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Abstract: In this paper, ZnO electrodeposition was studied with the presence of graphene oxide (GO)
exploited as a possible structure-directing agent. The effect of deposition potential and duration on the
morphology and structure of ZnO was analyzed. The morphology and structure of the hybrids was
analyzed by Raman spectroscopy, X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM).
The Raman results indicate a successful modification of ZnO with GO sheets and a hybridization
threshold of 10 mg L−1 by the evolution of the defect related band of ZnO at 580 cm−1. The morphology
results show that a low GO content only slightly influences the morphology and orientation of ZnO
nanostructures while a high content as 10 mg L−1 changes the morphology in nanoplates and growth
orientation to lateral. The results show that while GO participated in the deposition reaction, it has a
two-fold role, also by structure-controlling ZnO, indicating that the approach is valid for the use of
GO as a structure-directing agent for the fabrication of ZnO nanostructures by electrodeposition with
varying morphologies and orientations.
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1. Introduction

Zinc oxide (ZnO) is an n-type semiconductor highly employed in different devices, such as sensors,
biosensor, solar cells, supercapacitor and catalysis fields [1–4] thanks to its interesting properties,
including its wide band gap of 3.37 eV [4], resistivity control, high electrochemical stability, good
electron transfer features and transparency in the visible wavelength region [1] in addition to being an
abundant non-toxic and low-cost material.

It is well known that properties of materials at nano-scale are markedly dependent on their
size, shape or morphology; thus, the control of features such as porosity, surface area or specific
orientation has attracted much interest for improving the performance of ZnO-based devices [5].
In this respect, ZnO morphology is highly versatile as it encompasses nanorods, nanowires, nanotubes,
nanowalls, nanocups nanobelts, nanorings, nanosprings, nanobowls, nanoflowers, nanohelices and
nanoparticles [1,6–8]. For example, Wang et al. reported a novel and improved ethanol gas sensor based
on electrodeposited flower-like ZnO microstructures [9], Psychoyios et al. fabricated a ZnO-based
potentiometric cholesterol biosensor with improved adsorption capability by improving the surface
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area to volume ratio of ZnO structures [5], while Marimuthu et al. demonstrated that the efficiency of
ZnO dye sensitized solar cells (DSSCs) was markedly improved for ZnO nanowalls [10].

A large range of techniques such as magnetron sputtering, spray pyrolysis, electrodeposition,
sol-gel, chemical bath deposition, thermal methods pulsed laser ablation in liquid or gas environment
or chemical vapor deposition have been applied for the synthesis of ZnO nanostructures and its
composites [11–16]. Amongst these techniques, electrodeposition represents a great alternative as it
provides excellent coating of varying geometries of substrates, it allows the control of morphology,
thickness and crystallite size and aspect ratio of the deposit by simply varying the electrochemical
parameters, including precursor concentration, bath temperature, deposition time or deposition
potential/current [1,10] and it is a simple and cost- and time-efficient technique which does not
require sophisticated experimental setups [1]. For instance, morphologies such as platelets, nanowalls
and nanorods were reported by adjusting the electrodeposition potential and bath temperature [10].
Furthermore, the use of structure-directing agents during the electrodeposition has been applied to
control the crystal orientation and thus the properties of ZnO materials [17]. For example, Eosin Y was
reported to accelerate the growth process of ZnO and result in a porous film with a high surface area and
enhanced electron transport that improved the ZnO-based dye sensitized solar cell´s efficiency [18–20].
Other examples of structure-directing agents include citric acid [20] and even a combination of agents
such as Eosin Y and Eosin B that were applied to modify the porosity of ZnO to obtain an improved
efficiency for dye-sensitized solar cells [21].

Lately, the use of graphene oxide as a structure-directing agent has attracted great research
interest. Graphene, a two-dimensional carbon allotropic material shows a highly specific surface area
(2630 m2 g−1), high mobility (15,000 m2 V−1 s−1) along with excellent electrical and mechanical properties
thanks to which its composites exhibit improved performance [4,22–24]. Graphene oxide (GO), a
derivative material of graphene [22] which can be obtained by simple wet chemistry methods [25],
has decorative oxygen functional groups (e.g., hydroxyl, carboxyl and epoxy groups) on its surface
and edges [26,27] which make it amphiphilic [28], a hydrophilic/hydrophobic structure, so that it can
act as a surfactant and has the ability to control some characteristics of the final structure, including
composition, structure and morphology [22,29]. The reports on GO as a shape-directing agent include
carbon aerogels [30], bimetallic nanopowders [28], inorganic nanomaterials [29], heterogeneous 2D
carbon nanostructures [31], carbon-based catalysts [32] or metal-organic frameworks (MOF) [33].
Zhanga et al. used GO to control the growth and induce the vertical orientation of magnesium
molybdate nanosheets for anodes in a lithium battery [34]. With the help of GO as a structure-directing
agent, the morphology can be tailored and result in an improved photocatalytic activity [33]. In other
example, Lu et al. demonstrated that GO directly influences the growth kinetics and induces a concavity
in the nanocubes of PtPd nanocrystals in its presence [35].

