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Abstract: This work deals with the application of the Conform SPD (Severe Plastic Deformation)
continuous extrusion process for ultrafine to nanostructured pure titanium production. The process
has been derived from the Equal Channel Angular Pressing (ECAP) technique but, unlike ECAP,
it offers continuous production of high-strength wire. This study describes the Conform SPD process
combined with subsequent cold working (rotary swaging technique), its potential for commercial
application, and the properties of high-strength wires of pure titanium. High-strength wire of titanium
Grade 4 is the product. Titanium Grade 4 reaches ultimate strengths up to 1320 MPa. This value
is more than twice the ultimate strength of the unprocessed material. The typical grain size upon
processing ranges from 200 to 500 nm. Process development supported by FEM analysis together
with detailed microstructure characterization accompanied by mechanical properties investigation
is presented.
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1. Introduction

In recent years, a lot of attention has been paid to the study of the material phenomena called
Severe Plastic Deformation (SPD) [1,2]. SPD is a general term describing a group of metalworking
techniques imposing very large strains, typically involving a complex stress state or high shear,
resulting in a high defect density and the creation of equiaxed “ultrafine” grains [1,3].

Commercially pure titanium with high mechanical properties becomes increasingly attractive for
medical applications. A major factor in this development is the recent studies which confirmed the potential
hazards posed by the most widely used titanium alloy, Ti6Al4V [4–6]. The alloy may release aluminium
and vanadium ions into the human body. These elements are toxic for humans [4,7]. Aluminium may even
cause Alzheimer’s disease [7]. Commercially pure titanium exhibits high biocompatibility [6], but yields
low mechanical properties. Therefore, technology leading to enhancement of mechanical properties
for pure titanium are being investigated. Among them, several deformation processes providing
nanostructured materials seem, at present, to be very promising. The high strength of such material
would enable implants to be smaller. With a smaller load-bearing cross-sectional area, less human
tissue is intruded and the implants may be more suitable for children and animals [2].

Today the most widely used SPD processes include HPT (High-Pressure Torsion), ARB (Accumulative
Roll-Bonding) and ECAP (Equal-Channel Angular Pressing) [1]. However, these methods are not suitable
for processing large volumes of metals, since they are established for small volume specimens and,
moreover, are discontinuous [8,9]. Thus, recent research efforts have been focused on the development
of continuous processes based, for example, on ECAP [10–12]. The original Conform SPD process
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is usually used for continuous extrusion of aluminium and copper profiles on an industrial scale.
However, it delivers only a semi-product geometrical change without significant microstructural
modification [12–14]. At COMTES FHT, the method has been modified in order to refine the structure
during the forming process; and thus Conform SPD (Figure 1) was developed. This Conform SPD
significantly improved the final mechanical properties [10,11,15]. The grain refinement is achieved
thanks to the shear deformation and high hydrostatic pressure inside the processing chamber die
which was designed based on experiences with the ECAP procedure [16,17]. SPD processes are usually
applied in a multi-pass process, which means the grain structure is gradually refined with the increasing
number of passes [18,19]. Another method is to combine the SPD process with cold working. It has
already been proven that the combination of processes can lead to even higher mechanical properties
than in the case of purely SPD processing [20–23].
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Figure 1. Schematic representation of the Conform SPD technique [24].

This paper deals with the development of continuous technology for commercially pure titanium
(titanium Grade 4) processing combining Conform SPD and rotary swaging leading to high-strength
wire production. FEM analysis of the Conform SPD process is demonstrated here followed by a
detailed study of the experimental material after processing with the use of optical and transmission
electron microscopy and mechanical tests demonstrating the achieved material state.

2. Materials and Methods

Commercially pure Grade 4 titanium (ASTM B348 Gr4) was processed. Its chemical composition
is given in Table 1. The composition was measured by means of the Bruker Q4 Tasman optical emission
spectrometer. The initial diameter of the feedstock was 10 mm.

Table 1. Chemical composition of the experimental material (weight %).

