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Abstract: In this work Macadamia nutshell (MS) was used as filler in fused deposition modeling
(FDM) of Poly (lactic acid) (PLA) composites filaments. Composites containing MS both treated
and untreated with alkali and silane were investigated by means of Fourier transform infrared
spectroscopy (FTIR), X-Ray diffraction (XRD), Thermogravimetry (TG), scanning electron microscopy
(SEM). The results showed that the treated MS composites had better thermal stability. Furthermore,
compression tests were carried out. The PLA with 10 wt% treated MS composite was found possessing
the best mechanical properties which was almost equivalent to that of the pure PLA. Finally, porous
scaffolds of PLA/10 wt% treated MS were fabricated. The scaffolds exhibited various porosities in
range of 30–65%, interconnected holes in size of 0.3–0.5 mm, micro pores with dimension of 0.1–1 µm
and 37.92–244.46 MPa of elastic modulus. Those values indicated that the FDM of PLA/MS composites
have the potential to be used as weight lighter and structural parts.

Keywords: fused deposition modeling; PLA polymer-matrix; macadamia nutshell; mechanical
properties; thermal properties

1. Introduction

As a promising technology, the Additive Manufacturing (AM) technology offers a new strategy
for producing customized parts with desired architecture, shape, pores and porosity [1,2]. Based on the
AM, the Fused deposition modeling (FDM) melts a spool of thermoplastic filament and extrudes it onto
a platform to create tangible 3 dimensional parts [3]. Poly (lactic acid) (PLA) is the most extensively
used material in FDM, and has been regarded as a promising material for its eco-friendly, biocompatible
and processability [4]. However, its relatively hydrophobic and low degradable properties have limited
its use [5].

Natural biomass is known as being hydrophilic, biodegradable and recyclable [6]. Driven by the
increasing environmental pollution and global energy crisis, natural biomass has been used as the
reinforcements on the polymer-matrix composites [7]. Some biomass has been successfully used for
PLA-matrix, including seeds (e.g., cotton and milkweed), fruit nutshells (e.g., coconut shell and peanut
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shell), basts (e.g., flax, lamp and jute), leaves (e.g., sisal and banana) and grass/cane/reed fibers (e.g.,
bamboo) [8,9].

Some researchers have combined the study of FDM and the PLA/natural biomass composites.
Tao et al. [10] prepared the PLA/5 wt% wood flour composites using the FDM and enhanced the
initial deformation resistance of the composite. Ayrilmis et al. [11] studied the effects of the layer
thickness on the water absorption and mechanical properties of the FDM PLA/30 wt% wood composites.
Gkartzou et al. [12] processed the PLA/kraft lignin with FDM and found that the highest content
ratio of kraft in composite was 15 wt%. Yu et al. [13] studied the internal morphology of the FDM
PLA/basalt composites. Moreover, continuous fibers, such as jute and flax, were used on the FDM setup
with PLA [12,14,15]. These studies demonstrated that the FDM of PLA/natural biomass is feasible
and meaningful.

Macadamia nuts are mainly produced in Australia and are also produced in China and Latin
American countries. Its total production is about 100,000 ton per year. The shell takes almost 70%
weight of a macadamia nut. The bulk density of the milled MS powders is 0.54 g/cm3 [16], which
enables to reduce the weight of the polymer-matrix composites. Few of them are used as active
carbon [17]. However, most of them were ground to compost or thrown as waste [18], which strongly
reduced its value.

Recently, there has been a growing interest of using the macadamia nutshells in composite
materials. Dong investigated the mechanical properties of the PLA/macadamia composites [19]. Kumar
studied the thermo-mechanical characterization of the PLA/macadamia composites with triacetin as a
plasticizer [16]. Dong reinforced polyester using macadamia nutshells and carried out the flexural tests
of the composites [20]. Those composites were prepared using the conventional methods, including
injection molding and compression molding, which were hardly able to satisfy the requirements of the
structural parts with internal and external structure. However, literatures about the application of
FDM in the process of polymer/MS composites were very few. Only in 2016, Jordan explored the FDM
of ABS/macadamia nutshells composites [21].

