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Abstract: Titanium-based composites—titanium and silver (TiAg) and titanium and carbon
(TiC)—were synthesized by the Thermionic Vacuum Arc (TVA) method on substrates especially
for gear wheels and camshaft coating as mechanical components of irrigation pumps. The films
were characterized by surface morphology, microstructure, and roughness through X-ray Diffraction
(XRD), Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM), Transmission Electron
Microscopy (TEM), and Small-Angle Neutron Scattering (SANS). The silver (Ag) films crystallized
into a cubic system with lattice a = 4.0833 Å at room temperature, indexed as cubic Ag group Fm3m.
The crystallites were oriented in the [111] direction, and mean grain size was <D>111 = 265 Å. The TiC
structure revealed a predominant cubic TiC phase, with a = 0.4098 as a lattice parameter determined
by Cohen’s method. Average roughness (Ra) was 8 nm for the as-grown 170 nm thick TiAg film, and
1.8 nm for the as-grown 120 nm thick TiC film. Characteristic SANS contribution was detected from
the TiAg layer deposited on a substrate of high-quality stainless steel with 0.45% carbon (OLC45)
in the range of 0.015 Å−1

≤ Q ≤ 0.4 Å−1, revealing the presence of sharp surfaces and an averaged
triaxial ellipsoidal core-shell object.

Keywords: Ti-based layers; TVA deposition method; AFM; SEM; TEM; XRD; SANS

1. Introduction

Titanium, with the highest strength-to-density ratio of any metallic element, has outstanding
properties that have led to its widespread use in several important technological applications.
For instance, due to its high corrosion resistance, titanium is used as bulk or coating in propeller shafts,
rigging, and other parts of boats that are exposed to seawater or a salty environment [1]. Resistance to
high temperatures allows titanium and titanium alloys to be used in airplanes, missiles, and rockets,
and thanks to its excellent biocompatibility, there is great demand for it in artificial hips, pins for setting
bones, and for other biological implants [2–4].

Silver has also been recognized as a well-matched biomaterial, mechanically and chemically stable,
and various techniques can be applied to modify its surface properties. Moreover, in wear conditions,
the incorporation of silver (Ag) into titanium (Ti) compounds can change their properties by acting as
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a solid lubricant [5–7]. Ti embedded in a carbon (C) matrix could improve adherence of the coated
substrates to obtain better hardness and anticorrosive properties [8,9].

However, one of the main drawbacks of titanium is the difficulty in producing a reliable and
strong joint due to a lack of metallurgical compatibility and the formation of intermetallic compounds
(IMCs) between the two materials. This shortcoming can be surpassed by using Ti–silver or Ti–carbon
composites, thereby producing a highly reliable joint structure [10].

Many methods, such as magnetron sputtering [11], chemical vapor deposition (CVD), and
electric discharged plasma, have been studied concerning these drawbacks. Applying vacuum arc
techniques to this field has still rarely been reported, as has combining all these properties. In this
study, we synthesized titanium-based nanocomposite layers—titanium and silver (TiAg) and titanium
and carbon (TiC)—on glass, on a silicon (Si) wafer, and a special substrate with a great interest
for industrial applications, OLC45—meaning high-quality stainless steel with 0.45% carbon—using
the Thermionic Vacuum Arc (TVA) method. This procedure combines the advantages associated
with vacuum techniques and the relatively high rate of deposition, especially ease in tailoring film
composition by controlling input arc power [12–14].

The aim of this work was to investigate the behavior of composite films that could allow their
optimization for advanced engineering applications by using TVA technology, especially for gear
wheels and camshaft coating as mechanical components of irrigation pumps.

2. Experiment Details

2.1. Synthesis of Ti-Based Nanocomposite Films

The samples were synthesized using a Ti-99.99% and Ag-99.9% metal basis, and C-99.99% purity
grains provided from the Alfa Aesar company (Lancashire, UK). Samples were prepared on glass.
One side had polished crystalline-silicon (c-Si) substrates with a size of 1× 1 cm2 immersed in ultrasonic
cleaner provided from Cole–Palmer (Vernon Hills, IL, USA) with a highly effective special cleaner
(ultrasonol) for 10 min, and then rinsed with technical-grade acetone for rapid drying. Another
substrate demanded by one industrial partner was OLC45, a round-shaped disc (Φ = 15 mm), polished
according to the requirements of its application and cleaned as described before. The substrates were
mounted on the holder and loaded into the preparation chamber.