Element Fe O C H N

Titanium Grade 4 0.5 0.4 0.1 0.0125 0.05

The schematic picture of the SPD process is shown in Figure 1. Thanks to its axisymmetry, only one
half of the equipment and feedstock were used for computation. In the deformation zone, titanium was
considered to be plastic, whereas the other parts of the model were deemed rigid. The friction between
the driving wheel and titanium bar plays a significant role in the mathematical model. The contact
condition was set between forming wheel and feedstock. This condition ensured that the workpiece
could not slip in the forming groove. The friction between the workpiece and the other tools was
set to µf = 0.72. This value is recommended for hot forming by a software developer. These values
were also verified by the pin on disc experiment. The temperature fields have only been studied in
the titanium feedstock. The impact of the environment was neglected due to the rate of temperature
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changes. About 80,000 elements were created within the titanium feedstock. The models of the
chamber die and its surroundings were fine-meshed. For more information of the FEM model, see [24].
Temperature-dependent material characteristics of titanium Grade 4 were obtained from JMatPro on
the basis of the material’s chemical composition.

Two processes were considered: Conform SPD and rotary swaging of cold wire. All heating in
the processes was generated by severe plastic deformation. During Conform SPD processing, the
temperature of the die chamber was measured by a sheathed thermocouple. The feedstock orientation
was identical in all passes and has a diameter of 10 millimetres. The output diameter of the wire was
also 10 millimetres. The wheel speed was set to 0.5 rpm. This Conform SPD machine has a designed
channel angle of 90◦. Up to 4 passes Conform SPD processing were applied prior to subsequent
processing of the experimental rods. Rotary swaging was performed on as-received wire and on a wire
after one and three Conform SPD passes at ambient temperature. The objective was to analyse the
impact of work hardening on ultrafine to nanocrystalline material. The stock was fed into the machine
at a speed of approximately 0.5 m/s. In a single pass, the reduction of the cross-sectional area was 20%.
The maximum final investigated reduction of the cross-sectional area was 90% which corresponds to a
true strain of 2.2.

Metallographic analysis of specimens was performed after grinding and subsequent polishing of
the samples. The pictures of the microstructure were obtained by etching in Kroll reagent. An optical
microscope Carl Zeiss-Observer.Z1m (Carl Zeiss AG, Oberkochen, Germany) in a mode of bright-field
illumination was used for structure image capture.

For the purpose of observation in the transmission electron microscope (TEM), thin foils were
prepared with final electrolytic thinning in a Tenupol 5 device, using a solution of 300 mL CH3OH +

175 mL 2-butanol + 30 mL HClO4 at a temperature of −10 ◦C and a voltage of 40 V. The TEM analysis
was performed in a JEOL 200CX (JOEL, Tokyo, Japan) instrument with an acceleration voltage of
200 kV. Selective electron diffraction was used for phase identification. Grain size was measured using
the linear intercept method. The sampling was carried out in the transverse direction.

Tensile testing was carried out at room temperature under quasi-static loading conditions with
the use of an electromechanical testing machine. The average values from three valid measurement are
plotted in the results section. The strain was measured with the use of a mechanical extensometer.
The values of yield stress at 0.2% deformation (OYS), ultimate stress (UTS), elongation (A) and reduction
of area (RA) were evaluated.

Microhardness was measured by means of a Durascan 50 automatic hardness tester. HV1 Vickers
hardness values were measured in the transverse direction on samples after Conform SPD processing.
The hardness was calculated from five valid measurements and the average value was calculated.

3. Results

3.1. Conform SPD Process Analysis

The Conform SPD process was analysed using the FEM software DEFORM. Figure 2 shows the
distributions of strain rate, true strain and temperature during the process, and the time dependences
of these quantities for selected locations. These locations are identified as points in Figure 2a. Point 1
was in the centre of the blank and point 2 was located near the top of the chamber. At these points, time
histories of strain rate, true strain and temperature were recorded. The recording interval included
the shear deformation region between the Start and Finish line segments indicated in the schematic
drawing. These three quantities are crucial to all SPD processes, as they have a significant impact
on the resultant properties of the workpiece. Figure 2b shows the strain rate distribution, which is
relatively non-uniform. The highest strain rate can be seen in the shear deformation zone on the left
side of Figure 2b. The scale limit was modified for better differentiation. Strain rate is reduced at the
top of the die chamber. This is shown by the related time history in Figure 2b on the right side of figure.
The distribution of true strain is illustrated in Figure 2c. Higher strain is achieved near the surface of



