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Abstract: Induction welding is a fast, clean, noncontact process that often uses a metal-mesh susceptor
to facilitate localized controlled heating; however, the metal mesh presents various problems. In this
study, the induction heating behavior of a 450 µm thick thin-film susceptor, fabricated by mixing
magnetite (Fe3O4) nanoparticles (NPs) and PA6/carbon fiber (CF) (30%) thermoplastic resin, was
examined with respect to the weight ratio of Fe3O4 (50, 67, 75, and 80 wt%). The useful induction
heating behavior of the 75 wt% Fe3O4 susceptor suggested its suitability for additional heat treatment
experiments, carried out at 3.4 kW at a frequency of 100 kHz. This susceptor attained the same
maximum temperature during 10 cycles of repeated induction heating and cooling. It was then
used to weld two thermoplastic composites, with 60 s of induction heating followed by 120 s of
simultaneous cooling and pressing. The resulting welded joints had lap shear strength values of 36.8,
34.0, and 36.4 MPa under tensile test loads of 884, 817, and 874 N, respectively. Scanning electron
microscopy images confirmed a uniform weld quality. Thus, the proposed manufacturing method,
involving the incorporation of Fe3O4 NPs into thermoplastic resin, should help expand the range of
applications for thermoplastic composites.

Keywords: induction welding; thermoplastic; susceptor; magnetite (Fe3O4); polyamide 6 (PA6); lap
shear strength (LSS)

1. Introduction

Many airliner structures, as well as automobile frames are made from composites, because the
incorporation of composites offers the advantages of the shorter processing times and reduced weight
of the fabricated structure. Thermosetting composites have commonly been used for these applications,
but these composites are increasingly being replaced by thermoplastics. Thermosetting resin is easy
to work as it is maintained in a liquid state at room temperature. A laminator can easily remove air
during the manufacturing process and quickly produce products via vacuum or positive pressure
pumps. The major advantages of thermosetting resin are the ease of manufacture and low raw material
costs. However, thermosetting resins cannot be restored to their original condition by catalysis. That is,
once the thermosetting composite is formed, it cannot be molded or deformed again. For this reason,
recycling of thermosetting composites is very difficult. Since thermoplastic resin is solid at room
temperature, it is difficult to impregnate the reinforcing fibers. The resin must be heated to the melting
point; pressure is required to impregnate the fibers; and the composite must be cooled under this
pressure. However, since reheating is possible, the thermoplastic composite material can be modified
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and remolded. Thermoplastics offer equivalent performance to thermosetting composites and can
be recycled via heating. Thermoplastics are superior in toughness and environmental resistance and
are superior to most thermosetting resins in terms of their short processing time, incombustibility,
and long lifecycle. Additionally, thermoplastics can be produced quickly at low cost [1–4].

However, thermoplastic resins can be deformed only to a limited degree: the thermoplastic parts
produced today have simple shapes, and complex shapes are needed to combine parts. Bonding is
an important step in the process of manufacturing thermoplastic composites, which may weaken
because bonding can cause irregularities in the structure. Conventional joining methods for metals
and thermosets (mechanical fastening and adhesive bonding) can be used, but are not suitable for
thermoplastics. Mechanical fastening has many disadvantages, including a concentration of stress
in the material, peeling during drilling, a difference in thermal expansion between the fastener and
the composite, water penetration into the joint, galvanic corrosion, weight gain, and extensive labor
and time requirements. Adhesive bonding is superior to mechanical fastening because it avoids stress
concentration, but difficulties are still encountered when it is applied to thermoplastics. Extensive
surface treatments are required, but these are generally difficult to control in industrial environments,
and adhesives (usually epoxy) have a long curing cycle [5–7].

Welding processes attempt to bond materials in such a way that allows them to retain their
mechanical performance. Resistance, ultrasonic, and induction welding are widely used to bond
thermoplastic composites [8–11]. In particular, induction welding is a fast, clean, non-contact process
that can be applied to complex shapes. Unlike other types of welding, induction welding requires a
susceptor: heating is controlled with a susceptor placed between two adherends. An eddy current
generated by the magnetic field from an induction coil heats the susceptor, which in turn melts the two
adherends. The molten adherends become welded when solidified under pressure. Most susceptors
are made from iron oxide, nickel, or stainless steel. A stainless steel mesh is commonly used as
the susceptor in thermoplastic composite induction welding. However, adhesion failure with the
resin, uneven heating, an increase in weight, and residual stress continue to undermine the quality of
thermoplastic welds [12]. Some researchers have attempted to solve these problems by incorporating
micron sized (or smaller) heating particles into the resin [13]. Farahani [12] studied the effects of silver
nanoparticles (NPs) on induction heating. Kwon [14] examined induction heating behavior according
to the sizes of iron, iron oxide, and nickel NPs. Other researchers have investigated the feasibility of
fabricating a thin-film susceptor from a mix of powdered ferromagnetic material and thermoplastic
resin, and several studies have presented new susceptor configurations [15].