The aim of this study was to develop the FDM of the relatively cheap and weight-lighter PLA/MS
composite filaments with acceptable mechanical properties. The study focused on: Investigating
the chemical groups and crystal degree of the untreated and treated MS; the effect of MS content
(5–15 wt%) on the melt flow index, the thermal and mechanical properties of composites; characterizing
the microstructure of the fractured surface and fabricating the porous scaffolds with interconnected
pores and controllable porosity.

2. Experimental Details and Characterization Methods

2.1. Materials

The used Poly (lactic acid) (PLA) matrix, with trade name 2002D, was supplied by NatureWorks
LLC (Minnetonka, MN, USA) in the form of powder; the main characteristics provided by the supplier
are: Density of 1.24 g/cm−3, melting temperature of 151◦, Mn of 113,300 Da and Mw of 181,600 Da.
Macadamia nutshells (MS) were collected from the discards of macadamia nut food with a density of
0.69 g/cm−3 measured by the pycnometer method. Before being further used, the MS were cleaned
with purified water, and dried and ground into powders. These powders were then sifted by using a
300-mesh screen (~50 µm).

2.2. Experimental Procedure

The macadamia nutshells powder were modified: first, soaked in 5 wt% concentration of a
aqueous sodium hydroxide at room temperature for 5 h and then washed until the pH level was 7;
third, immersed in a 2–6 wt% concentration of a 3-Aminopropyltriethoxysilane (KH550) solution with
a pH of 3.5–4, then continuously stirred with a magnetic stirring apparatus for 12 h. The reaction
mechanism of the NaOH and KH550 with MS is shown in Figure 1 [22]. Finally, it was washed with
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deionized water and dried in a laboratory oven at 80 ◦C until the moisture content became 0–1%
measured by using a scale with an error of 0.001.Materials 2020, 13, x FOR PEER REVIEW 3 of 14 

 

 
Figure 1. The reaction of alkali and silanol with MS. 

The MS powder, including the untreated and treated ones, with as-received PLA powders were 
blended for 24 h by using a planetary ball mill (QM–3SP4, Nanjing Yifan Apparatus Co. Ltd., Nanjing, 
China). Zirconium balls of 5 mm and 10 mm diameter were added for improving the grinding 
homogeneity of mixture, the weight ratio between ball and material was 1:1 [23]. After being blended, 
the formulations of the PLA-MS composites are listed in Table 1. 

Table 1. The formulations of the PLA/MS composites. 

Samples Identification PLA (wt%) Untreated MS (wt%) Treated MS (wt%) 
S0 100 0 – 
S5 95 5 – 
S10 90 10 – 
S15 85 15 – 
S5T 95 – 5 
S10T 90 – 10 
S15T 85 – 15 

Filaments with a diameter of 1.75 ± 0.3 mm were obtained from blended composite powders by 
using a customized desktop single screw extruder. The parameters were chosen as: 20 rpm for the 
screw speed, 165 °C for the barrel temperature, and 1.5 mm for the die diameter. Then the filaments 
were applied to a commercial 3D printer (Allct Yinke, Wuhan, China). The processing parameters 
were as: 50 mm/s for the printing speed, 210 °C for the nozzle heater temperature, 0.06 mm for the 
layer thickness, 100% for the fill ratio, 100% extrusion ratio, 0.4 mm for the shell thickness, and 45 °C 
for the platform temperature and a linear filling mode. Four cylindrically shaped compressive 
samples with a diameter of 10 mm and a height of 12 mm were printed based on the GBT 1041 
standard [24]. 

2.3. Characterization Methods 

The spectral changes of the surface functional groups of the treated MS were determined using 
a Fourier transform infrared spectrometer (FTIR) (Thermo Nicolet AVATAR FTIR 360, Thermo 
Nicolet Corporation, Madison, WI, USA) at room temperature. Infrared spectra of untreated and 
treated MS samples were analyzed in the 4000–400 cm−1 range. 

The crystallinity and structural characterization of the MS powders were investigated by using 
a X-ray powder diffractometer (RigaKu D/MAX 2500V, RigaKu D/MAX 2500V, Rigaku Co., Tokyo, 
Japan) equipped with a Cu Kα radiation source (λ = 1.54060 Å), operating at a voltage of 40 kV and 
intensity of 40 mA, over the incidence angle (2θ) in the range of 5–50°, at the ambient temperature. 
The crystallinity index ( ) was obtained with the empirical Segal equation [25]: 

Figure 1. The reaction of alkali and silanol with MS.