Materials 2020, 13, 336 4 of 13

the workpiece due to friction. This can be seen in the time history in the same figure. At the end of
the pass, point 2 shows higher strain. The temperature distribution in Figure 2d shows that severe
deformation generates appreciable amounts of heat. The calculation suggests that the temperature
reaches 600 ◦C after the shear deformation zone (see the left side of Figure 2d). The effect of the initial
temperature of the blank on the final temperature was found to be negligible.

1 
 

 
Figure 2. Result of FEM simulation: (a) Paths of the points under examination; (b) Strain rate
distribution [s−1] and time trace of strain rate for points 1 and 2; (c) true strain distribution [-] and time
relation of true strain for points 1 and 2; (d) temperature distribution over time for tracking points
dependences of temperature for points 1 and 2.
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3.2. Metallographic Characterisation

Figure 3 is a micrograph of the as-received material which contains recrystallized equiaxed grains
with annealing twins. The presence of twins is associated with a low degree of symmetry of the
hexagonal lattice [25]. The average as-received grain size was 22 µm.
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Figure 3. Microstructure in the as-received state in the transverse direction.

Figure 4 presents substructures of the material after various numbers of passes through the
Conform SPD machine. Each micrograph is accompanied by a histogram of grain size distribution.
The most notable refinement occurred during the first pass through the Conform SPD machine.
The resultant grain size was approximately 374 nm (Figure 4a). Most grains were polyhedral but some
regions contained acicular grains (centres of micrographs in Figure 4). There were some occasional
grains whose size exceeded 1 µm, as indicated by the histograms. Dislocation density was very
non-uniform. In some regions, there were grains with very low dislocation densities, in others, grains
with high dislocation densities. No deformation twins were found, which, at this strain magnitude,
is consistent with the findings in [23]. The non-uniform substructure can be seen after the Conform
SPD processing, after one or more passes. Subsequent passes did not lead to further refinement of the
substructure (Figure 4b,c). The number of grains with a grain size of 700–900 nm increased after the
third pass through the Conform SPD machine (Figure 4c). The relationship between the grain size and
the number of extrusion passes is plotted in Figure 5 for the transverse and longitudinal directions.
In Figure 5, an increase in the grain size can be seen after the third and fourth passes through the
Conform SPD machine.
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Figure 6 presents the substructures after three passes through the Conform SPD machine and
rotary swaging (true strain 0.9%–60% reduction of the cross-sectional area). Figure 6a shows the
substructure in the transverse direction, in which equiaxed polyhedral grains dominate. The mean
grain size in the transverse direction was 370 nm. Figure 6b shows the substructure in the longitudinal
direction. It contains elongated grains. The related histogram shows the width of the elongated grains.
As the diffraction spectra obtained from these samples contain more intensive diffraction lines for
the {100} planes than those from the region of polyhedral equiaxed grains, one can assume that the
preferential grain orientation is associated with these planes (Figure 7). It is a basal texture which is
characteristic of pure titanium after conventional cold forming [26]. Whereas rotary swaging has not
led to further refinement, it produced higher dislocation densities, strong texture and elongated grains.
These are characteristic features of work hardening [26].
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To compare, Figure 8 depicts the microstructure of the material after plain rotary swaging (reduction
of area −90%) for comparison with the microstructure achieved after processing by combination of
Conform SPD and rotary swaging presented in Figure 6b. The purpose was to examine the effect of an
added SPD process on the microstructure characteristics. The photograph shows that the initial grains
became significantly elongated. The grain size in the longitudinal direction was much larger.
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3.3. Mechanical Propeties

