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Abstract: Herein, we investigated the effects of Ce on the corrosion behavior of NdFeB magnets in 3.5%
NaCl solutions using electrochemical tests, scanning electron microscopy (SEM), energy dispersive
spectroscopy (EDS) mapping, and scanning Kelvin probe force microscopy (SKPFM). We demonstrated
that Ce markedly enhances the corrosion resistance of NdFeB magnets. Ce primarily replaces Nd
in the Nd-rich phase instead of matrix phase, increasing the surface potential of the Nd-rich phase.
An increase in the Ce content from 0 to 5.21 wt%, decreased the potential difference between the main
phase and (Nd, Ce)-rich phase from 350.2 mV to 97.7 mV; therefore, the corrosion resistance of the
magnetic materials increased. The corrosion resistance constituted the Nd-rich phase < the void <

metal matrix. Moreover, based on the results of the study, we discussed the impact mechanism of
additions of Ce on the corrosion resistance of the magnets.
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1. Introduction

Sintered NdFeB magnets have been widely used in the manufacturing of gadgets and equipment in
various fields such as information technology, communication electronics, and wind power generation,
among other fields. This is because of its ultra-high permanent magnetic properties. However,
its scope of application is limited by its poor corrosion resistance. Considering this, improving its
corrosion resistance without affecting its magnetic properties has been the main research focus of many
scholars [1–3].

Sintered NdFeB magnets are composed of three phases: the main phase (Nd2Fe14B), Nd-rich
phase, and the B-rich phase (Nd1.1Fe4B4). The oxidation capacity of NdFeB permanent magnetic
material is often attributed to the strong oxidation ability of the rich B and rich Nd phase. This is
because the three phases have different oxidation capacities. The B-rich and Nd-rich phases are
generally distributed on the grain boundary. As such, the oxidation of the grain boundary results in its
corrosion. Moreover, the porous nature of sintered NdFeB magnets affects their ability to form oxide
protective film on their surfaces. This causes them to corrode [4,5].

Meakin et al. reported that corrosion resistance, magnetic properties, and temperature stability of
NdFeB magnets vary greatly after alloy elements are added to them [6]. Alloying elements are usually
added as substituted or doped elements. A substitution element is added to the magnet to replace
some atoms in the Nd2Fe14B phase to improve the intrinsic properties of the main phase. However,
the soft magnetic contact generated reduces the magnetic energy product and remanence of the magnet.
Doping elements cause exsolution within the hard-magnetic square phase and the grain boundary.
They can also cause exsolution with in the main phase to form a new phase that replaces the original
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rich Nd or rich B phase. These changes can achieve the goal of improving the hard-magnetic grain
boundaries’ microstructure and magnetic and corrosion-resistant properties [7]. Doping alloy elements
added to NdFeB are divided into two categories: the first category comprises aluminum, copper, zinc,
gallium, germanium, and tin, while the second comprises vandium, molybdenum, tungsten, titanium,
and zirconium. The first category formd Nd-Fe-m intercrystalline phase while the second category
form m-B or Fe-m-B intercrystalline phase [8]. The intermetallic compounds formed at the grain
boundary replace the original B-rich phase, thus preventing the grain growth of the tetragonal phase.
In addition, these new phases partially replace the Nd-rich phase, thereby reducing the potential
differences between the phases of the magnet. This in turn improves the corrosion resistance of the
metal boron magnet [9–11].

