mixing the alloying material containing the
alloyed additions with the treated material (base material) [5–10]. The laser beam fuses the base
material, and a pool of remelted materials is created. Owing to convection and gravitation movements
and the pressure of the laser beam, the materials are intensively mixed, and the properties of the formed
layer depend on the microstructure, porosity, and chemical composition of the base material [11–16].
Boron carbide (B4C) has a high hardness (the third hardest material behind diamond and boron nitride),
wear resistance, thermal conductivity, and melting temperature; however, its low strength (about
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200–400 MPa) and low fracture toughness (2–3 MPa/m0.5), as well as poor sinterability, can significantly
restrict its industrial applications [17,18].

Tian et al. [19] reported the effect of laser treatment parameters on the microstructure,
microhardness, and wear resistance of pure titanium alloyed with B4C and Ti. The authors found that
the depth of the remelted zone increased at lower scanning speeds. Additionally, the microhardness of
the surface layer measured in cross-sections as a function of distance from the sample front decreased
as the remelting zone depth decreased in a gradient. It has been reported that, compared with
non-laser-treated surface materials, alloyed layers have excellent wear resistance, as well as a lower
friction coefficient. Yilbas at al. [20] studied laser controlled melting of pre-prepared H12 hot work tool
steel surface with B4C particles. The authors found that laser treatment reduced the friction coefficient
of the surface layer, and the microhardness of the alloyed layer increased owing to the formation of
nitrides, fine grains, and microstresses near B4C particles. In another case, Yilbas at al. [21] investigated
the effect of laser surface modification treatment of aluminium bronze with B4C. The authors showed
that the laser-treated surface was free of cracks, voids, and cavities, and the microhardness of the
treated surface was significantly higher. Hlawka at al. [22] investigated chromium–molybdenum
steel AISI 4135H surface hardened by laser melting with injected hard particles or by laser alloying
using boron carbide or boron. They showed that laser melting of boron coatings produced very
fine, uniformly-distributed microstructures in a remelting zone (RZ), and the surface had a good
homogeneity without pores or cracks. The hardness was also higher than the substrate before
laser treatment.

Tests were also conducted to cover the product with corrosion-resistant and harder phases (e.g.,
Al2O3) [23]. The effect of simultaneous melting and feeding of biphasic tungsten carbide WC/W2C
particles into the molten pool on the structure and mechanical properties of ENAC-AlMg9 aluminium
alloy was investigated [24]. For laser alloying, Cu, Mg, and Mn powders added to 98.6% aluminium
using a CO2 laser were also used [25]. In contrast, Irek [26] presented the results of research on
aluminium alloy AlSi7Cu4MgMn subjected to laser alloying using silicon carbide.

In spite of plenty of research, there is still not enough information about the microstructure and
properties of the modification of surface layers ENAC-AlMg9 by laser alloying with the use of boron
carbide (B4C). This manuscript is going to be an attempt to fill this gap as a current topic, from both
a scientific and an application point of view.

2. Experimental Procedure

Investigations were carried out on test pieces from the casting aluminium alloy with magnesium
ENAC-AlMg9 (Institute of Non-Ferrous Metals in Gliwice, Skawina, Poland). The chemical composition
of the alloy is shown in Table 1, and the microstructure of the aluminium alloy used in the laser surface
treatment is shown in Figure 1. The microstructure of the AlMg9 alloy in the casting state consists
of the primary aluminium phase α-Al, which is the matrix of the alloy eutectic phase (Al + Mg2Si)
and β-Al8Mg5. The development of the Al8Mg5 phase was observed at the boundaries of eutectic
cells—between primary aluminium dendrites. The stoichiometric composition of the Mg2Si phase
is 66.6 at% Mg and 33.4 at% Si [27]. To improve the properties of the surface layer, boron carbide
(B4C) (Kamb Import-Export, Warsaw, Poland) powder was applied, which had the properties listed in
Table 2. The average particle size of the powder was in the range of 63–106 µm. The carbide shapes
determined with scanning electron microscopy (SEM) + energy dispersive X-ray spectroscopy (EDS)
analysis, are shown in Figure 2a,b.

Table 1. Chemical composition of aluminium alloy EN AC–AlMg9 (in wt. %).