Figure 9 is a plot of mechanical properties vs. number of passes through the Conform SPD
machine. Work-hardening was most intensive in the first pass. Ultimate strength increased from 651
MPa to 777 MPa. This is in good agreement with the change of grain size values after the first pass
according to Hall–Petch strengthening. Further passes did not lead to an increase in strength. Figure 9
indicates that the processing has not reduced elongation. The RA even increased slightly. Hence,
Conform SPD processing did not decrease material ductility.
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Workpieces after one and three passes through Conform SPD were rotary-swaged. Rotary swaging
is close to conventional forming methods. Figure 10 shows a plot of mechanical properties after a single
pass through the Conform SPD machine and rotary swaging. A steep increase in the ultimate strength
and yield strength with reduction using rotary swaging can be seen in the graph. After multiple steps
using rotary swaging to the true strain of 2.2 (90% reduction), the ultimate strength reached 1180 MPa.
By contrast, elongation decreased to 10%. This is consistent with work hardening processes in which
the plastic deformation capability of metal is gradually reduced and eventually depleted. Figure 11
shows a plot of mechanical properties after three passes through the Conform SPD machine and rotary
swaging. After a true strain of 2.2, the ultimate strength reached 1320 MPa. Elongation and reduction
of area remained unchanged when compared to a single pass. After three passes, the increase in
ultimate strength was greater than after a single pass. For the sake of comparison, Figure 12 presents
the mechanical properties of plain rotary-swaged material. At a true strain of 2.2, the material reached
a strength of 1050 MPa, which is approximately 130 MPa less than the material upon a single Conform
SPD pass and rotary swaging.
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  Figure 10. Tensile properties after one pass through the Conform SPD machine and after rotary swaging
in relation to true strain.



Materials 2020, 13, 336 9 of 13

 

4 

 
Figure 11. Tensile properties after three passes through the Conform SPD machine and after rotary
swaging in relation to true strain.

 

3 

 

 

  Figure 12. Tensile properties after rotary swaging in relation to true strain.

3.4. Hardness Measurement

The plots in Figure 13 show the hardness on the transverse cross-section for the as-received
and Conform SPD processed conditions. Figure 13a presents the data for the as-received material.
The hardness near the surface was higher than in the centre of the wire. Figure 13b shows transverse
profiles of hardness for material processed in the Conform SPD machine with various numbers of
passes. Generally, the hardness values increase in comparison to the input state of the material.
The higher hardness values are more noticeable for the workpiece after three passes. Hardness after
Conform SPD processing was lower near the surface.
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4. Discussion

The metallographic analysis shows a non-uniform substructure which is probably due to variation
in the deformation conditions across the workpiece cross-section during the Conform SPD process.
Results of numerical modelling appear to confirm this (Figure 2) together with the hardness results over
the cross-section (Figure 13b). The grain size with increasing passages levelled out as the fraction of
equiaxed grains with lower dislocation density increased. The likely cause lies in the thermodynamic
conditions of deformation in the Conform SPD machine. As the process is continuous, it leads to a
constant process temperature. It is referred to as an adiabatic state while no heat is exchanged between
the workpiece and the tools owing to high process speeds [27,28]. Thermodynamic conditions then
preclude further grain refinement. In order to enable further refinement, an intervention would be
necessary, possibly in the form of providing a means to dissipate heat. This is less of a problem in
the ECAP method which leads to gradual refinement of the substructure. It is probably due to more
effective removal of heat through the tool during the cyclic process, as there is a steeper temperature
gradient between the workpiece and the tool. It appears that with further passes, the grains merely
rotate with respect to one another, as evidenced by [8]. The increase in the grain size after multiple
passes through the Conform SPD machine might be due to deformation heat (Figure 2). Deformation
heat activates either dynamic or post-dynamic softening processes. The activation temperatures of
these processes are depressed by the stored deformation energy, which has a strong impact on recovery
process kinetics [11].

The purpose of showing the micrographs after only rotary swaging was to demonstrate the effect
of this process on the material. It was demonstrated that the rotary swaging process on its own cannot
be considered an SPD process as nano grain size was found for pure titanium.