Various substances are used in induction heating, including magnetite (Fe3O4). Kwon [14]
demonstrated that Fe3O4 heats well during induction heating of Fe, Fe3O4, and Ni. However, no studies
have used Fe3O4 directly as the susceptor. In this study, a susceptor was prepared by mixing polyamide
6 (PA6) resin and Fe3O4. Induction welding was performed on a thermoplastic fiber reinforced plastic
consisting of PA6/carbon fiber (CF, 30%). The induction heating behavior was tested by adjusting the
mixing ratio of PA6 and Fe3O4, and a good susceptor was identified based on the mixing ratio at which
a high temperature occurred. Since thermoplastics can be reheated, 10 reheating tests were performed
to identify whether there was a change in the induction heating characteristics. Induction welding
was performed using a 10 kW heating device. Specimens were fabricated using the single lap joint
method, and a tensile test was performed to determine the weldability and mechanical performance
by calculating the lap shear strength (LSS). This study is intended to verify the induction welding
performance of thermoplastic composites by fabricating new susceptors.

2. Detail of the Experiment

2.1. Fiber Reinforced Plastic for Induction Welding

Thermoplastic PA6 (CF 30%) was used as the fiber reinforced plastic for induction welding.
The thermoplastics most often used in aviation and automotive are polyetheretherketone (PEEK) and
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polyphenylenesulphide (PPS), but PA6 was chosen in this study. As shown in Table 1, PEEK has a high
working temperature of 250 ◦C; PPS has a low working temperature, of only 170 ◦C, but it is difficult
to obtain its raw materials as a powder. PA6 was chosen in this study because it can be molded at
180 ◦C and comes in powder form. Powder is needed for the raw material because it must be mixed
with nano sized Fe3O4. Furthermore, fiber reinforced plastics have higher forming temperatures. PA6
(30% carbon fiber reinforced (CFR)) has a working temperature of 200 ◦C, higher than that of PPS (20%
CFR); therefore, PA6 thermoplastic was used in this study.

Table 1. Powder type and working temperature of thermoplastic(TP) resin.

TP Resin Powder Type Working Temperature (◦C)

PA6 O 180
PEEK O 250
PPS X 170

2.2. Fabrication of the Susceptor

The susceptor was made from a thermoplastic PA6 resin powder (average particle size: 50 µm)
and Fe3O4 powder (average particle size: 200 nm), in which the weight percentage of Fe3O4 was
varied. Figure 1 shows the susceptor fabrication process. First, PA6 and Fe3O4 powders were mixed
thoroughly at a specific ratio. The PA6 was melted by heating the powder mixture to 230 ◦C using a
hot plate. Upon cooling, a 450 µm thick PA6/Fe3O4 susceptor was produced. If you want to watch
fabrication process, the fabrication of susceptor can be viewd in Video S1. Increasing the weight ratio
of Fe3O4 in the mixture increased the density of Fe3O4 in the susceptor and, potentially, the induction
heating effect. The weight percentage of the Fe3O4 additive was varied in an attempt to identify the
optimal weight percentage. The Fe3O4 weight percentages examined were 50, 67, 75, and 80 (Table 2).

Figure 1. Fabrication process of the susceptor.

Table 2. Masses of magnetite (Fe3O4) and polyamide 6 (PA6) used to form different weight ratios.

Material 50 wt% 67 wt% 75 wt% 80 wt%

PA6 100 g 100 g 100 g 100 g
Fe3O4 100 g 200 g 300 g 400 g

2.3. Characteristics of Induction Heating Behavior

The induction heating behavior was examined using an infrared camera (Ti450PRO, FLUKE,
Everett, WA, USA, −10 ◦C–1500 ◦C). The induction heating test was performed for 90 s, with a heating
time of 30 s and a cooling time of 60 s at room temperature. The heating coil was a multi-turn type
with an inner diameter of 15 mm, and the susceptor was heated at the center of the coil (Figure 2b).
In this coil, an AC current flowed and generated an eddy current in the susceptor, thereby heating it.
Because the workpiece could not be pressed while inside the coil, the coil was removed immediately
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after induction heating, and the workpiece was then pressed. The degree of cooling generated during
the process of removing the coil was measured. We then measured the temperature and time required
for the susceptor to melt the adherend during the induction heating process. The optimal weight
percentage of Fe3O4 for induction welding was selected from among susceptor samples containing
50, 67, 75, and 80 wt% Fe3O4. The induction heating characteristics of the susceptor were obtained
through 10 heating cycles of the chosen susceptor. This susceptor was then used in induction welding
experiments to determine its ability to weld together two thermoplastic composites.