Elaziz et al. studied the influence of Al, Co, Mo, and other elements on the corrosion performance
of magnets [12]. They found that V formed the (V1−XFex)3B precipitation phase with Fe-V precipitation
particles at the grain boundary, Mo formed the (Mo1−xFeX)3B precipitation phase, while Co formed
the Nd3Co intermediate phase in the Nd-rich grain boundary phase. These phases partially replaced
the Nd-rich phase at the grain boundary, thereby improving the corrosion resistance of the magnet.
Al and Co replaced Fe in the Nd2Fe14B phase. The substitution of Fe with either of the two elements
greatly inhibited the oxidation and corrosion behavior of the main phase at temperatures above
200 ◦C. Knoch et al. found that NdFeB magnets formed relatively stable intermetallic compounds
at the grain boundary after adding defined aluminum and gallium quantities to NdFeB magnets.
The stable intermetallic compounds were smooth and surrounded by the main phase. These large and
stable intermetallic compounds greatly improved the corrosion and high-temperature resistance of the
magnets [13]. In the same line, Yu et al. found that the addition of dysprosium and niobium formed
a more stable intercrystal line phase near the grain boundary of the magnet, thereby improving the
electrochemical potential of the intercrystal line phase. Moreover, the addition of the elements refined
the grains of the magnet thus greatly improving the corrosion resistance of the magnet. Furthermore,
the increase in Nb quantity led to a significant reduction in the grain size of the main phase, thereby
causing the grain boundary of the NdFeB magnet to be clear, smooth, and evenly distributed around
the main phase. This in turn improved the corrosion resistance of the magnet [14].

The rapid growth of the scope of applications of sintered NdFeB magnets increase the demand
and price of the rare-earth Nd. Among the rare earth elements, cerium is more readily available than
the rest. As such, the utilization of Ce in the rare earth permanent magnet industry can be of huge
economic benefit [15,16]. Thus, it is of great significance to develop low-cost sintered NdFeB magnets
and study their corrosion resistance.

However, the corrosion behavior of Ce-doped NdFeB magnets remains unknown. Herein,
the effects of Ce on the corrosion behavior of Ce-doped NdFeB magnets in 3.5% NaCl solutions
was investigated by electrochemical tests, scanning electron microscopy (SEM), energy dispersive
spectroscopy (EDS) analysis, and scanning Kelvin probe force microscopy (SKPFM).

2. Experiment

2.1. Materials and Sample Preparation

Didymium, praseodymium, iron, ferroboron, and dysprosium with a purity of 99.5% were utilized
as raw materials and melted in a vacuum induction furnace to form alloy ingots. After that, the ingot
was peeled and coarsely broken, then the powder was ground under the protection of N2. The NdFeB
magnetic material was pressed into shape after the direction of the magnetic field was determined.

After sintering at 1050 ◦C for 200 min and tempering at 630 ◦C for 150 min, the raw blanks were
put into a high vacuum sintering furnace and prepared into sintered NdFeB magnets with Ce contents
of 5.02, 3.11, and 0 wt%. The Chemical compositions of (Nd, Ce)FeB are listed in Table 1.
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Table 1. Chemical composition of the (Nd, Ce)FeBmagnets specimens (wt%).

Element Nd Fe Pr Zr B Ce B

(a) 21.21 69.22 6.88 0.07 1.21 5.02 Bal
(b) 22.84 69.82 7.01 0.07 1.32 3.11 Bal
(c) 23.83 68.22 7.22 0.08 1.31 0 Bal

We cut samples (φ10 mm size) for electrochemical analysis from the NdFeB magnets agglomerates.
We used silica gel to seal the non-working surface of the samples. In the weight loss analysis,
the corrosion samples with 40 mm × 20 mm × 3 mm dimensions were used. We utilized an emery paper
to sand the working surface of the samples from 400 to 5000 in number and then polished them using
a 1 µm diamond paste. The effects of surface roughness on pitting corrosion were avoided. Finally,
we cleaned the samples ultrasonically in ethanol. All the tests were performed at room temperature
and at a pH of 7 [17].

2.2. Electrochemical Measurements

We measured the electrochemical measurements in 3.5% NaCl solution using the Gamry
electrochemical workstation (Gamry Instruments, Warminster, PA, USA). Briefly, we prepared the
solution using analytical grade chemicals and deionized water. The electrochemical test device used in
this study consisted of a three-electrode system. Platinum foil and Ag/AgCl electrode constituted the
counter electrode and the reference electrode, respectively. We performed the in-situ electrochemical
impedance spectroscopy (EIS) experiments during the immersion test at a frequency of between
0.01 Hz and 100 kHz with a 5-mV amplitude signal at open circuit potential. We used the ZSimpWin
software (2010, AMETEK, San Diego, CA, USA) to analyze the experimental data. We measured
the potentiodynamic polarization curves at room temperature, and the scanning rate was 0.5 mV/s.
Moreover, we tested the open circuit potential (OCP) for 30 min [18].