The MS powder, including the untreated and treated ones, with as-received PLA powders were
blended for 24 h by using a planetary ball mill (QM–3SP4, Nanjing Yifan Apparatus Co. Ltd., Nanjing,
China). Zirconium balls of 5 mm and 10 mm diameter were added for improving the grinding
homogeneity of mixture, the weight ratio between ball and material was 1:1 [23]. After being blended,
the formulations of the PLA-MS composites are listed in Table 1.

Table 1. The formulations of the PLA/MS composites.

Samples Identification PLA (wt%) Untreated MS (wt%) Treated MS (wt%)

S0 100 0 –
S5 95 5 –

S10 90 10 –
S15 85 15 –
S5T 95 – 5
S10T 90 – 10
S15T 85 – 15

Filaments with a diameter of 1.75 ± 0.3 mm were obtained from blended composite powders by
using a customized desktop single screw extruder. The parameters were chosen as: 20 rpm for the
screw speed, 165 ◦C for the barrel temperature, and 1.5 mm for the die diameter. Then the filaments
were applied to a commercial 3D printer (Allct Yinke, Wuhan, China). The processing parameters were
as: 50 mm/s for the printing speed, 210 ◦C for the nozzle heater temperature, 0.06 mm for the layer
thickness, 100% for the fill ratio, 100% extrusion ratio, 0.4 mm for the shell thickness, and 45 ◦C for the
platform temperature and a linear filling mode. Four cylindrically shaped compressive samples with a
diameter of 10 mm and a height of 12 mm were printed based on the GBT 1041 standard [24].

2.3. Characterization Methods

The spectral changes of the surface functional groups of the treated MS were determined using a
Fourier transform infrared spectrometer (FTIR) (Thermo Nicolet AVATAR FTIR 360, Thermo Nicolet
Corporation, Madison, WI, USA) at room temperature. Infrared spectra of untreated and treated MS
samples were analyzed in the 4000–400 cm−1 range.

The crystallinity and structural characterization of the MS powders were investigated by using
a X-ray powder diffractometer (RigaKu D/MAX 2500V, RigaKu D/MAX 2500V, Rigaku Co., Tokyo,
Japan) equipped with a Cu Kα radiation source (λ = 1.54060 Å), operating at a voltage of 40 kV and
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intensity of 40 mA, over the incidence angle (2θ) in the range of 5–50◦, at the ambient temperature.
The crystallinity index (Ic) was obtained with the empirical Segal equation [25]:

Ic(%) =
I002 − Iamp

I002
× 100% (1)

where I002 is the intensity at 2θ = 22.1◦, representing the crystalline material. Iamp is the intensity at
2θ = 16◦, contributing to the amorphous material of MS.

A simultaneous thermal analyzer (Labsys Evolution1600, Setaram, France) was used to measure
the thermal stability of the PLA/MS composites at a dry Nitrogen atmosphere. About 20 mg of
composite was heated from room temperature to 900 ◦C at a rate of 10 ◦C/min and held for 5 min, and
then cooled naturally.

According to the standard ASTM D1238-73 [26], the test of the Melt Flow Index (MFI) of the
treated and untreated composites was carried out. The MFI was recorded in grams per 10 min (six
times per sample) on a melt flow tester (Tiansu cablication, Shenzhen, China) with a capillary die with
a standard diameter of 2.0955 ± 0.001 mm. The cylinder temperature was set as 165 ◦C and the load
was 2.5 kg.

The compression properties of the PLA/MS samples were tested using a universal testing machine
(Zwick Roell 2KN, Ulm, Germany,) at a rate of 1 mm/min and preload of 0.1 N. The brittle fracture
surfaces of samples were characterized by using a scanning electron microscope (SEM, HITACHI
SU8020 system, Tokyo, Japan). Prior to scanning, the fracture surface was gold coated.