Figure 1 shows the experiment setup during Ti–Ag deposition by the TVA method.
The thermoelectrons generated from the heated cathode, a tungsten filament mounted inside a
Wehnelt cylinder—are focused toward the anode surface. The anode, a crucible filled with the grains
of material to be evaporated, was kept at a high positive voltage. Next, the grains of materials (Ti/Ag
or Ti/C in our case) were evaporated; therefore, a steady-state density of vapors was established
in the interelectrodic space [15]. Applied high DC voltage of up to 5 kV between the electrodes
accelerated the electrons coming from the filament and, likewise, vapors from the anode were ionized.
This type of deposition ensured high-quality films with a comparatively high deposition rate due to
the bombardment of the growing layer by energetic ions of the same material in vacuum conditions.
Detailed TVA setup was previously reported [16,17].

The main experiment parameters of this study are listed in Table 1. Base pressure (pB) means
the residual pressure in the vacuum chamber before heating the filament. Working pressure (pw) was
pressure during deposition of the thin films. The other parameters are: dA-S, distance between samples
and discharge ignition point; dA-C, distance between anode and cathode; and IF, current intensity of
heating filament. Input arc power (P) was the arc voltage times the intensity of the arc’s current during
deposition [18,19]. The thicknesses (t) of the deposited films were recorded in situ using the MTM 10
thickness monitor (Cressington Scientific Instruments, Watford, UK).
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Figure 1. Titanium-based (Ti-based) deposition with basic elements of Thermionic Vacuum Arc (TVA) setup.

Table 1. Experiment parameters for synthesis of titanium-based nanocomposites.

Parameters Ti–Ag Ti–C

Base pressure pB (Pa) 4 × 10−5 7 × 10−5

Working pressure pw (Pa) 6 × 10−4 7 × 10−4

Substrates Si, glass, OLC Glass
Distance dA-C (m) 5 × 10−3

Distance dA-S (m) 6 × 10−2

Intensity current on filament IF (A) 47 48
Input arc power P (kW) 1.05 1.37

Film thickness t (nm) 120 170
Rate of deposition r (nm/s) 3.5 2.5

2.2. Characterization Methods

Thin films were investigated using microscopy techniques: Transmission Electron Microscopy
(TEM; CM 120 ST, Phillips Electronics, Eindhoven, The Netherlands), acceleration voltage of 120 kV,
resolution point of 1.4 Å, and 1.2 million×magnification) together with Atomic Force Microscopy (AFM,
Veeco CP-R, New York, NY, USA) and Scanning Electron Microscopy (SEM, Zeiss EVO 50 SEM having
LaB6 cathode, Carl Zeiss, Oberkochen, Germany). Thin films were investigated using transmission
electron microscopy techniques: TEM, selected-area electron diffraction (SAED), and High-Resolution
TEM (HRTEM). Furthermore, iTEM software (Radius 2.0 version, Emsis, Muenster, Germany) was used
for imaging connected with MegaView III on the CM120ST microscope (Emsis, Muenster, Germany).
Samples for TEM investigation were prepared using the scratch method [20] with a diamond knife and
formvar-covered grids.

X-ray Diffraction (XRD) measurements were carried out to determine the crystalline structure of
the deposited TiAg thin films using an Empyrean XRD diffractometer with parallel-beam geometry
of Cu-radiation with a scanning step of ~0.026 degrees. Analysis of X-ray diffraction patterns was
performed with the Rietveld method using HighScore Plus software (Version 4.8, Malvern Panalytical
B.V., Malvern, UK).

The resolution function of the diffractometer was established with the LaB6SRM 656b standard
(NIST). The characteristic dimension of coherent scattering regions (Dhkl) was determined by the
Scherrer equation:

D(hkl) =
Kλ
βcos Θ

, (1)
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where D(hkl), characteristic dimension of coherent scattering regions; K, Scherrer constant; λ, wavelength
of X-ray radiation; β, integral width at half maximum; and Θ, Bragg reflection angle [21].

Small-angle neutron-scattering (SANS) experiments consist of measuring the intensity of the
scattered neutrons versus the amplitude of the scattering wavevector defined by Q = 4π/λsin(θ/2),
where θ is the scattering angle and λ is the neutron wavelength.

SANS measurements were performed on the time-of-flight YuMO spectrometer (JINR, Dubna,
Russia) with two detector modes [22] in function at the IBR-2 high-flux pulsed reactor (JINR Dubna).
The SONIX+ software system (Version 2017, JINR, Dubna, Russia) controlled the spectrometer [23].
Experiments were carried out at a sample-to-detector distance of 5.28 and 13.04 m, resulting in a Q
range of 0.006–0.06 A−1. Sample diameter and thickness in the beam were 14 and 2 mm, respectively.