2.3. Microscopy Observations

We used SEM (Zeiss, EVO MA 10/LS 10, Oberkochen, Germany) equipped with the energy
dispersive spectroscopy (EDS) to observe the microstructure. The morphology and composition
were analyzed using SEM and EDS mapping, respectively. We also utilized atomic force microscopy
(AFM, Agilent, 5500 AFM/SPM, Santa Clara, CA, USA) to analyze the surface morphology as well
as the contact potential difference (CPD) around the Nd-rich phase in the magnet. After that, we
performed scanning Kelvin probe force microscopy (SKPFM, Agilent, 5500 AFM/SPM, Santa Clara,
CA, USA) on the polished samples. The specimens were marked using a micro-hardness tester before
the SKPFM tests. We then used the line scan analysis of 512 × 512 images acquired at 1 Hz to obtain
the contact potential around inclusions. These magnets were investigated via X-ray diffraction (XRD)
with Cu-Ka radiation [19].

3. Results

The Open circuit potential (OCP) of the NdFeB with different Ce contents submerged in 3.5%
NaCl solution for 1800 s is shown in Figure 1. At the early submersion stage, the potential declined
abruptly. Extending the submersion time reduced the potential slightly and then stabilized gradually.
Lastly, the OCP of the magnets with a higher Ce content had a somewhat elevated value compared
with the magnets with a lower Ce content [20–23].
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Figure 1. Open circuit potential (OCP) of (Nd,Ce)FeB magnets with different Ce contents in 3.5% NaCl 

solution for 1800 s. 
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Figure 2. Polarization curves of the tested magnets in 3.5% NaCl solution. 

Table 2. Parameters extracted from the polarization data of the (Nd,Ce)FeB magnets in 3.5% NaCl 

solution. 

Ce Content/wt% Ecorr/mV  Icorr/Acm−2 βa/mV βc/mV 

(a) 5.0 −603.1 1.9 × 10−8 75.3 −136.8 

(b) 3.0 −687.2 2.3 × 10−8 73.1 −138.7 

(c) 0.0 −756.3 3.6 × 10−9 73.2 −138.8 

Figure 1. Open circuit potential (OCP) of (Nd,Ce)FeB magnets with different Ce contents in 3.5% NaCl
solution for 1800 s.

Previous works have found that the higher open circuit equilibrium potential, the higher the
corrosion resistance of the metal. Therefore, we can conclude that rare earth Ce can improve the
corrosion resistance of magnetic materials in NaCl solution [24,25].

The potentiodynamic polarization curves of the tested magnets in 3.5% NaCl solutions are shown
in Figure 2. Our results revealed that the starting point of the anode side of the polarization curves is
modulated via active dissolution reactions, and the anodic current density intensified rapidly with
the augmented anode potential. The primary data isolated from the curves are shown in Table 2.
Our findings indicate that the current density Icorr of the corrosion declined sharply from about
3.6 × 10−8 A/cm2 for Ce = 0 wt% to approximately 1.9 × 10−8 A/cm2 for Ce = 6 wt%. The potential
Ecorr of corrosion shifted towards the positive direction at about 68.9 mV and 153.2 mV after adding
3% and 5% Ce, respectively. This could be attributed to the effect of the enhancement on the anodic
reaction. The anodic Tafel curve, βa, gradually increases with Ce content, indicating that Ce promotes
the anodic reaction. At more positive potential than the potential of the corrosion Ecorr, the addition
of metal Ce leads the anode polarization curve to a smaller current density. The current density of
magnets without Ce appear to be smaller which can refer to smaller corrosion rate. This implies that
the additions of Ce inhibit the anodic corrosion processes [26,27].
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Figure 2. Polarization curves of the tested magnets in 3.5% NaCl solution. 
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Figure 2. Polarization curves of the tested magnets in 3.5% NaCl solution.
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Table 2. Parameters extracted from the polarization data of the (Nd,Ce)FeB magnets in 3.5% NaCl solution.