There is special interest in the synthesis of hybrid composites of ZnO nanocrystals with GO in
order to obtain a synergistic effect towards enhanced performance [23] in sensing, energy storage,
catalysis, photovoltaics and pollutant degradation [2,3,36–38]. It has been shown that GO could
be applied as a scaffold in a ZnO/reduced GO hybrid (ZnO/rGO) [1] and contributes to enhanced
performance thanks to attributes such as its high surface area [23]. The ZnO/rGO hybrids can be
fabricated by different methods, including chemical vapor deposition, electrodeposition, hydrothermal
deposition, spray hydrolysis or drop-casting/electrophoretic deposition [1,4,23,39]. Amongst said
methods, the electrodeposition is a great alternative for the synthesis of ZnO/rGO hybrids as it allows
for the control on the doping of ZnO nanostructures [40].

Herein, the synthesis of ZnO/rGO hybrids is reported by a one-step electrodeposition approach
based on a simultaneous deposition of ZnO and electro-reduction of GO. The GO is shown to have
a two-fold role of reagent and a structure-directing agent to control the growth of ZnO crystals.
A systematic study on the effect of GO content and electrodeposition conditions such as potential
and duration on the ZnO nanostructures is presented. The obtained results indicate that GO can be
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successfully applied to control the structure and orientation of ZnO electrodeposited nanostructures
towards improving its performance in varying fields.

2. Materials and Methods

2.1. Materials

The chemicals were reagent grade (Alfa Aesar) and used as received. GO was obtained as
presented previously [41]. All electrolytes were obtained with distilled water. Indium-doped tin oxide
(ITO) coated conducting glass slides (~15 Ω/sq) were cleaned successively in soapy water, distilled
water, acetone and isopropylic alcohol by ultrasonic treatment.

2.2. rGO-Assisted Electrodeposition of ZnO Nanostructured Films

The ZnO nanostructured films were synthesized on indium tin oxide (ITO)substrate from 0.1 M
KCl supporting electrolyte containing 5 mM ZnCl2 and varying GO content up to 10 mg L−1 under
continuous O2 flow. The deposition was performed by applying a constant potential ranging from
−0.8 to −1 V for up to 600 s at 75 ◦C.

2.3. Characterization

The electrochemical deposition was performed using an Autolab potentiostat in a classical
three-electrode electrochemical cell using ITO slides, Pt plate and saturated Ag/AgCl electrode as the
working electrode, the counter one, and the reference electrode, respectively. X-Ray diffraction (XRD)
spectra were acquired using a diffractometer (Bruker, D2 Phaser, Madrid, Spain) using the Cu Kα

line of 1.54 Å. The morphology was analyzed with a scanning electron microscope (SEM, JSM-820
JEOL, Jeol, Tokyo, Japan) working at 20 kV. Raman spectra were recorded using a (inVia, Renishaw,
Barcelona, Spain) microscope employing a 514-nm laser.

3. Results

Linear sweep voltammetry (LSV) measurements were first performed in order to determine the
evolution of reduction potential with GO addition. Figure 1 depicts the effect of GO content and varying
scan rate on ZnO electrodeposition. As can be observed from the LSV curves in Figure 1A, a reduction
peak appears at about −0.9 V in the absence of GO, while the addition of GO shifts the reduction peak
to a more anodic value. The electrodeposition of ZnO takes place by a reaction mechanism based on
the reduction of oxygen molecules and the formation of Zn(OH)2 which dehydrates at the applied
temperature condition to form ZnO [11] and simultaneous GO reduction according to [42]:

GO + aH+ + be−→ rGO + cH2O (1)

Figure 1B shows the variation of the reduction peak for ZnO electrodeposition upon addition of
varying GO content in the bath up to 10 mg L−1. For exemplification, the LSV curves recorded for 2.5
and 10 mg L−1 are presented only. At a low GO content, the reduction current increases and the peak
potential is shifted to more cathodic values while in presence of higher GO content, the peak potential
shifts back to its original position—see exemplification for GO to 10 mg L−1 where the LSV is similar to
the one obtained in the absence of GO.

Figure 1C,D depicts the evolution of LSV curves for ZnO electrodeposition with a scan rate at a a
GO content of 2.5 mg L−1 and 10 mg L−1, respectively. It is shown that upon low GO addition, the
reduction potential is shifted negatively as the scan rate is increased. The deposition current increases,
as indicated in the inset in Figure 1C. On the other hand, a GO content as high as 10 mg L−1 shows
very little variation in the reduction potential and current for ZnO/rGO hybrid electrodeposition.