More Conform SPD passes did not increase the strength values. The grain size data offer reliable
evidence of this phenomenon (Figure 5). Mishra et al. attribute this to mutual rotation of equiaxed
grains [3]. The process repeats within the sub-grains until the size becomes sufficiently small such that
the sub-grains can rotate. Additional deformation causes the sub-grains to rotate into high-angle grain
boundaries, typically with an equiaxed shape [1,3]. TEM micrographs show predominantly grains with
high-angle boundaries (Figure 4). In this investigation, the Conform SPD processing did not decrease
material ductility. Valiev et al. reported similar behaviour in HPT-processed titanium which exhibited
a good combination of ductility and strength. According to these authors, the non-equilibrium
grain boundaries are high-angle boundaries, i.e., those with large angular misorientation. They have
high dislocation density, excess energy and long-range stress fields. Under these conditions, UFG
metals are expected to experience grain boundary sliding even at 20 ◦C [29]. After three passes,
the increase in ultimate strength was greater than after a single pass, probably due to the character of
the microstructure. The substructure obtained with three passes was more uniform. The fraction of
grains with high-angle boundaries and lower dislocation density was larger. This type of substructure
appears to exhibit stronger work hardening.

The higher hardness of input material near the surface is due to processing history, as the
wire was made by rolling. Rolling leads to greater hardening near the surface [30]. Hardness was
higher for the Conform SPD processed wires then for the feedstock material. Although hardness
has increased, its values were non-uniform, probably due to non-uniform deformation conditions, as
shown by numerical modelling (Figure 2). The lower hardness near the surface after Conform SPD
processing was found despite the higher amount of strain (Figure 2c). Similar effects were observed in
extruded aluminium sections [31]. One can assume that higher strain in the surface regions (due to
friction between the workpiece and the tools) depresses their recrystallization temperature below
that of the centre of the workpiece. As a result, the near-surface region is likely to undergo partial
recovery. For UFG materials, reduction in recrystallization temperatures was reported in several
studies [11,32,33].

All in all, ultra-fine to nano-grained titanium Grade 4 could replace conventional titanium Grade
5. In this work, titanium Grade 4 reached ultimate strengths up to 1320 MPa. Also, the advantage
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of better biocompatibility of pure titanium is an important criterion for dental implant production.
At this moment, extensive research on Conform SPD and rotary swaged processed titanium Grade 4
in COMTES FHT Company is continuing. The fatigue properties and biological performance in the
human body are being investigated.

5. Conclusions

A concept of a continuous process achieving ultrafine to nanocrystalline grains was developed
for wires made of commercially pure titanium Grade 4. The Conform SPD process was employed
in combination with rotary swaging. After Conform SPD processing, the substructure contained
equiaxed polyhedral grains with a mean size of 374 nm. The largest refinement was achieved with
the first pass. Subsequent passes did not lead to any further refinement. Subsequent rotary swaging
produced higher dislocation densities and elongated the grains in the direction of the material flow.
A strong basal texture was produced. Conform SPD processing with a single pass led to increased
strengths, at the level of 770 MPa, and no change in elongation. Further passes did not improve the
strength characteristics. Additional strengthening was achieved thanks to rotary swaging which led to
strengths of up to 1320 MPa. This was accompanied by a decrease in elongation of approximately 10%.
These results demonstrate the strong potential of ultrafine to nanocrystalline titanium application for
medical implants.
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10. Palán, J.; Maleček, L.; Hodek, J.; Zemko, M.; Dzugan, J. Possibilities of biocompatible material production
using conform SPD technology. Arch. Mater. Sci. Eng. 2017, 88, 5–11. [CrossRef]

http://dx.doi.org/10.1016/j.mser.2014.04.002
http://dx.doi.org/10.1016/j.actamat.2006.07.008
http://dx.doi.org/10.1590/S1415-47572010005000118
http://www.ncbi.nlm.nih.gov/pubmed/21637553
http://dx.doi.org/10.1016/j.biomaterials.2004.01.064
http://www.ncbi.nlm.nih.gov/pubmed/15183605
http://dx.doi.org/10.1016/j.biomaterials.2004.09.007
http://www.ncbi.nlm.nih.gov/pubmed/15603785
http://dx.doi.org/10.1016/j.biomaterials.2005.05.024
http://www.ncbi.nlm.nih.gov/pubmed/16002135
http://dx.doi.org/10.4028/www.scientific.net/MSF.584-586.80
http://dx.doi.org/10.1088/1757-899X/63/1/012049
http://dx.doi.org/10.5604/01.3001.0010.7746