Elements Si Mn Zn Mg Al

AlMg9 1.32 0.50 0.20 9.24 REST
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Figure 1. Microstructure of the AlMg9 aluminium alloy.

Table 2. Typical properties of B4C boron carbide powder [28].

Property Value

Density, g/cm3 2.52

Melting point, ◦C 2445

Knoop hardness (100g), kg/mm2 2900–3580

Young’s modulus, GPa 450–470

Electrical conductivity (at 25 ◦C) 1.40

Figure 2. (a) Microstructure of the B4C powder (scanning electron microscopy (SEM)); (b) energy
dispersive X-ray spectroscopy (EDS) analysis of the chemical composition of the B4C particle.

A fiber laser (FL) Ytterbium Laser System YLS-4000 (IPG Photonics Corporation, Oxford, MA,
USA) was used for surface alloying, with a wavelength λ = 1070 nm, and a maximum laser beam power
of 4000 W mounted on a six-axis robot REIS RV30-26 (Reis Robotics, Obernburg, Bavaria, Germany).
The laser surface treatment was carried out under a shielding Ar gas to protect the molten weld pool.
On the basis of preliminary experimental research regarding the impact of the shielding gas used on the
depth and depth of the melted zone and the heat-affected zone for further studies, the best parameters
were selected. The laser surface treatment was carried out using a constant alloying scanning rate of
laser 0.2 m/min and laser beams power of 1.5 kW. The laser alloying parameters are shown in Table 3.
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Table 3. Laser alloying parameters.

Parameter Value

Laser beam power, kW 1.5

Protective gas, Bar 0.4

0.5

The share of supplied powder, g/min 15

Laser beam scanning speed, m/min 0.2

Circle spot, mm 5

Wavelength λ, nm 1070

The topography of the alloyed surface was observed using a Zeiss stereomicroscope SteREO
Discovery (Zeiss, Oberkochen, Germany) with magnification in the range of 10–100X. Specimens for
metallographic observations were prepared by standard polishing techniques. Grinding at 25 N load
successively on papers with grain gradation 120, 600, 1200, and 4000 and polishing with a colloidal
suspension based on silicon oxide on a disc made of nephron rubber (MD-Chem). Electric etching
was done in HBF4 acid (5% solution) for 20 s. Metallographic investigations done made using light
microscopy with an Axio Observer and a Zeiss Supra 35 SEM (Zeiss, Oberkochen, Germany) using
secondary electron and backscattered detectors. The chemical composition was analyzed by EDS.
Hardness changes across the laser runs versus distance from the surface were investigated using the
Vickers microhardness test method with a force of 500 gf. Hardness tests were performed along lines
perpendicular to specimen surfaces, along the run face axis.

The resistance of the surface layers without laser treatment and after alloying with boron carbide
was analyzed and compared using the “ball-on-plate” tribological test. As a counter-specimen, a 6 mm
diameter ball of aluminium oxide Al2O3 was used. During the test, the friction coefficient between the
investigated surface and ceramic counter was recorded. The test was performed at room temperature
using the testing conditions in Table 4. The wear track dimensions after tests were measured by
a Sutronic 25-Taylor Hobson profilometer (Taylor Hobson Ltd., Leicester, England), and the topography
was analyzed using SEM to locate rifts and deformations on the surface layer owing to laser alloying
with B4C carbide. The roughness of the investigated surface layer was also measured by a Sutronic
25-Taylor-Hobson profilometer.

Table 4. Testing conditions of the “ball-on-plate” method.

Parameter Value

Load, N 15

Linear speed, cm/s 5

Distance, m 50

Measuring distance, mm 6

Counter specimen ball Al2O3

3. Results and Discussion

On the basis of the analysis performed here, the surface layer obtained owing to alloying
an aluminium alloy with B4C powder was composed of three zones: a laser remelting zone (RZ),
an enriched in boron carbide zone, a melted and rapidly solidified zone, and a heat-affected zone
(HAZ). On the basis of preliminary experimental research regarding the impact of the shielding gas
used on the depth and depth of the melted zone and the heat-affected zone for further studies, the best
parameters were selected. The depth of the remelting layer obtained using 0.4 Bar of protective gas
was about 1450 ± 18 µm, and the width was about 3833 ± 78 µm. When 0.5 Bar protective gas was
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used, the depth of the remelted layer was about 1642 ± 44 and the width was about 4132 ± 61 µm.
The total surface layer thickness and width of both of the remelted zone and heat-affected zone grew
when the pressure of the applied protective gas increased. Preliminary investigations of the alloyed
aluminium ENAC–AlMg9 showed a clear effect of the laser treatment on the shape of the remelted
material, the obtained run face showed characteristic flashes at the borders; however, no pores, cavities,
or cracks were observed. The topography of the layers obtained by laser alloying with B4C powder are
presented in Figure 3a,b.