For a microstructure comprising a particulate morphology that is randomly oriented (isotropic),
the small-angle neutron-scattering intensity can be expressed as:

I(Q) = n
∣∣∣∆ρ∣∣∣2V2P(Q)S(Q), (2)

where n, particle-number density, each with volume V; |∆ρ|, scattering contrast; P(Q), scattering
form-factor term for individual particles; and S(Q), effective structure factor for the arrangement
of particles within the sampling volume. Scattering contrast |∆ρ| is the difference between the
neutron-scattering length density of the scattering particles (in our case, particles, voids, or pores)
and that of the surrounding medium. The form- and structure-factor functions were derived to
enable the small-angle scattering from a wide range of heterogeneous morphologies to be described
and quantified.

3. Results and Discussion

3.1. Microscopy Techniques

3.1.1. Atomic Force Microscopy (AFM)

The surface morphology and roughness of the titanium-based films were inspected by AFM under
the tapping mode with a silicon cantilever.

Figure 2 shows 3D AFM images of the TiAg and TiC films on the one-side polished silicon
substrate. Surface morphology was different between the two samples (4 µm × 4 µm) deposited on the
same substrate. In the case of TiAg/Si (Figure 2a), there were many randomly distributed peaks and
valleys, while the surface of the TiC/Si (Figure 2b) was quite uniform, with only a few profile height
deviations from the mean line, recorded within the evaluation length. Average roughness (Ra) was
8 nm for the as-grown 170 nm thick TiAg film, and 1.8 nm for the as-grown 120 nm thick TiC film.

3.1.2. Scanning Electron Microscopy (SEM)

With 20,000× and 1580× enlargement, as shown in Figure 3, topography of the TiAg
nanocomposites deposited on three different substrates was visible. It can be seen that the TiAg film
was homogeneously and uniformly coated on the silicon (Si) plates (Figure 3a) and on glass (Figure 3b),
without delamination from the substrate. The homogeneity of the coated film surface deposited on a
substrate of high-quality stainless steel with 0.45% of carbon (OLC) substrate (Figure 3c) was lower
than that on other substrates, but it is an inherent feature of the deposition of Ti-based coating on
stainless steel.
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Figure 2. Atomic Force Microscopy (AFM) images of titanium-based nanocomposite layers (a) TiAg
and (b) TiC layers on silicon substrate.

Figure 3. Scanning Electron Microscopy (SEM) micrographs of titanium and silver (TiAg)
nanocomposites coating deposited on (a) silicone, (b) glass and (c) substrates of high-quality stainless
steel with 0.45% carbon (OLC45).

The TiAg sample deposited on the OLC substrate was covered by irregular large surfaces with
small protuberances distributed on the top of them. Some nanoparticles with a size of 100–200 nm
were evenly distributed and embedded in a titanium matrix. This is the typical microstructure of
nanocomposite materials. Adherence was improved, producing results in reduced particle size with
very fine particles centered at the surface boundaries.
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3.1.3. Transmission Electron Microscopy (TEM)

Detailed microstructure characterizations by TEM of the TiAg and TiC deposited on the glass are
presented in Figure 4. Figure 4a shows the bright-field TEM image of the TiAg compound coating.
The pattern obtained by selected-area electron diffraction (SAED) was inserted into the image. Electron
diffraction was carried out at 880 mm camera length. The corresponding SAED pattern revealed a
polycrystalline TiAg that corresponded to the interplanar distance of TiAg (111) plane (d = 0.23642 nm,
PDF #65-8470) and Ti phases with the hexagonal structure. The cubic Ag structure was also identified
as a major phase in this case.

Figure 4. Transmission Electron Microscopy (TEM) images of Ti-based coatings on glass: (a) TiAg; (b)
TiC and profiles from selected-area electron diffraction (SAED) with identified peaks images; (c) TiAg
on glass; and (d) TiAg on silicon.

The Ag structure can also be seen in the HRTEM image of the TiC intermetallic compound coating
on glass (Figure 4b) with the predominant cubic TiC phase and lattice parameter determined by
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Cohen’s method as a = 0.4098 with −5.59% relative error [24]. SAED patterns matched the standards
of titanium carbide (TiC), as shown in the insert.