Furthermore, the current transients corresponding to the potentiostatic electrodeposition of ZnO
with GO addition and at varying deposition potentials were studied, as depicted in Figure 2. As it can
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be seen, the chronoamperometric curves exhibit a similar trend, independently of the electrodeposition
conditions. The electrodeposition current decreases with the GO content, as shown in Figure 2A, while
the nucleation process is completed in about 100 s. Nevertheless, the current increases with the applied
deposition potential even in the presence of a high GO content (Figure 2B) which is expected to result
in thicker deposit [43]. By increasing the applied potential, a steep current slope is observed, which
results in the faster establishment of a current plateau (after about 100 s).
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Figure 1. (A) Linear sweep voltammetry of ZnO electrodeposition in absence (left) and presence of
GO (right) at 10 mV s−1; (B) Evolution of ZnO electrodeposition with content of GO (mg L−1) at a
scan rate of 50 mV s−1; (C) Evolution of ZnO electrodeposition with the scan rate at a GO content of
2.5 mg L−1 (inset depicts the evolution of reduction peak intensity with the scan rate); (D) Evolution of
ZnO electrodeposition with scan rate at a GO content of 10 mg L−1.
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Figure 2. (A) Current transients for ZnO electrodeposition in presence of varying GO amount at an
applied deposition potential of −1 V; (B) Current transients for ZnO electrodeposition with applied
deposition potential in the presence of 7.5 mg L−1 GO.

Raman spectroscopy was carried out in order to characterize the ZnO/rGO hybrids. The formation
of ZnO and the presence of rGO in the hybrid material obtained by a 1-step electrodeposition process
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is confirmed by the appearance of typical bands of both components, as shown in Figure 3. In the low
wavenumber range, three bands located at 310, 440 and 580 cm−1 are attributed to ZnO [23,44].
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of the applied deposition potential.

The typical band of wurtzite ZnO at 440 cm−1 corresponding to non-polar optical phonon E2H

mode is observed to increase in intensity while the band located at 580 cm−1 associated with bulk
defects, including oxygen vacancies, zinc interstitials or defect complexes comprising both of them [45]
appears unaffected by the cathodic potential. On the other hand, in the higher wavenumber range,
the bands at 1370 and 1602 cm−1 represent the typical D and G bands of GO which correspond to
the disorder-induced mode in the hexagonal graphitic layer and sp2 carbons, respectively [44,46,47].
The intensity of D and G bands of GO increase with the applied deposition potential.

SEM analysis was further performed in order to determine the morphological changes and growth
directions of the ZnO nanostructures upon modification with GO as direct-structure agent. Given the
importance of the deposition potential on the structure as well as the nucleation on the growth of ZnO,
the combined effect of GO content with the electrodeposition potential and duration was analyzed.
The result of the first stage of the deposition process −1 V for up to 120 s is presented in Figure 4. It can
be seen that the density of ZnO nanostructures slightly diminished while their lateral size increases
upon the addition of GO. The growth along the c-axis of ZnO nanostructures is observed to be affected
at a higher GO content than 2.5 mg L−1. No significant change in the vertical orientation is observed at
a low GO content (see GO sheets as indicated by the arrow in Figure 4B), while a high GO content
results in the loss of preferred vertical orientation. The addition of GO appears to induce a rougher
surface of ZnO [48] while the nanostructures change from nanorod to nanoplate morphology.

Furthermore, the growth of nanostructures was studied with time, as presented in Figure 5. For
exemple, the duration of 600 s is considered sufficient to evidence changes in the morphology of ZnO
nanostructures due to the presence of GO. As expected, a larger diameter is observed in all cases, in
agreement with Skompska et al. [49] and Arslan et al. [50]. The vertical growth of ZnO nanostructures
is maintained at a low GO content up to 2.5 mg L−1 while a higher GO content shifts it to lateral and
the morphology changes from nanorods to nanoplates, as shown for the shorter duration. The hybrids
deposited at a high cathodic potential show thin GO sheets at the top of the ZnO nanostructures
at a low GO content, as evidenced by the arrow in Figure 4B while at a higher content, the sheets
are apparently missing. However, the images obtained for a longer deposition duration confirm the
presence of agglomerated crumpled rGO sheets surrounding the ZnO nanostructures, as indicated by
the arrows in Figure 5D.
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Although a lower cathodic deposition potential is known to result in lower quality crystalline
structures, the morphology of GO-modified ZnO nanostructures could be exploited to develop
synergetic properties. Figure 6 shows the SEM evolution of ZnO nanostructures obtained at −0.8 V
for 600 s with the GO content. Figure 6A shows a ZnO film constituted of dense nanorods without a
clear definition of boundaries. As the ZnO nanostructures are not well defined at a lower deposition
potential and the GO sheets are better allowed to migrate to the electrode, their effect on the morphology