Ce Content/wt% Ecorr/mV Icorr/Acm−2 βa/mV βc/mV

(a) 5.0 −603.1 1.9 × 10−8 75.3 −136.8
(b) 3.0 −687.2 2.3 × 10−8 73.1 −138.7
(c) 0.0 −756.3 3.6 × 10−9 73.2 −138.8

The EIS results of the specimens of (Nd, Ce)FeB magnets with varied levels of Ce in 3.5% NaCl
solution are shown in Figure 3. The Nyquist findings indicated that the decrease in the composition of
Ce remarkably increases the diameter of the capacitive loop. In the Nyquist diagram, one capacitive
loop from high to medium frequencies, as well as one inductance loop at low frequencies are shown.
Generally, the capacitive loops are associated with the reaction in the corrosion product films as well
as the electric double layer between the electrode and solution interface [28]. Besides, the larger the
diameter of the semicircle, the higher the resistance to corrosion. At the same time, we observed
low-frequency inductive loops in all the specimens. The presence of the inductive loop showed the
manifestation of adsorption and desorption for the transition action in electrochemical corrosion.
In a NaCl aqueous solution, the low-frequency inductive loop of NdFeB could have emanated from
the escalated pitting corrosion on the electrode surface because of Cl adsorption [18]. The presence
of inductance implies that Cl causes a regular and stable electrochemical reactive channel in fixed
positions on the surface of the NdFeB magnet.
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As the Ce powders was added to magnets, the stability improvement of intergranular regions will
increase the resistance against the formation of active reaction channels while inhibiting the absorption
processes of (MeOH) ads. Thus, the corrosion resistance containing Ce magnets is higher than without
Ce magnets.

4. Discussion

In 3.5 wt% NaCl solution, M2+ metal ions were formed in the solution’s electrode system and the
grain boundary region of the magnet. Cl− ion in the solution was the readily available anions that
M2+ could bind to. As such, they concentrated on the surface of the grain boundary phase region and
bound the M2+ ions. The reaction mechanism is shown in Equation (1):

M2+ + mH2O + nCl− → [M(OH)m(Cl)n]
2−m−n + mH+ (1)
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Based on the reaction mechanism shown in Equation (1), the quantity of [M(OH)m(Cl)n]2−m−n

and H+ on the electrode surface increased with the progress of the reaction in solution. The number of
hydrogen ions remained relatively low during the initial rapid anode polarization stage. Similarly,
the quantity of [M(OH)m(Cl)n]2−m−n was very low on the interface between the grain boundary phase
of the magnet and NaCI solution. The interface adsorption phenomenon conformed to the Langmuir
isothermal adsorption. The anode current density is shown in Equation (2):

ia = ka(αH+)
−1
x=0 exp(1 + β)Fϕa/RT (2)

where ka is the velocity constant, β is the migration coefficient, ϕa is the anode potential, αH+ is the
concentration of H+ on the electrode surface of the grain boundary phase, F is the Faraday constant,
R is the universal gas constant, and T is the temperature.

In the steady-state anode polarization phase, the number of generated ions increased and
continuously diffused into the solution at a speed proportional to the current. Based on the diffusion
theory, the current density ia of the anode is shown in Equation (3):

ia− =
√

2FkaDH+/mδ exp(1 + β)Fϕa/2RT (3)

where DH+ is the diffusion coefficient of the hydrogen ions and β is the thickness of the diffusion layer.
H+ was produced as a result of Cl− ions adsorption in the 3.5 wt% NaCl solution. The corrosion

resistance of sintered NdFeB magnets in acidic solution is poor. Thus, the electrochemical corrosion
process of sintered NdFeB magnets is closely related to the number of H+ formed on the surface of the
grain boundary region in the NaCl solution.

EDS mapping results revealed that Nd was partly replaced by Ce in the Nd-rich phase (Figure 4).
Ce2Fe14B was formed by replacing Nd in the Nd-rich phase position and Ce2Fe14B could improve
the coerced force of the magnet. The grain boundary of the magnet remained thick with a high
concentration of Nd the Nd-rich phase when no Ce was added to the magnet. The Nd-rich phase
easily reacted with H2O and Cl− thus generating more H+ that accelerated the corrosion of the magnet.
When the Ce content was increased to 5%, the grain boundary became thinner and there was an
obvious bright white grain boundary to isolate the main phase grain. The Nd-rich phase at the grain
boundary also became less distributed. This caused the formation of only few activation reaction
channels in the grain boundary region resulting in the low generation of H+ in the NaCl solution.
Due to this, there was minimal corrosion of the magnet. Evidently, increasing Ce content inhibited the
corrosion of the NdFeB magnets.