The porosity of the scaffold manufactured by using FDM can be obtained by this equation [27]

Porosity = 1−
ρ0

λPLA × ρPLA + λMS × ρMS
(2)

where λPLA and λMS denote the weight ratio of PLA and MS in composites; ρPLA and ρMS are the
theoretical densities (g/cm3) of PLA and MS, respectively; ρPLA equals to 1.24 g/cm3 provided by the
manufacturers; ρMS is equal to 0.69 g/cm3 measured with the pycnometer method; ρ0 denotes the
apparent density computed through:

ρ0 = m0/V0 (3)

where m0 denotes the mass of the MS sample (g) gotten by using a scale with accuracy of 0.001 g, and
V0 is the sample volume (mm3) measured by using a Vernier caliper. The average density of four
scaffolds was taken as the density of the PLA/MS composite.

3. Results and Discussion

3.1. Morphology of MS Particles

Figure 2 shows the distribution size (tested with the wet dispersion method on a Mastersizer
(MAZ 3000, Malvern Panalytical, Malvern, UK) and the morphology (examined with the scanning
electron microscopy using the HITACHI SU8020 system) of the ground MS particles. The particles
possess an irregular shape with an average size of about 40 µm. The smaller particles show the
tendency to agglomerate together. The impurities adhere to the surface of the bigger MS particles. This
might hamper the surface compatibility between PLA and MS. Figure 2b gives the morphology of
the modified MS powders. It can be seen that the size of the MS particles is more uniform than that
of the untreated ones. The dimension of the treated particles is in a range of 30–42 µm in width and
43–92 µm in length. The smaller impurities have been removed from the surface of the MS particles.
There is no agglomeration between the treated MS particles, showing potential to be compatible with
PLA polymer.
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Figure 2. The morphology and distribution of MS particles: (a) before treated with NaOH/silane and
(b) after treated with NaOH/silane.

3.2. FTIR Analysis

The FTIR spectra of the untreated and treated MS are presented in Figure 3. The spectra of the
untreated MS are similar to that described in other literature [16]. The downward peak between
3500–3200 cm−1 representing the hydrogen bonded O-H groups [28] became narrower in the spectra of
the treated MS, revealing that the ratio of the O-H in MS increased. The band at 1740 cm−1, due to the
stretching vibration in carbonyl C = O groups [29], disappears after the alkali treatment. This showed
that most of the hemicelluloses along with whole ash, oil, and other impurities have been removed
from the MS. The band in sample 1 at 1265 cm−1, representing the C–O stretching vibrations in acetyl
group of in lignin and hemicellulose, cleaved into two narrow peaks at 1270 cm−1 and 1226 cm−1 in
the spectrum of the treated MS (samples 3–5). This result indicated that the rest of the hemicellulose
had been cleared from the MS.
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Figure 3. The FTIR spectra of: 1. MS; 2. NaOH treated MS; 3. NaOH + 2 wt% KH550 treated MS;
4. NaOH + 4 wt% KH550 treated MS; 5. NaOH + 6 wt% KH550 treated MS.

After treated with the KH550, the band at 1040 cm−1 was enhanced, especially in the sample
3, which can be attributed to the Si-O and Si-O-C stretching vibration [30]. Meanwhile, the peak at
813 cm−1, relevant to the C-H out-of-plane bending vibration, is fading away with the increasing of the
KH550’s concentration. A small peak at the 768 cm−1 (sample 3 and sample 4) is probably due to a
condensation reaction between the MS and the silanol.
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3.3. XRD Analysis

The X-ray powder diffraction (XRD) patterns of the untreated and treated MS are given in Figure 4.
All the samples show a sharp peak at 2θ = 22.1◦, representing the crystalline material, and a shoulder
at 2θ = 16◦, contributing to a typical form of cellulose I [31]. The crystallinity index (Ic) of the NaOH
treated MS (38.91%) was enhanced due to the removing of the hemicelluloses, oil, pectin and other
impurities from MS [26]. The cellulose chains would better repack after the alkali treatment. Similar
results have been reported elsewhere [32,33]. The treatment with silane leads to a decline in Ic of MS,
when compared to that of the alkali treated MS. Ic decreased to 35.59% at 2 wt% concentration of silane,
and then goes up again with the content increasing of silane. The decreasing crystallinity index of
biomass after silane treatment has been reported in other studies [25,32]. The introduced silane reacted
with MS, resulting in the O-H groups’ cleavage of MS, which made the transformation of crystal region
in MS to its amorphous region. When the KH550 reached a certain concentration level (4 wt%), the
abundant silane stopped to react with the MS and was physically tangled with MS, resulting in the
climbing of Ic of MS.
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3.4. The Thermal Stability of the Pure PLA and Its Composites