Materials 2020, 13, 365 7 of 13

of ZnO at a high GO content is more evident. The morphology of ZnO changes from nanorods to
nanoplates even at a low GO content—see Figure 6B and nanocontainers, upon increasing the GO
content up to 10 mg L−1—see Figure 6D. At −0.8 V, all the films show a random orientation.
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The influence of GO as a structure-directing agent for ZnO electrodeposition was analyzed by
XRD. Figure 7A shows the evolution of XRD spectra of the pure ZnO with the applied deposition
potentials in the absence of GO. As can be seen in Figure 7A, the typical peaks for the hexagonal
wurtzite structure of ZnO (JCPDS card no. 36-1451) are identified beside the peaks corresponding to
the substrate, that is, the diffraction peaks located at (100), (002), (101), (102) and (110) [37,51,52]. It can
be observed that the preferred orientation towards c-axis growth increases with the cathodic potential,
in agreement with the SEM images in Figures 5A and 6A [51]. Upon the addition of GO, the ZnO/rGO
hybrids presented similar diffraction peaks as the non-modified ZnO (not shown), in agreement with
other reports [46].
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Furthermore, the preferential growth was determined by calculating the texture coefficient TC
by using the equation [49,50]: TC = (I(hkl)/I0(hkl))/(N−1 ∑

n I(hkl)/I0(hkl)), where I and I0 are the measured
relative intensity and standard intensity from the JCPDS file, respectively, for a plane (hkl), N is the
reflection number in the difractogramm. A random orientation of the crystals is achieved when TC ≈ 1
and a preferential one when TC > 1. Figure 7B,C show the texture coefficient (TC) evolution for ZnO
electrodeposited in the presence of varying GO content and applied deposition potential. The obtained
TC values indicate that the ZnO nanostructures obtained at −1 V exhibit a growth preference for
(002) plane in the absence of GO [50] which it is maintained upon the addition of low GO content
of 2.5 mg mL−1 while a high GO content of 10 mg L−1 results in the loss of preferential orientation,
in agreement with Figure 4 and the XRD spectra in Figure 7. On the other hand, at lower cathodic
deposition potential, the ZnO nanostructures do not show a preferential growth orientation. It can be
observed that TC along (002) gradually decreases while that for other planes such as (100) and (110)
increase with the GO content.

4. Discussion

The LSV curves in Figure 1A indicate that the presence of GO shifts the reduction potential, which
is attributed to the reduction of GO sheets simultaneously with ZnO electrodeposition. The addition of
low GO content to the electrolytic bath results in an increased reduction current, as can be observed in
Figure 1B, which could be attributed to the GO acting as a scaffold and its decorating oxygen groups as
a nucleation center for growing ZnO [37]. The reduction peak evolution with the scan rate depicted
in Figure 1C indicates a linear increase in the deposition current along with a shift to more cathodic
potential in the presence of low GO content, indicating an increasing deposition rate as the oxygen
functional groups in GO are exposed and used as a scaffold to assist the growth of ZnO. On the other
hand, a higher GO content in the electrolytic bath resulted in a negligible shift in the reduction peak
current and potential with respect to the ZnO electrodeposition in the absence of GO, which is due to
the increased density of GO sheets in the electrolytic bath that result in an agglomeration and thus, in
the exposure of less oxygen groups that could be used for ZnO growth.
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The chronoamperometric curves in Figure 2 show more stable deposition current at a GO content of
10 mg L−1 which is attributed to the homogeneous exposure of oxygen functional groups to easily react
with Zn2+ ions due to denser GO sheets in the electrolytic bath [37]. The GO use as a direct-structure
agent was reported to allow the synthesis of homogenous layers [35]. By employing a high GO content,
the chrono-amperometric curves show a steady homogenous growth at −0.8 and −0.9 V, while at
a higher cathodic potential of −1 V, a steep current slope is observed that is attributed to the faster
formation of nuclei [2].

Raman spectroscopy is a very sensitive to the electronic structure. The typical Raman peak of
wurtzite ZnO located at 440 cm−1 increases in intensity with the cathodic potential, indicating the
improved crystallinity of ZnO in the ZnO/rGO hybrids with cathodic potential. The band associated
with defects in ZnO (e.g., oxygen vacancies) at 580 cm−1 indicates the hybridization of ZnO with GO
and shows that at a higher GO content (i.e., 10 mg L−1), the hybridization reaches a limitation as it did
not change in location or full width half maximum. The peaks corresponding to GO indicate that the
ID/IG ratio is relatively higher at −1.0 V than lower applied deposition potentials, which is attributed to
an increased reduction degree [23,28,47,53–55].

As the electrochemical results indicate, the participation of GO sheets to the electrodeposition
process, the GO sheets are expected to be found in the hybrid deposit. The morphology analysis shows
that the addition of GO during electrodeposition of ZnO induces changes in morphology towards
nanoplates, as well as in the growth direction from vertical to lateral, both at low and high cathodic
potential, which could be attributed to the incorporation of GO sheets [56,57] where the oxygen
groups in GO further react with Zn2+ ions [22]. As evidenced in the SEM images in Figures 4–6, the
nanostructures increase in terms of density and disorder with the GO content, and the morphology
turns to concave nanostructures, suggesting that GO sheets are adsorbed on (001) planes of ZnO
through their oxygen groups, resulting in stacks of platelets standing on the substrate, similarly to
other reports on electrodeposition of ZnO in the presence of dye or surfactant molecules [58]. The
nanocontainers obtained at a low potential of −0.8 V indicate an impeded growth of the polar facet of
ZnO, which is associated with the presence of GO [48]. Thus, as long as the GO sheets only reversibly
adsorb to the surface, they cannot be detected in the deposited films in certain potential and GO content
conditions. Such a growth mechanism is further supported by the image of ZnO deposited at an even
lower potential, depicted in Figure 6E where the ZnO morphology gets to concave spherical structures.