Figure 3. Topography of the layers obtained during laser alloying with B4C powder: (a) 0.4 Bar of
protective gas; (b) 0.5 Bar of protective gas.

The roughness measurements show that during alloying ENAC–AlMg9 with B4C, the obtained run
faces at both protective gas pressures had a higher roughness than the base material (BM) (average roughness
of base material—Ra = 0.27 µm). The average roughness after alloying with 0.4 Bar of protective gas was
2.25 µm, and 4.82 µm with 0.5 Bar (Figure 4). The increase in roughness is closely related to the carbide
amount introduced into the treated surface of the substrate material and the effect of shielding gas on the
liquid metal, thus causing an increase in waviness. It should be emphasized that the roughness of the
surfacing layer can be reduced to the desired value using grinding procedures and not as it is the case with
physical vapour deposition (PVD) or chemical vapour depositinon (CVD) layers [29].

Figure 4. Effect of the laser alloying on surface layer roughness of the AlMg9 alloyed with B4C powder.

The microstructure of the solidified material after laser alloying contained areas with diverse
morphologies owing to crystallization of the alloyed material (Figure 5a–d). When using 0.5 Bar
protective gas, more presence of carbides as compared with 0.4 Bar Ar was observed. SEM observations
showed that the applied B4C powder was evenly distributed in the remelted area (Figure 6), and the
precipitates contained 90.83 wt% boron (Figure 7). In addition, around the disclosed carbides, zones of
new separate phases were observed. EDS analysis showed that it consists of 46.70% at. coal and 53.30%
at. silicon, which corresponds to the SiC phase (Figure 6 “C” and “Si”). Phases derived from substrate
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material rich in Mg and Al (in a ratio of 41.8/58.2% at) and Mg, Al, and Si (in a ratio of 39.2/37.9/22.9%
at) were also disclosed, which correspond to the phases Al8Mg5 and Mg2Si.

Figure 5. Microstructure of the layer obtained during the laser alloying with B4C powder (a,c) 0.4 Bar;
(b,d) 0.5 Bar.

Figure 6. Elemental distribution maps of alloying elements in the analyzed area of the layer obtained
during the laser alloying with B4C powder.
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Figure 7. (a) Microstructure of the alloyed with B4C layer; (b) EDS analysis of the chemical composition
of the analyzed point.

AlMg9 without laser treatment showed a minimal friction factor, µ, of 0.72. The results showed
that the coefficient of friction significantly decreased in the layers obtained during laser alloying with
B4C. In the specimen alloyed with boron carbide, the average µ value was approximately 0.52 (for 0.4
Bar protective gas), whereas for 0.5 Bar protective gas, the average µ was approximately 0.42. On the
basis of the investigation results, the friction coefficient was lower and fluctuated less in samples
alloyed with B4C powder embedded in the surface layer compared with the native material. Initially,
owing to the presence of partially-embedded boron carbide on the alloyed surface layer for all samples
treated by a laser beam, the friction coefficient increased slightly. A decrease in the coefficient of friction
was also observed for composites Al–B4C by Mazaheri et al. [30].