According to the previous analysis, 2 wt% of silane performed the best during the treatment of
the MS. Therefore, this was chosen to develop some further experiments. The thermal stability of the
pure PLA, MS and the PLA/MS composites are depicted and summarized in Figure 5. The temperature
window between 200 and 500 ◦C is shown since no significant changes in the TG and DTG curves
below 200 ◦C and between 400 and 800 ◦C have been observed.
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The TG curves of the pure PLA, MS and all their composites exhibit a single step thermal
degradation. The degradation of MS and MS-NaSi started at 250 ◦C approximately, got to the
maximum degradation rate at about 350 ◦C and basically completed by around 400 ◦C, fowling by
a slow mass loss until to the final temperature. The DTG curve of MS produces a major peak at
348.2 ◦C and a shoulder peak at 281 ◦C, which can contribute to the degradation of cellulose and
hemicelluloses, respectively. It has been well known that the MS consists of 29.5% of cellulose, 30% of
hemicellulose, 40.1% of lignin, along with some impurities [18]. Meanwhile, reference [34] showed
that the degradation temperature of the hemicelluloses is in a range of 220–315 ◦C. After the NaSi
treatment, the lower peak of hemicellulose disappeared from the DTG curve of MS-NaSi, indicating
that the hemicellulose has been removed from the MS by chemical treatment. The TG and DTG curves
of MS-NaSi shift to the higher temperature, showing that the MS-NaSi was more thermal stable than
MS. However, both MS and MS-NaSi degraded at a level less than 1.0 min−1, indicating that they are
less reactive.

PLA possessed the highest onset temperature of degradation (T0) and the temperature at maximum
degradation rate (T1) with values of 304.5 ◦C and 356.3 ◦C at a level of 2.75 min−1. The incorporation
of MS reduced the T0 and T1 of composites, when compared to that of PLA. Both T0 and T1 of sample
S10 showed the biggest reduction with 273.8 ◦C and 315.9 ◦C, respectively. The hemicellulose in the
MS reduced the degradation temperature of PLA/MS composites. Meanwhile, the impurities in the MS
strongly affected the interfacial compatibility between the MS particles and the PLA matrix, resulting
in a weaker thermal stability.

After incorporation of alkali/silane, the thermal stability of the treated samples was improved
dramatically. T0 and T1 of the sample S10T increase to 298.7 ◦C and 345.5 ◦C at a level of 2.5 min−1,
respectively, when compared to that of sample S10. During the process of surface treatment, the
hemicelluloses were removed from the MS by using alkali; and a chemical reaction and physical
tangle occurred between the MS and the silane, resulting in an improvement of the thermal stability.
A similar effect of alkali/silane treatment on the thermal stability of biomass has been reported in other
studies [35,36].

Although the thermal stability of the composites was enhanced by the alkali/silane treatment, it is
still lower than that of PLA. After the treatment with alkali, the main content of MS is cellulose and
lignin. The degradation temperature of lignin is in the range of 160–900 ◦C. Therefore, the thermal
stability of the lignin containing MS/PLA composites will be lower than that of the pure PLA.

3.5. The Melt Flow Index of the Pure PLA and Its Composites

Figure 6 shows the melt flow index (MFI) of the PLA/MS composites. When compared to that of
the PLA (10.95 g/10 min), the MFI of the PLA/MS was reduced. The peclin and impurities contained
in the MS led to the poor interface compatibility between the PLA matrix and the nutshell particles.
Therefore, the MS particles interfered in the continuity of the matrix and hampered the heat transfer.
With the increase of the content of the MS, the MFI of the PLA/MS decreases from 8.96 g/10 min
(S5) to 7.51 g/10 min (S15). More MS meant more impurities containing, which would aggravate the
interface incompatibility. Even more, a mass of MS particles had a strong tendency to aggregate, which
hampered the heat transfer and lowered MFI.