The XRD results indicate that the resulting ZnO possesses a high crystallinity [37], with a
preferential growth orientation at a low GO content and high potential and loss of preferred orientation
upon an increased GO content and at a low deposition potential. The results obtained indicate that the
GO could be employed as a structure-directing agent for the electrodeposition of ZnO towards the
fabrication of novel materials with synergetic properties.

5. Conclusions

ZnO nanostructures were obtained by electrochemical deposition. Graphene oxide was exploited
as a structure-directing for ZnO by employing the GO as a surfactant during the electrodeposition of
ZnO. Both the electrodeposition of ZnO and electro-reduction of GO take place simultaneously. The
effect of deposition potential and duration on the morphology and structure of ZnO was analyzed.
The Raman spectroscopy results indicate a successful modification of ZnO with GO sheets with the
appearance of typical bands of both components. A hybridization threshold of 10 mg L−1 is indicated
by the evolution of the defect-related band of ZnO at 580 cm−1. The morphology analysis shows that a
low GO content preserves the morphology and orientation of ZnO nanostructures while a high content
such as 10 mg L−1 changes the morphology in nanoplates and growth orientation to lateral. The results
indicate that the approach is valid for the use of GO as a structure-directing agent for the fabrication of
ZnO nanostructures by electrodeposition with varying morphologies and orientations.



Materials 2020, 13, 365 10 of 13

Author Contributions: Conceptualization, A.P.; methodology, A.P., D.B.-M.; validation A.P., D.B.-M. and D.P.;
investigation, A.P. and N.M.R.-L.; writing—original draft preparation, N.M.R.-L.; writing—review and editing,
A.P. and D.B.-M. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Romanian National Authority for Scientific Research and Innovation.
CNCS—UEFISCDI (project number PN-III-P1-1.1-TE-2016-1544) and Escuela Politécnica Nacional (project number
PIMI 15–09) and Secretaria de Educación Superior, Ciencia, Tecnología e Innovación (SENESCYT) from Ecuador.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Yang, T.; Chen, M.; Kong, Q.; Wang, X.; Guo, X.; Li, W.; Jiao, K. Shape-controllable ZnO nanostructures
based on synchronously electrochemically reduced graphene oxide and their morphology-dependent
electrochemical performance. Electrochim. Acta 2015, 182, 1037–1045. [CrossRef]

2. Rosas-Laverde, N.M.; Pruna, A.; Cembrero, J.; Orozco-Messana, J.; Manjón, F.J. Performance of graphene
oxide-modified electrodeposited ZnO/Cu2O heterojunction solar cells. Boletín Soc. Española Cerámica Y Vidr.
2019, 58, 263–273. [CrossRef]

3. Rosas-Laverde, N.M.; Pruna, A.; Busquets-Mataix, D.; Marí, B.; Cembrero, J.; Salas Vicente, F.;
Orozco-Messana, J. Improving the properties of Cu2O/ZnO heterojunction for photovoltaic application by
graphene oxide. Ceram. Int. 2018, 44, 23045–23051. [CrossRef]

4. Zhang, Z.; Ren, L.; Han, W.; Meng, L.; Wei, X.; Qi, X.; Zhong, J. One-pot electrodeposition synthesis of
ZnO/graphene composite and its use as binder-free electrode for supercapacitor. Ceram. Int. 2015, 41,
4374–4380. [CrossRef]

5. Psychoyios, V.N.; Nikoleli, G.-P.P.; Tzamtzis, N.; Nikolelis, D.P.; Psaroudakis, N.; Danielsson, B.; Israr, M.Q.;
Willander, M. Potentiometric Cholesterol Biosensor Based on ZnO Nanowalls and Stabilized Polymerized
Lipid Film. Electroanalysis 2013, 25, 367–372. [CrossRef]

6. Jiang, X.; Lin, Q.; Zhang, M.; He, G.; Sun, Z. Microstructure, optical properties, and catalytic performance of
Cu2O-modified ZnO nanorods prepared by electrodeposition. Nanoscale Res. Lett. 2015, 10, 2–7. [CrossRef]

7. Cui, J. Zinc oxide nanowires. Mater. Charact. 2012, 64, 43–52. [CrossRef]
8. Da Fonseca, A.F.V.; Siqueira, R.L.; Landers, R.; Ferrari, J.L.; Marana, N.L.; Sambrano, J.R.; de La Porta, F.A.;

Schiavon, M.A. A theoretical and experimental investigation of Eu-doped ZnO nanorods and its application
on dye sensitized solar cells. J. Alloys Compd. 2018, 739, 939–947. [CrossRef]