Figure 2. Heating temperature measurement using an infrared camera: (a) specimen and
(b) measured image.

2.4. Induction Welding of Thermoplastic Composites

Induction welding of the thermoplastic composite was performed using the optimal as fabricated
PA6/Fe3O4 thin-film susceptor. Figure 3 shows the induction welding process. Two pieces of the
composite placed on either side of the susceptor were centered inside an induction heating device
(HF-10K model, T.I.H., Korea, power consumption: 10 kW; frequency range: 100–400 kHz;). The
susceptor and composite adherends were heated for 60 s, followed by simultaneous cooling and
pressing of the composite joint for 120 s. A load of 5 kg was used to apply pressure to create the
welded joint between the composites. In particular, the induction heating of the susceptor should be at
least 300 ◦C. When the susceptor is more than 300 ◦C, its heat transfer was enough to be welded to
the susceptor and the joint surface. The welded specimens were produced following the guidelines
outlined in ASTM Standard D5868; Figure 4a shows the drawing of a specimen. The power output for
the experiments was 3.4 kW at a frequency of 100 kHz. The output current was 45 A for the induction
welding experiments. An AC current was applied to the induction heating coil [16–18].

Figure 3. Induction welding process.
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Figure 4. Induction welding of thermoplastic composites: (a) drawing of the specimen and (b) specimen
and experimental setup.

2.5. Tensile Test

Mechanical testing of the welded thermoplastic composites was carried out using a servo tester
(5883; Instron, USA) in accordance with ASTM Standard D5868 to measure LSS. The LSS of the
welded specimen was measured using a 5 kN load cell, with a crosshead speed of 1 mm/min at room
temperature. The LSS value was calculated based on the maximum force achieved before the specimen
was destroyed, as follows:

τ =
Fmax

L × b
× N

mm2 (1)

where τ is the LSS (in N/mm2), L is the length of the overlap (mm), b is the width of the overlap (mm),
and Fmax is the maximum tensile force (N). In this study, L = 6 mm and b = 4 mm. The cross-sections of
the specimens were observed using field-emission scanning electron microscopy (FE-SEM; MIRA3 LM;
Tescan, Czech Republic) to assess the weld quality.

3. Results and Discussion

3.1. Induction Heating Behavior of the Susceptor

SEM images were taken before the induction heating experiment of the as-fabricated susceptor.
Figure 5 shows the obtained susceptor; white areas are Fe3O4, and black areas correspond to PA6 resin.
Fe3O4 appeared to be distributed uniformly throughout the resin. Thus, we expected uniform heating
from the as-fabricated susceptor during induction.

In the induction heating experiments, the temperatures of four susceptors varying in Fe3O4

weight percentage (50, 67, 75, 80 wt%) were measured. All susceptors reached 200 ◦C or higher
within 10 s (Figure 6a). The maximum temperatures of the four susceptors were 340, 250, 330, and
230 ◦C, respectively. A dip feature appeared in the graph of the 50 wt% Fe3O4 sample; this was an
error originating from the infrared thermal camera. If we considered the remaining three samples,
the highest temperature measured by the thermal imaging camera was achieved by the 75 wt% Fe3O4

susceptor, so this susceptor was used in the repeated induction heating tests.
Ten iterations of induction heating were carried out with the 75 wt% Fe3O4 susceptor to determine

whether degradation of the susceptor occurred with repeated heating. The first heating iteration had
the fastest heating rate (Figure 6b). The second and all subsequent heating iterations had a constant
heating rate, with similar maximum temperatures. The results were repeatable, so reheating did not
appear to cause any deterioration of the susceptor sample.
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Figure 5. Scanning electron microscopy (SEM) image of the as-fabricated PA6/Fe3O4

(75 wt%) susceptor.

Figure 6. Induction heating results: (a) by Fe3O4 weight percentage and (b) during 10 iterations
of heating.

3.2. Mechanical Performance of the Weld

Tensile tests were performed to measure the LSS performance of the welds created using the
as-fabricated PA6/75 wt% Fe3O4 susceptor. The sample was evaluated on the basis of the acceptable
LSS range (22.2–31.3 MPa) established by Farahani [12]. Table 3 presents the tensile test results for
three welded composite specimens. As can be seen, all of the values were larger than the reference LSS
range [12].

Figure 7 shows the adhesion failure of the weld specimens after the tensile test. Fracture occurred
at some distance from the center of the weld in all specimens, so the joint itself held under the
applied load.

Table 3. Tensile test results.