The MFI of the PLA/MS composites were enhanced dramatically after the MS was treated by
alkali/silane. The MFI of S10T leaps to the highest point with a value of 12.45 g/10 min, which
together with the MFI of S5T (11.42 g/10 min) are even higher than that of the PLA. The hemicelluloses
and impurities had been removed from MS through alkali treatment, resulting in a better interface
compatibility. The siloxane acted as a bridge between the PLA and MS, leading to the rearrangement and
repacking of the PLA molecules. Those all resulted in the improvement of the MFI of the composites.
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3.6. The Morphological Structures

Figure 7 illustrates the morphological structure of the PLA/MS composites. Compared to that
of the untreated composites, the interfacial compatibility between the MS and the PLA matrix in
treated composites was improved dramatically. There is an obvious clearance (red arrow) between
the untreated MS and the PLA matrix, showing a poor interfacial compatibility. The number of this
clearance is more aggravated with the increase of untreated MS content. The clearance would hamper
the stress transfer during the mechanical tests. Some voids (green arrow), in size of 25–45 µm, due
to the fiber pull-out, are also found on the S10, S10T and S15T samples regardless of the chemical
treatment. These voids would become weak zones and weaken the load capacity of composites, and
then further lower the strength level [36]. The size of voids in Figure 7d comparatively decreased when
compared to that in Figure 7c to 10–28 µm for treated 10 wt% MS composite. When the ratio of the
untreated MS in composites reaches to 15 wt%, some aggregations happened. From the red rectangle
in Figure 7e, it can be seen that several MS particles are gathering in a small area. This strongly affected
the adhesion between the MS and the PLA matrix. Although the aggregations still existed in ST15, its
aggregation degree had reduced dramatically, and the treated particles’ adhesion in matrix was much
stronger than the untreated ones.
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3.7. The Compressive Properties

According to the previous analysis, the treated MS composites had a better thermal stability
and fractural morphology than the untreated ones, so that the former was chosen for carrying out
compressive tests. Figure 8 and Table 2 show the compression testing results. At the yield point, PLA
possessed the highest strength and modulus of 204.7 MPa and 4346.1 MPa, respectively. However,
the incorporation of the MS dramatically decreased both the yield strength and the modulus of the
composites by more than 50%. The result showed that the stiffness of the composites declined. All
the mechanical values of composites plunged to the bottom at the 5 wt% MS (S5T), indicating that
the interconnection between the MS molecular and the PLA matrix was considerably loose. It can be
confirmed by Figure 7b where there was a clearance between the PLA matrix and the MS particle.
Similar results happened at the injection molded PLA/MS composites, where the tensile was less than
half of that of the pure PLA [16]. Another 3D printed ABS/MS composite had about one third of strength
of that of the ABS [21]. The strength at the maximum of the composites then climbed significantly
again from the bottom (116.5 MPa at the S5T) to the climax (263.1 MPa at the S10T), and then decreased
slightly to 249.2 MPa (at the S15T). The yield strength increased moderately from 72.1 MPa (S5T) to
98.3 MPa (S10T), following with a slightly drop to 92.4 MPa (S15T). The yield modulus of composites
performed contrary to the strength, indicating that the stiffness of the composites was enhanced at a
higher amount of MS. This result showed that a suitable content of the MS was able to fill tightly the
gap between the PLA molecules (Figure 7d), and the redundant fillers would weaken the composites
because of the aggregation (Figure 7e).

It is obvious that the dropping degree of the strength from S10T to S15T is only about one tenth of
the strength from S0 to S5T, indicating that there is a possibility to manufacture additively the high
content MS composites with an acceptable loading capacity. Meanwhile, the yield modulus of S15T is
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higher than that of S10T, showing that the higher content of MS is beneficial for improving the stiffness
of the composites.Materials 2020, 13, x FOR PEER REVIEW 10 of 14 
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MS composites.

Table 2. The compressive values of the PLA/treated MS composites.