9. Wang, C.; Wang, Z.-G.; Xi, R.; Zhang, L.; Zhang, S.-H.; Wang, L.-J.; Pan, G.-B. In situ synthesis of flower-like
ZnO on GaN using electrodeposition and its application as ethanol gas sensor at room temperature.
Sens. Actuators B Chem. 2019, 292, 270–276. [CrossRef]

10. Marimuthu, T.; Anandhan, N.; Thangamuthu, R.; Surya, S.; Panneerselvam, R.; Ganesan, K.P. Effect
of Deposition Potential and Bath Temperature on One-Step Electrochemical Synthesis of One and Two
Dimensional Nanostructured ZnO Thin Films on Fluorine Doped Tin Oxide Substrates. J. Nanosci. Nanotechnol.
2019, 19, 7014–7025. [CrossRef]

11. Rosas-Laverde, N.M.; Pruna, A. Electrodeposition of ZnO Nanostructured Films for Photovoltaics and
Photoelectrochemical Sensing. In ZnO Thin Films Properties, Performance and Applications; Mele, P., Ed.; Nova
Science Publishers: Hauppauge, NY, USA, 2019; ISBN 978-1-53616-086-4.

12. Al-Nassar, S.I.; Hussein, F.I.; Adel, K.M. The effect of laser pulse energy on ZnO nanoparticles formation by
liquid phase pulsed laser ablation. J. Mater. Res. Technol. 2019, 8, 4026–4031. [CrossRef]

13. Ozerov, I.; Bulgakov, A.V.; Nelson, D.K.; Castell, R.; Marine, W. Production of gas phase zinc oxide
nanoclusters by pulsed laser ablation. Appl. Surf. Sci. 2005, 247, 1–7. [CrossRef]

14. Shao, Q.; Chen, S.Q.Y.; Yeung, O.L.; Foo, Y.S.; Ng, S.M.; Zapien, J.A.; Leung, C.W.; Ruotolo, A. Magnetism as
a tool for band-gap narrowing of zinc oxide films prepared by sol–gel method. J. Sol Gel Sci. Technol. 2016,
77, 240–243. [CrossRef]

15. Wang, X.L.; Luan, C.Y.; Shao, Q.; Pruna, A.; Leung, C.W.; Lortz, R.; Zapien, J.A.; Ruotolo, A. Effect of the
magnetic order on the room-temperature band-gap of Mn-doped ZnO thin films. Appl. Phys. Lett. 2013, 102,
102112. [CrossRef]

16. Haga, K.; Kamidaira, M.; Kashiwaba, Y.; Sekiguchi, T.; Watanabe, H. ZnO thin films prepared by remote
plasma-enhanced CVD method. J. Cryst. Growth 2000, 214–215, 77–80. [CrossRef]

http://dx.doi.org/10.1016/j.electacta.2015.09.158
http://dx.doi.org/10.1016/j.bsecv.2019.06.002
http://dx.doi.org/10.1016/j.ceramint.2018.09.107
http://dx.doi.org/10.1016/j.ceramint.2014.11.127
http://dx.doi.org/10.1002/elan.201200591
http://dx.doi.org/10.1186/s11671-015-0755-0
http://dx.doi.org/10.1016/j.matchar.2011.11.017
http://dx.doi.org/10.1016/j.jallcom.2017.12.262
http://dx.doi.org/10.1016/j.snb.2019.04.140
http://dx.doi.org/10.1166/jnn.2019.16636
http://dx.doi.org/10.1016/j.jmrt.2019.07.012
http://dx.doi.org/10.1016/j.apsusc.2005.01.084
http://dx.doi.org/10.1007/s10971-015-3849-3
http://dx.doi.org/10.1063/1.4795797
http://dx.doi.org/10.1016/S0022-0248(00)00068-3


Materials 2020, 13, 365 11 of 13

17. Abd Samad, N.A.; Lai, C.W.; Abd Hamid, S.B. Easy Formation of Nanodisk-Dendritic ZnO Film via
Controlled Electrodeposition Process. J. Nanomater. 2015, 2015, 1–7. [CrossRef]

18. Künze, S.; Schlettwein, D. Electrochemical and electroless deposition of porous zinc oxide on aluminium.
Electrochim. Acta 2014, 128, 360–367. [CrossRef]

19. Neuthe, K.; Bittner, F.; Stiemke, F.; Ziem, B.; Du, J.; Zellner, M.; Wark, M.; Schubert, T.; Haag, R. Phosphonic
acid anchored ruthenium complexes for ZnO-based dye-sensitized solar cells. Dyes Pigments 2014, 104, 24–33.
[CrossRef]

20. Ichinose, K.; Mizuno, T.; Schuette White, M.; Yoshida, T. Control of Nanostructure and Crystallographic
Orientation in Electrodeposited ZnO Thin Films via Structure Directing Agents. J. Electrochem. Soc. 2014,
161, D195–D201. [CrossRef]