Case (Load) Specimen 1 (883.8 N) Specimen 2 (816.7 N) Specimen 3 (873.9 N) Deviation

Lap shear strength 36.8 MPa 34.0 MPa 36.4 MPa 29.51 MPa
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Figure 7. Adhesion failure after tensile tests: (a) Weld 1 after 883.8 N, (b) Weld 2, 816.7 N, and (c) Weld
3, 873.9 N.

3.3. Observation of the Welded Joint

The welded area was cut, and SEM images were taken of the cut section, as shown in Figure 8.
Using magnifications from 200 to 30,000 times, it was confirmed that high density Fe3O4 appeared
white and was uniformly mixed into the low density PA6 resin, which appeared black. No pores or
cracks were observed in the adhesion area. In Figure 8b, the bonded cross-section is shown. Unlike the
central plane, it can be seen that the resin was not distributed at the corners. It was apparent that the
resin did not spread uniformly to the edges. Except for the corners, the resin was melted by induction
heating and then cooled. After induction heating, the molten resin was spread by the load, which was
applied simultaneously as the cooling. These images confirmed that induction uniformly heated the
sample, the surface of the adherend melted properly, and a boundary layer appeared.
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Figure 8. Cross-sectional SEM images of the weld joint at magnifications of 200–30,000: (a) Cross-section
of specimen of the induction welding, (b) The appearance of the welded section, (c) Cross-section of
induction welded specimen with magnification.

4. Conclusions

In this study, we fabricated thin-film susceptors for induction welding from a thermoplastic
composite made of PA6 resin and Fe3O4 NP additive. The selected weight percentage for susceptor
fabrication was identified as 75 wt% Fe3O4. Induction welding was performed using this susceptor,
and the weld strength and quality were verified by tensile tests and SEM analysis of the weld joint
cross-section. The results are summarized below.

• Susceptor samples with varying amounts of Fe3O4 (50, 67, 75, and 80 wt%) all heated to 200 ◦C
within 10 s. The maximum temperature for induction heating/welding applications was attained
for the susceptor sample containing 75 wt% Fe3O4. Notably, the maximum heating temperature
did not increase as the weight ratio increased. The average thickness of the susceptor used in the
experiment was 450 ± 20 µm.

• The 75 wt% Fe3O4 susceptor sample was used in induction heating experiments, in which the
sample underwent 10 cycles of heating for 30 s, followed by cooling for 30 s, to ascertain whether
the heating performance of the susceptor remained similar. The heating rate was faster during
the first iteration of induction heating. In subsequent iterations, the same heating behavior was
observed, with the same maximum temperature. Thus, reheating did not affect the performance
of the thermoplastic resin, as expected. As such, the performance of the as-fabricated susceptor
with Fe3O4 additive was better than that of previous susceptors.

• When only the susceptor was induction heated for 30 s, it was heated to 340 ◦C. Because of the
temperature being transferred to the joint surface during induction welding, unlike the previous
reheating experiment, 60 s of heating was applied in induction welding. In addition, a time of
30 s or more was required for the resins of the susceptor and the joint surface to melt. Induction
welding was performed by melting the susceptor and the joint surface.

• Previous studies of thermoplastic composite joint performance reported high quality welds having
LSS values of 22.2–31.3 MPa [15]. The tensile test results of this study, using the as-fabricated
susceptor with 75 wt% Fe3O4, produced welded thermoplastic joints in three specimens with LSS
values of 36.8, 34.0, and 36.4 MPa under loads of 884, 817, and 874 N, respectively.
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• Cross-sectional SEM images of the weld joint with the 75 wt% Fe3O4 susceptor revealed no
defects or breakages; additionally, Fe3O4 appeared to be distributed uniformly throughout the
PA6 resin. Looking at Figure 8c-1, in the center, the part that looks like horizontal line is the
welded joint. The enlarged picture shows that the Fe3O4 was properly mixed with the resin.
Some of the previous studies showed that nanoparticles enhanced the mechanical properties [19].
The susceptor in this study differed from the previously studied susceptors by using the same
resin as the adherend. Therefore, it is easy to apply to thermoplastic products.

• Previous research results showed that induction welding was possible from 60 Hz to 100 MHz [9].
In Gouin O’Shaughnessey, P. ’s research, induction welding was performed at a frequency of
268 kHz [15]. The frequency used in the previous research was 750 kHz to 1 MHz. In this study,
induction welding was performed at 100 kHz. When the magnetite content was twice or more
than the thermoplastic resin, induction heating was possible even at a low frequency.

This study introduced a new Fe3O4 NP incorporated thermoplastic susceptor that was lightweight
and flexible and easily used in induction welding. This susceptor is expected to lead to new applications
in the field of thermoplastic composites.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/2/318/s1,
Video S1: Fabrication of susceptor.
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