Samples Strength at the Maximum Strength at Yield Point Modulus at Yield Point

S0 263.4 ± 8.5 204.7 ± 3.6 4346.1 ± 68.6
S5T 116.5 ± 2.6 72.1 ± 2.4 1438.52 ± 31.5
S10T 263.1 ± 6.4 98.3 ± 3.2 1146.59 ± 53.2
S15T 249.2 ± 5.3 92.4 ± 2.1 1653.59 ± 35.6

3.8. The Fabrication of Porous Scaffolds with S10T

3.8.1. The Compression Properties of Scaffolds

It was proved previously that S10T has optimum thermal and compression properties, so this
was chosen to fabricate the porous scaffolds. Table 3 and Figure 9 show the compression properties
of the scaffolds with various pores and porosities. It can be seen from Figure 9a, all the curves
experience three stages, including elastic deformation, yield and densification. Each scaffold possesses
a yield plateau, indicating the scaffold acted as a buffer and absorbed the compressive energy when
under pressure. Scaffolds with a larger porosity have a longer yield plateau, showing a stronger
anti-deformation capability.

Figure 9b gives the relationship between the porosity and the compression properties. The max
strength decreases rapidly with the increase of the porosity. The yield strength goes downwards
steadily with a little rising in the end. These results illustrated that the load capability of the scaffolds
was negatively affected by the porosity. However, it is noticed that the reduction of the max strength
from P3 to P1 is more than one half of that from P4 to P3, showing a well stiffness at larger porosity.
In contrast to the strength, the modulus climbs with the rising of the porosity, indicating that the
stiffness was enhanced. The stiffness shows that the scaffolds have potential to be used as porous
structural components.

Table 3. The porosity and compression properties of PLA/MS scaffolds.

Sample Porosity (%) Max Strength (MPa) Yield Strength (MPa) Yield Modulus (MPa)

P1 61.82 27.59 8.44 244.46
P2 54.19 38.28 7.33 118.88
P3 47.15 63.19 12.34 84.64
P4 32.44 149.31 23.65 37.92
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3.8.2. The Macro and Microstructure of Scaffolds

The macro and microstructures of scaffolds manufactured with PLA/MS are shown in Figure 10.
The scaffold consists of beams and holes. The holes are in the shape of an irregular rectangle and are
interconnected with each other. The length of those holes is in the range of 0.3–0.5 mm and is increasing
with the rise of their porosity. The beam has a width of 0.2–0.5 mm. The size of the holes in the scaffold
can be adjusted through adjusting the fill ratio of the FDM setup. The size of the micro pores can be
controlled by changing the extrusion ratio of the FDM machine. In this way, a scaffold with various
morphologies was obtained. The surfaces of P1 (Figure 10b) and P2 (Figure 10d) are porous and have
pores of 0.1–1 µm in diameter. Figure 10f shows an obvious orientation with some pores between the
printing lines. The pores almost disappear from the surface of P4 and distribute only along the sides of
beam. The scaffolds in this work have porosity in a range of 30–62%, interconnected holes in size of
300–500 µm and micro pores in size of 0.1–1 µm. They can be used as porous structural components.
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Figure 10. The morphologies of the PLA/MS composites scaffolds: (a) P1, (b) enlarger of red rectangle
in P1, (c) P2, (d) enlarger of red rectangle in P2, (e) P3, (f) enlarger of red rectangle in P3, (g) P4 and
(h) enlarger of red rectangle in P4.

4. Conclusions

In this paper, the Macadamia nutshell (MS) filled PLA composites with or without NaOH and
silane were fused deposition modeled (FDM) and characterized. The crystallinity, thermal stability,
morphology and compression properties were compared and analyzed.

The evaluation of the crystalline shows that the XRD intensity of NaOH treated MS was enhanced
but was reduced after further treatment with silane. MS treated with 6 wt% silane had the highest
crystalline among those treated MS. The thermal results showed that the PLA/treated MS composites
were more stable than those untreated. S10T possessed the highest onset temperature of degradation
(T0) and temperature at maximum degradation rate (T1) of 298.7 ◦C and 345.5 ◦C, respectively. The
testing of the tensile properties showed that the yield strength and max strength of S10T reached a
peak with values of 98.25 MPa and 263.08 MPa, respectively.

Finally, with S10T, the scaffolds with various porosities in a range of 30–65%, interconnected holes
in size of 0.3–0.5 mm, micro pores with dimension of 0.1–1 µm and elastic modulus of 37.92–244.46 MPa
were fabricated. The results indicated that the FDM of PLA/MS composites have the potential to be
used as weight-lighter and structural components.
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