In Figure 4c,d, intensity (in arbitrary units, u.a.) is depicted on the y-axis, and the radius, in pixels,
on the x-axis. Results were converted into degrees and angstroms in a text file saved by the CRISP2
software using a user camera constant (in our case, 44.56 nm × pixel). “Odd” numbers were calculated
by CRISP2 on the basis of the radius of the selected circle from the diffraction pattern and intensity
maximum (for each axis, 10 numbers are shown).

The obtained data were indexed by comparison with the cubic structure of [TiC] [25] (Table 2).
From Figure 4a, it can also be observed that the coating contained nanocrystalline grains, which can be
explained by the high energy of ions in the TVA method [26].

Table 2. Measured distances corresponding to the peaks compared with the cubic structure of [TiC].

Peak No. Distance (nm) hkl Distance (nm) (TiC)

1 0.24764 111 0.249877
2 0.21596 200 0.216400
3 0.15223 220 0.153018
4 0.12968 113 0.130494
5 0.12424 222 0.124939

SAED profiles were extracted from these patterns using the radial distribution function
implemented in CRISP2 software and used to identify structural characteristics [27–29]. Using
the ELD module from CRISP2, the background was fitted with a 9th degree polynomial function.
The automated procedure implemented in ELD was used to identify peaks, but we also applied a
manual selection for a peak with low intensity [30]. Results were used to index diffraction peaks and to
evaluate lattice parameters. Figure 4c,d presents a snapshot of a CRISP2-integrated profile calculated
from the diffraction pattern for TiAg films deposited on glass (Figure 4c) and silicon (Figure 4d).

In the case of TiAg/Gl, electron diffraction showed polycrystalline material characteristics. The
peaks evaluated from the profile of the SAED pattern were located as 0.231nm (111), 0.200 nm
(200), 0.141 nm (220), 0.121 nm (113), and 0.114 nm (222), and indexed as cubic Ag group Fm−3m,
a = 0.4080 nm [25].

As shown in Figure 4d, the TiAg/Si sample had an amorphous character; the major crystalline
phase was identified as cubic Si. The Moire fringes found on some particles of the film could be
attributed to the fact that the samples were partially crystalline. Using the profile extracted from this
pattern, the following values were found: 0.318 nm (111), 0.194 nm (220), 0.158 nm (113), 0.137 nm
(400), 0.125 nm (331), and 0.112 nm (224), indexed using cubic structure of Si [27].

These results strongly agree with the XRD investigations.

3.2. X-ray Diffraction (XRD) Investigations

The XRD pattern at room temperature of the TiAg deposition on the OLC45 sample is presented
in Figure 5. Black solid lines mark the observed data, while the red one represents the calculated curve.

The vertical lines shown below the pattern mark revealed the expected Bragg positions of the
model, as follows: upper lines mark the Ag position, and the lower lines mark the position for iron
(Fe). Meanings of calculated Bragg positions and their structural compliance with the ICDD reference
are shown in Table 3. The full width at half-maximum (FWHM) intensity is also presented, clearly
fitting very well. No unexpected peak was present, so the sample was practically single-phase. The Fe
target was crystallized into a cubic system with lattice a = 2.8661 Å. The fit was performed using
the symmetry of space group Im−3m. The Ag film was crystallized into a cubic system with lattice
a = 4.0833 Å at room temperature. The crystallites were oriented in the [111] direction, and mean
grain size was <D>111=265 Å. The fit was performed using the symmetry of space group Fm−3m. The
absence of peaks for Ti in the pattern indicated an amorphous phase.
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Figure 5. X-ray Diffraction (XRD) pattern at room temperature of TiAg/OLC45 sample.

Table 3. Summaries of phase composition and refined structural parameters, and selected interatomic
distances, respectively.

No. 2θ (degr.) dhkl (Å) hkl Rel. Int. (%) Full Width at Half-Maximum (FWHM, ◦2θ) Ref. ICDD PDF No.

1 38.09 2.3610 (111) 26.8 0.270 01-071-3762
2 44.28 2.0440 (200) 6.4 0.391 01-071-3762
3 44.62 2.0291 (110) 100.0 0.331 01-080-3816
4 64.44 1.4448 (220) 3.6 0.782 01-071-3762
5 64.98 1.4341 (200) 4.8 0.527 01-080-3816
6 77.41 1.2319 (311) 2.2 1.069 01-071-3762
7 81.56 1.1794 (222) 0.8 1.172 01-071-3762
8 82.29 1.1707 (211) 9.3 0.733 01-080-3816
9 97.93 1.0212 (400) 0.3 1.646 01-071-3762

10 98.91 1.0137 (220) 4.6 0.989 01-080-3816

01-071-3762 (taken from Owen, E.A., Yates, E.L., J. Chem. Phys., 3, 605, (1935)). 01-080-3816 (taken from Crisan, O.,
Crisan, A.D., J. Alloys Compd., 509, 6522, (2011)).