Materials 2020, 13, 336 12 of 13

11. Kubina, T.; Dlouhý, J.; Kövér, M.; Hodek, J. Study of Thermal Stability of Ultra Fine-Grained Commercially
Pure Titanium Wire Prepared in Conform Equipment. Mater. Sci. Forum 2014, 782, 415–420. [CrossRef]

12. Li, B.; Li, C.H.; Yao, X.J.; Song, B.Y. Effects of Continuous Extrusion on Microstructure Evolution and Property
Characteristics of Brass Alloy. Adv. Mater. Res. 2011, 189–193, 2921–2924. [CrossRef]

13. He, Y.L.; Gao, F.; Song, B.Y.; Fu, R.; Wu, G.M.; Li, J.; Jiang, L. Grain Refinement of Magnesium Alloys by
CONFORM: A Continuous Severe Plastic Deformation Route? Mater. Sci. Forum 2012, 706–709, 1781–1786.
[CrossRef]

14. Etherington, C. Conform—A New Concept for the Continuous Extrusion Forming of Metals. J. Manuf. Sci.
Eng. Trans. ASME 1973, 96, 893–900. [CrossRef]

15. Palán, J.; Procházka, R.; Džugan, J.; Nacházel, J.; Duchek, M.; Gergely, N.; Minárik, P.; Horvát, K.
Comprehensive Evaluation of the Properties of Ultrafine to Nanocrystalline Grade 2 Titanium Wires.
Materials 2018, 11, 2522. [CrossRef]

16. Valiev, R.Z.; Langdon, T.G. Principles of equal-channel angular pressing as a processing tool for grain
refinement. Prog. Mater. Sci. 2006, 51, 881–981. [CrossRef]

17. Xu, C.; Schroeder, S.; Berbon, P.B.; Langdon, T.G. Principles of ECAP-Conform as a continuous process for
achieving grain refinement: Application to an aluminum alloy. Acta Mater. 2010, 58, 1379–1386. [CrossRef]

18. Zhao, X.; Yang, X.; Liu, X.; Wang, X.; Langdon, T.G. The processing of pure titanium through multiple passes
of ECAP at room temperature. Mater. Sci. Eng. A 2010, 527, 6335–6339. [CrossRef]

19. Krystian, M.; Huber, D.; Horky, J. Equal channel angular pressing (ECAP) and forging of commercially pure
titanium (CP-Ti). AIP Conf. Proc. 2017, 1896.

20. Semenova, I.P.; Valiev, R.Z.; Yakushina, E.B.; Salimgareeva, G.H.; Lowe, T.C. Strength and fatigue properties
enhancement in ultrafine-grained Ti produced by severe plastic deformation. J. Mater. Sci. 2008, 43,
7354–7359. [CrossRef]

21. Semenova, I.P.; Polyakov, A.V.; Raab, G.I.; Lowe, T.C.; Valiev, R.Z. Enhanced fatigue properties of
ultrafine-grained Ti rods processed by ECAP-Conform. J. Mater. Sci. 2012, 47, 7777–7781. [CrossRef]

22. Wu, H.; Jiang, J.; Liu, H.; Sun, J.; Gu, Y.; Tang, R.; Zhao, X.; Ma, A. Fabrication of an Ultra-Fine Grained Pure
Titanium with High Strength and Good Ductility via ECAP plus Cold Rolling. Metals (Basel) 2017, 7, 563.
[CrossRef]

23. Gunderov, D.V.; Polyakov, A.V.; Semenova, I.P.; Raab, G.I.; Churakova, A.A.; Gimaltdinova, E.I.; Sabirov, I.;
Segurado, J.; Sitdikov, V.D.; Alexandrov, I.V.; et al. Evolution of microstructure, macrotexture and mechanical
properties of commercially pure Ti during ECAP-conform processing and drawing. Mater. Sci. Eng. A 2013,
562, 128–136. [CrossRef]

24. Hodek, J.; Zemko, M. FEM model of continuous extrusion of titanium in deform software. Tanger Ltd. Plzeň
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