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Abstract: Carbon materials are one of the most fascinating materials because of their unique properties
and potential use in several applications. They can be obtained from agricultural waste, organic
polymers, or by using advanced synthesizing technologies. The carbon family is very wide, it includes
classical activated carbons to more advanced types like carbon gels, graphene, and so on. The surface
chemistry of these materials is one of the most interesting aspects to be studied. The incorporation
of different types of chemical functionalities and/or heteroatoms such as O, N, B, S, or P on the
carbon surface enables the modification of the acidic–basic character, hydrophilicity–hydrophobicity,
and the electron properties of these materials, which in turn determines the final application. This
book collects original research articles focused on the synthesis, properties, and applications of
heteroatom-doped functional carbon materials.
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The broad family of carbon materials includes classical activated carbons to carbon nanostructures
like carbon gels, carbon nanotubes, fullerenes, graphene, and so on. In general, these materials present
different properties and origins, but all of them possess a common characteristic, in other words,
the ability to be prepared in many different shapes such as pellets, granular, powders, cloths, fibers,
monoliths, foams, coatings, films, and so on. Furthermore, their porous texture and chemical properties
can be tailored by physical/thermal and chemical processes, enabling the development of porosity
and specific surface area and the incorporation of different chemical functionalities. Both porosity
and surface chemistry have a marked influence on their performance in a specific application, either
by themselves or in combination with other materials. In fact, carbon materials have demonstrated
to be excellent options as adsorbents [1], catalysts [2,3], or catalyst supports [4] when compared to
classic materials (e.g., alumina, silica or ceria) as consequence of their high stability in both acidic and
alkaline media.

Surface chemistry is the most attractive property of carbon materials, since the chemical groups
anchored on the carbon surface may interact with organic molecules, inorganic salts, and metals.
The most common heteroatoms are oxygen (O), nitrogen (N), sulfur (S), boron (B), and phosphorus
(P). They are often part of functional groups and determine the acidic–basic character and the
hydrophilicity–hydrophobicity [5–7]. For instance, oxygen-containing groups such as carboxylic acids,
anhydrides, lactones, and phenols have an acidic character, while quinones, pyrones, and chromene are
basic groups [8–10]. On the other hand, delocalized π electrons from the basal planes also contribute
to the basicity [11], but also to the variation of the electron density. This effect can also be achieved
by the incorporation of boron atoms or nitrogen-containing groups (i.e., pyridine and pyrrole), and
deficient or additional electrons being provided, respectively. Thus, changes in the chemical properties
of carbon materials influence their adsorption behavior and catalytic activity in some reactions [1,4].
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This Special Issue deals with the recent advances in heteroatom-doped carbon materials. Different
synthesis procedures, characterization techniques, and applications were investigated for these
functional materials. The Special Issue collects eleven full-length articles and a short communication.

H. Hamad et al. [12] prepared carbon–phosphorus–titanium composites from cellulose to be used as
photocatalysts in the removal of Orange-G dye. They pointed out that the phosphorus-containing groups
incorporated in the composites modified their textural properties, crystallinity, and photocatalytic
performance. S. Zhang et al. [13] modified biochars obtained from agricultural waste using
3-mercaptopropyltrimethoxysilane epoxy-chloropropane via an ionic-imprinted technique. These
materials were active as adsorbents of Cd (II) in an aqueous solution, showing a higher Cd-selectivity in
the presence of Co (II), Pb (II), Zn (II), and Cu (II) and a good stability after several adsorption–desorption
cycles. A. Elmouwahidi et al. [14] developed carbon materials from waste woods by KOH activation.
The surface chemistry was modified by different chemical agents, which incorporated nitrogen- and
oxygen-containing groups on the carbon surface. All doped materials, with the exception of that
treated with nitric acid, showed good capacitance values and high cyclic stability when used as
electrodes for supercapacitors. An alternative method to obtain N-doped carbon materials for the
same application was proposed by T. Ai. et al. [15]. This method consisted of the use of a N-containing
bio-phenolic resin as a precursor and subsequent activation by a molten-salt method. Carbon materials
have also been demonstrated to be efficient electrocatalysts in the oxygen reduction reaction (ORR). A.
Abdelwahab et al. [16] studied Co- and Ni-doped carbon xerogels, while N-doped carbon fibers and
microspheres synthesized from apricot sap were proposed by R. Kanuragaran et al. [17].

Carbon capture is a growing technology, whose implementation can be achieved by the research of
novel materials. R. Wei et al. [18] prepared N-doped carbon materials from resorcinol and formaldehyde
after KOH activation and ammonia carbonization. A. A. Alghamdi et al. [19] employed N-doped
graphene oxide sheets (N-GOs) obtained from different N-containing polymers and after KOH
activation. In general, the CO2 capture capacity by N-doped materials was enhanced by the increase of
the nitrogen content, the surface area, and the micropore volume. E. Rodriguez-Acevedo et al. [20]
demonstrated that shallow reservoirs could be effective for carbon capture after injecting nanofluids
based on N-rich carbon nanospheres. Finally, the last articles of this Special Issue deal with the
development of N-doped graphene films for high sensitivity electrodes [21]; the functionalization of
graphene oxides with p-phenylenediamine as a modifier [22]; and the induction of magnetic moments
in graphene by introducing sp3-defects [23].
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