21. Nguyen, T.H.Q.; Ruess, R.; Schlettwein, D. Adjusting Porosity and Pore Radius of Electrodeposited ZnO
Photoanodes. J. Electrochem. Soc. 2019, 166, B3040–B3046. [CrossRef]

22. Zou, J.-P.; Ma, J.; Huang, Q.; Luo, S.-L.; Yu, J.; Luo, X.-B.; Dai, W.-L.; Sun, J.; Guo, G.-C.; Au, C.-T.; et al.
Graphene oxide as structure-directing and morphology-controlling agent for the syntheses of heterostructured
graphene-Bi2MoO6/Bi3.64Mo0.36O6.55 composites with high photocatalytic activity. Appl. Catal. B Environ.
2014, 156, 447–455. [CrossRef]

23. Wei, A.; Xiong, L.; Sun, L.; Liu, Y.; Li, W.; Lai, W.; Liu, X.; Wang, L.; Huang, W.; Dong, X. One-step
electrochemical synthesis of a graphene–ZnO hybrid for improved photocatalytic activity. Mater. Res. Bull.
2013, 48, 2855–2860. [CrossRef]

24. Ong, W.-J.; Tan, L.-L.; Chai, S.-P.; Yong, S.-T. Graphene oxide as a structure-directing agent for the
two-dimensional interface engineering of sandwich-like graphene-G-C3 N4 hybrid nanostructures with
enhanced visible-light photoreduction of CO2 to methane. Chem. Commun. 2015, 51, 858–861. [CrossRef]
[PubMed]

25. Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1957, 208, 1937. [CrossRef]
26. Du, Y.; Yao, H.; Zhao, L.; Yang, H.; Wang, M.; Yuan, L.; Xu, Y.; Li, J. Graphene Oxide Induced High

Crystallinity of SAPO-11 Molecular Sieves for Improved Alkane Isomerization Performance. ChemNanoMat
2019, 5, 1225–1232. [CrossRef]

27. Liu, C.; Liu, H.; Xiong, T.; Xu, A.; Pan, B.; Tang, K. Graphene Oxide Reinforced Alginate/PVA Double
Network Hydrogels for Efficient Dye Removal. Polymer 2018, 10, 835. [CrossRef]

28. Muthu Prabhu, S.; Park, C.M.; Shahzad, A.; Lee, D.S. Designed synthesis of sulfide-rich bimetallic-assembled
graphene oxide sheets as flexible materials and self-tuning adsorption cum oxidation mechanisms of arsenic
from water. J. Mater. Chem. A 2019, 7, 12253–12265. [CrossRef]

29. Yang, J.; Hao, J.; Xu, S.; Dai, J.; Wang, Y.; Pang, X. Visible-light-driven photocatalytic degradation of 4-CP
and the synergistic reduction of Cr(VI) on one-pot synthesized amorphous Nb2O5 nanorods/graphene
heterostructured composites. Chem. Eng. J. 2018, 353, 100–114. [CrossRef]

30. Li, F.; Xie, L.; Sun, G.; Kong, Q.; Su, F.; Lei, H.; Guo, X.; Zhang, B.; Chen, C. Regulating pore structure of
carbon aerogels by graphene oxide as ‘shape-directing’ agent. Microporous Mesoporous Mater. 2017, 240,
145–148. [CrossRef]

31. Zhang, X.; Fan, Q.; Qu, N.; Yang, H.; Wang, M.; Liu, A.; Yang, J. Ultrathin 2D nitrogen-doped carbon
nanosheets for high performance supercapacitors: Insight into the effects of graphene oxides. Nanoscale 2019,
11, 8588–8596. [CrossRef]

32. Zhang, M.; Wu, M.; Liu, Q.; Wang, X.; Lv, T.; Jia, L. Graphene oxide mediated cellulose-derived carbon
as a highly selective catalyst for the hydrolysis of cellulose to glucose. Appl. Catal. A Gen. 2017, 545, 167.
[CrossRef]

33. Cai, J.; Lu, J.-Y.; Chen, Q.-Y.; Qu, L.-L.; Lu, Y.-Q.; Gao, G.-F. Eu-Based MOF/graphene oxide composite: A
novel photocatalyst for the oxidation of benzyl alcohol using water as oxygen source. New J. Chem. 2017, 41,
3882–3886. [CrossRef]

34. Zhang, L.; He, W.; Ling, M.; Shen, K.; Liu, Y.; Guo, S. Self-standing MgMoO4/Reduced Graphene Oxide
Nanosheet Arrays for Lithium and Sodium Ion Storage. Electrochim. Acta 2017, 252, 322–330. [CrossRef]