The SEM topography observations of the substrate material abrasion showed various tribological
wear mechanisms (Figures 8 and 9). The most intense and dominant mechanism in all cases was
abrasion wear (Figures 8a and 9a,b). In addition, very intense delamination and plastic deformation
were observed in the substrate (Figure 8a). The above mechanisms were also observed on the wear
debris surface (Figure 8b). The analysis of the wear trace of the layer and wear debris (powder wear
from the layer/wear product) showed no abrasion of large boron carbide particles debonded from
the substrate, indicating good adhesion to aluminium. Wear debris observations showed significant
differences in shape and size. Wear debris of the substrate occurred in the form of large flakes with sizes
larger than 500 µm (Figure 8b), whereas the layers showed a mixture of fine dust and flakes smaller
than 100 µm (Figure 9d), indicating much more even and stable wear. In addition, EDS microanalysis
confirmed the occurrence of oxidation both on the surface of the wear trace of the layer and substrate
material (Figure 10). Additionally, numerous agglomerations of fine oxidized wear debris smaller
than 0.5 µm were observed on the surface of the wear trace of the composite layer. The wear trace
dimensions after the “ball-on-plate” wear tests are shown in Table 5. Baradeswaran et al. [31] also
showed a significant decrease in wear along with the increase in the participation of B4C carbide
in alloy AA7075. Tribological wear of the composite with 10% carbide accounted for about 11% of
the base material wear, which confirms the trend occurring in the case of laser alloying. In addition,
the disappearance of plastic deformation was observed with the increase of B4C.
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Figure 8. Wear trace (a,b) and the wear product (b) of the AlMg9 after the “ball-on-plate” wear test.

Table 5. The dimensions of the wear track of analyzed materials after the “ball-on-plate” wear test.

Substrate
Dimensions of the Wear Track

Volume, µm2 Width, mm Depth, µm

AlMg9 193,603 1.99 55.5

AlMg9 +B4C Protective gas, Bar 0.4 38,619 1.15 48.7

0.5 26,313 1.2 43.2

Figure 9. Wear track (a) 0.4 Bar, (b) 0.5 and the wear product, (c) 0.4 Bar, and (d) 0.5 of the sample
alloyed with B4C powder after the “ball-on-plate” wear test.



Materials 2020, 13, 402 9 of 11

Figure 10. EDS microanalysis of the composite layer wear trace (a) and parental material (b).

The hardness tests revealed that, when laser alloying with boron carbide, the resulting hardness
was higher than the material before laser treatment. The measured microhardness along the depth of
the cross-section of the solidified pool indicated a hardness increase to 128 HV0.5 (for 0.4 Bar protective
gas) and 131 HV0.5 (for 0.5 Bar protective gas) only in carbide-containing areas at a depth of about
0.15 mm. The hardness drastically decreased in the entire heat-affected zone (HAZ) and along the
border of the base material (BM). The hardness at a depth of 1.75 mm across the top surface layer
ranged from 99–96 (for 0.4 Bar protective gas) and 93–99.9 (for 0.5 Bar protective gas) (Figure 11).
The increase in hardness in the remelting area is caused by the presence of evenly distributed carbides
and the fragmentation of precipitations coming from the substrate material. Baradeswaran et al. [31],
introducing boron carbide particles into the 7057 alloy, obtained finally about 225 HB for the composite
with 20% carbide. Boron carbide hardness is in the range of 2900–3900 kg/mm2, while the base material
is slightly above 90 HV [32].

Figure 11. Profile of microhardness changes of the AlMg9 surface layer after laser alloying with B4C.

4. Conclusions

On the basis of the tests carried out on the AlMg9 alloy subjected to laser surface modification by
rapid remelting and rapid solidification, the following conclusions can be made:

• The surface layer rich in alloying elements had a higher hardness than the substrate (128 HV0.5 for
0.4 Bar protective gas) and 131 HV0.5 (for 0.5 Bar protective gas).
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• The abrasion resistance increased owing to an increase in the hardness of the surface layer.
The obtained layers had friction coefficients of 0.52 (for 0.4 Bar protective gas) and 0.42 (for 0.5 Bar
protective gas).

• An increase in tribological properties and a rougher surface (Ra = 4.82 µm) were found compared
with the substrate before alloying (Ra = 0.27 µm).

• The hardness, roughness, and wear resistance measurements showed that the highest tribological
properties of the obtained surface layer were achieved using 0.5 Bar protective gas (Ar) during
alloying with B4C powder.
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3. Tański, T.; Snopiński, P.; Prusik, K.; Sroka, M. The effects of room temperature ECAP and subsequent aging on
the structure and properties of the Al-3%Mg aluminium alloy. Mater. Charact. 2017, 133, 185–195. [CrossRef]
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