3.3. SANS Investigations

The small-angle neutron-scattering method was applied for the investigation of the TiAg/OLC45
sample. The aim of the SANS investigations was detecting possible forming nanostructures in the
layer volume with dimensions in the range of 1–100 nm.

In Figure 5 (black squares), the SANS experiment curve is depicted. Two scattering regions were
detected in the measured Q-range: (i) 0.015 Å−1

≤ Q ≤ 0.055 Å−1, and (ii) 0.06 Å−1
≤ Q ≤ 0.4 Å−1.

3.3.1. 0.015 Å−1
≤ Q ≤ 0.055 Å−1

In the domain of 0.015 Å−1
≤ Q ≤ 0.055 Å−1, the obtained SANS profile manifested a power-law

scattering of I (Q) ≈ Q−α with α = 4 (Figure 6, red line). This case represents the so-called Porod limit
and characterizes sharp surfaces/interfaces of the scatterers, for example, the boundary between two
regions with different scattering-length densities:

ρTi = −1.9·1010 cm−2 and ρAg = 3.468·1010 cm−2,

where ρTi and ρAg represent the scattering length densities of Ti and respectively Ag.
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Figure 6. Small-angle neutron scattering (SANS) experiment curve from TiAg/OLC45 sample (black
squares); linear fit of curve in 0.015 Å−1

≤ Q ≤ 0.06 Å−1 (red line) domain using Porod approximation;
model curve fittings with triaxial ellipsoidal core-shell model fit (green line) for experiment data in
range of 0.06 Å−1

≤ Q ≤ 0.4 Å−1.

3.3.2. 0.06 Å−1
≤ Q ≤ 0.4 Å−1

For SANS data treatment in the range of 0.06 Å−1
≤ Q ≤ 0.4 Å−1, a multiparameter fitting method

using implemented theoretical models for structural refining was applied through the FITTER program.
The obtained form factor describing the averaged scattering object for the Q-region under

consideration was the triaxial ellipsoidal core-shell model (see Figure 6, green fit).
The parameters of the triaxial ellipsoidal core-shell model detected from the experiment curve are

displayed in Table 4, where a–c are the half-axis of the core, respectively, and t is shell thickness.

Table 4. Object form factor and its dimensions from SANS experiment-data processing (in Q-range
0.060 Å−1

≤ Q ≤ 0.4 Å−1) of TiAg layer (deposited on OLC45 substrate).

Model Triaxial Ellipsoidal Core-Shell (nm)

Dimensions

a = 15.7 ± 0.1
b = 14.1 ± 0.1
c = 6.5 ± 0.1
t = 4.3 ± 0.1

The obtained object was consistent with the model of Ag grains surrounded by a Ti layer or
dispersed in a Ti matrix. The Ag grain averaged dimension obtained from XRD agreed with the
parameters obtained for the core of the SANS model.

4. Conclusions

TiAg and TiC nanocomposites were successfully synthesized on special substrates by the
Thermionic Vacuum Arc (TVA) method. The microscopy techniques, together with XRD results,
were in very good agreement concerning the structure of TiAg films deposited on glass and OLC: Ag
crystallized into a cubic system [111] direction, and mean grain size was <D>111 = 265 Å, with lattice a=

4.0833 Å at room temperature. TiAg/Si had an amorphous character, partially crystalline, according to
the profile extracted from the pattern. The structured of TiC nanocomposites revealed the predominant
cubic TiC phase with the lattice parameter of a = 0.4098 matching the standards of titanium carbide.
The roughness of the titanium-based films decreased with the increase of the ions’ energy densities
from the plasma core (Ag versus C).

As far as we know, this is the first time that the SANS technique was used for the detection of
possible nanoinhomogeneities inside compounds obtained using the TVA method. In the measured
scattering curve, characteristic SANS contribution was detected from the TiAg layer deposited on the
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OLC substrate in the range of 0.015 Å−1
≤ Q ≤ 0.4 Å−1, characterizing the presence of sharp surfaces

and an averaged triaxial ellipsoidal core-shell object.
These results suggest that the thermionic vacuum arc technology as a deposition process

is an efficient method to improve the comprehensive properties of titanium-based films, which
act as candidate material for protective coatings, especially for the mechanical components of
irrigation pumps.
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