35. Lu, Y.; Jiang, Y.; Chen, W. Graphene nanosheet-tailored PtPd concave nanocubes with enhanced electrocatalytic
activity and durability for methanol oxidation. Nanoscale 2014, 6, 3309–3315. [CrossRef] [PubMed]

http://dx.doi.org/10.1155/2015/563728
http://dx.doi.org/10.1016/j.electacta.2013.09.146
http://dx.doi.org/10.1016/j.dyepig.2013.12.018
http://dx.doi.org/10.1149/2.016405jes
http://dx.doi.org/10.1149/2.0101909jes
http://dx.doi.org/10.1016/j.apcatb.2014.03.038
http://dx.doi.org/10.1016/j.materresbull.2013.04.012
http://dx.doi.org/10.1039/C4CC08996K
http://www.ncbi.nlm.nih.gov/pubmed/25429376
http://dx.doi.org/10.1021/ja01539a017
http://dx.doi.org/10.1002/cnma.201900349
http://dx.doi.org/10.3390/polym10080835
http://dx.doi.org/10.1039/C9TA02419K
http://dx.doi.org/10.1016/j.cej.2018.07.115
http://dx.doi.org/10.1016/j.micromeso.2016.10.052
http://dx.doi.org/10.1039/C9NR01290G
http://dx.doi.org/10.1016/j.apcata.2017.08.016
http://dx.doi.org/10.1039/C7NJ00501F
http://dx.doi.org/10.1016/j.electacta.2017.08.115
http://dx.doi.org/10.1039/C3NR06186H
http://www.ncbi.nlm.nih.gov/pubmed/24519683


Materials 2020, 13, 365 12 of 13

36. Teh, S.J.; Yeoh, S.L.; Lee, K.M.; Lai, C.W.; Abdul Hamid, S.B.; Thong, K.L. Effect of reduced graphene
oxide-hybridized ZnO thin films on the photoinactivation of Staphylococcus aureus and Salmonella enterica
serovar Typhi. J. Photochem. Photobiol. B Biol. 2016, 161, 25–33. [CrossRef] [PubMed]

37. Pruna, A.; Wu, Z.; Zapien, J.A.A.; Li, Y.Y.Y.; Ruotolo, A. Enhanced photocatalytic performance of ZnO
nanostructures by electrochemical hybridization with graphene oxide. Appl. Surf. Sci. 2018, 441, 936–944.
[CrossRef]

38. Bu, Y.; Chen, Z.; Li, W.; Hou, B. Highly Efficient Photocatalytic Performance of Graphene–ZnO
Quasi-Shell–Core Composite Material. ACS Appl. Mater. Interfaces 2013, 5, 12361–12368. [CrossRef]

39. Pruna, A.; Cembrero, J.; Pullini, D.; Mocioiu, A.M.; Busquets-Mataix, D. Effect of reduced graphene oxide on
photocatalytic properties of electrodeposited ZnO. Appl. Phys. A 2017, 123, 792. [CrossRef]

40. Maiti, S.; Pal, S.; Chattopadhyay, K.K. Recent advances in low temperature, solution processed morphology
tailored ZnO nanoarchitectures for electron emission and photocatalysis applications. CrystEngComm 2015,
17, 9264–9295. [CrossRef]

41. Pruna, A.; Pullini, D.; Busquets, D. Structure and Properties of Chemically-reduced Functionalized Graphene
Oxide Platelets. J. Mater. Sci. Technol. 2015, 31, 458–462. [CrossRef]

42. Zhou, M.; Wang, Y.; Zhai, Y.; Zhai, J.; Ren, W.; Wang, F.; Dong, S. Controlled Synthesis of Large-Area and
Patterned Electrochemically Reduced Graphene Oxide Films. Chem. A Eur. J. 2009, 15, 6116–6120. [CrossRef]
[PubMed]

43. Septina, W.; Ikeda, S.; Khan, M.A.; Hirai, T.; Harada, T.; Matsumura, M.; Peter, L.M. Potentiostatic
electrodeposition of cuprous oxide thin films for photovoltaic applications. Electrochim. Acta 2011, 56,
4882–4888. [CrossRef]

44. Wu, H.; Zhao, X.; Li, J.; Dong, S. The large-area preparation and photoelectrochemical properties of
graphene/ZnO nanorod composite film. RSC Adv. 2017, 7, 55673–55679. [CrossRef]

45. Sánchez Zeferino, R.; Barboza Flores, M.; Pal, U. Photoluminescence and raman scattering in ag-doped zno
nanoparticles. J. Appl. Phys. 2011, 109, 014208.

46. Wu, S.; Yin, Z.; He, Q.; Huang, X.; Zhou, X.; Zhang, H. Electrochemical deposition of semiconductor oxides
on reduced graphene oxide-based flexible, transparent, and conductive electrodes. J. Phys. Chem. C 2010,
114, 11816–11821. [CrossRef]

47. Wang, Y.; Wang, F.; He, J. Controlled fabrication and photocatalytic properties of a three-dimensional ZnO
nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth. Nanoscale 2013, 5, 11291–11297.
[CrossRef]

48. Pan, X.; Yang, M.Q.; Xu, Y.J. Morphology control, defect engineering and photoactivity tuning of ZnO crystals
by graphene oxide—A unique 2D macromolecular surfactant. Phys. Chem. Chem. Phys. 2014, 16, 5589–5599.
[CrossRef]
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