Sintered NdFeB magnets are composed of three phases: the main phase (Nd2Fe14B), the Nd-rich
phase, and the B-rich phase (Nd1.1Fe4B4). The main phase (Nd2Fe14B) is the ferromagnetic phase.
The Nd-rich phase is distributed at the grain boundary. A small number of B-rich particles are
distributed on the surface of the magnet. The potential differences between the three phases are
the driving force of corrosion. As such, when the magnet is in an electrochemical environment,
the Nd-rich and B-rich phases form local corrosions because of their negative corrosion potential.
Moreover, the local corrosion battery is formed by the large cathode and small anode because of the
small size of the anode phase (Neodymium-rich and Boron-rich) and the large size of the cathode
phase (Nd2Fe14B). The Nd-rich phase and B-rich phase are located at the grain boundary of the
sintered NdFeB magnets which further accelerates corrosion of the grain boundary. The corrosion
process is shown in Figure 5.
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The electrochemical corrosion rate of sintered NdFeB magnets depends on the kinetic velocity of
the related anode and cathode processes. The corrosion rate is determined by Equation (4) [29]:

S = kix = k
Eα − Eg

Pα + Pg
(4)

where Eα is the cathode process equilibrium potential, Eg is the anode process equilibrium potential,
Pα is the cathode polarizability, Pg is the anode polarizability, and (Eα − Eg) is the electromotive force
that corrodes the battery. It is the driving force of the corrosion process. The force is proportional to the
free energy reduced in the system during the corrosion process. (Pα + Pg) is the total kinetic resistance
in the electrochemical process.

Based on Equation (4), corrosion speed can be reduced by three sequential steps. The degree of
thermodynamic instability is first reduced by bringing the anode process equilibrium potential closer
to the cathode process equilibrium potential. This is then followed by hindering of the cathode and
anode processes by increasing the polarization of the cathode and anode respectively.

Based on Equation (4), it is evident that the surface potential of a metal is an important parameter
in evaluating its corrosion resistance. The activity of the Nd-rich phase in sintered NdFeB magnets
expresses this potential. Based on this fact, SKPFM measurements of the three kinds of NdFeB magnets
were taken to map Volta potential variations of their polished sample surfaces to determine their
corrosion tendency (relative nobility). The morphology and Volta potential images of the three kinds of
NdFeB magnets are shown in Figure 6. Volta potential is the potential relative to the test tip. The higher
the Volta potential, the greater the difference between the metal and the tip potential, and the lower the
corrosion resistance [30–32]. The volta potentials of the Nd-rich phases of the three magnetic materials
were much higher than the surface potential of their metal matrix. On the other hand, the void was
only slightly higher than the surface potential of the metal matrix. The corrosion resistance was the
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Nd-rich phase < the void < metal matrix. Therefore, the Nd-rich phase and the metal matrix formed
a stronger galvanic cell in the solution, the metal matrix as the anode, and the Nd-rich phase as the
cathode, thus inducing corrosion.Materials 2020, 13, x FOR PEER REVIEW 9 of 11 
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Figure 6. The morphology and potential diagram around Nd-rich phase of NdFeB magnet, (a) 5% Ce,
(b) 3% Ce, (c) without Ce.

Comparing the potential diagram of the three kinds of the NdFeB magnets, we established that in
the absence of the heavy rare earth Ce, the maximum potential difference between the (Nd, Ce)-rich
phase and the main phase was 350.2 mV. Regarding the heavy rare earth contents Ce = 3 wt% and
Ce = 5 wt%, the maximum potential differences between the phase and the matrix rich in neodymium
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were 138.4 mV and 97.7 mV, respectively. The potential difference decreased with the increase of Ce
composition. Then, the galvanic cells formed by the (Nd, Ce)-rich phase and metal matrix decreased
with the increase in the Ce composition. Therefore, the addition of the heavy rare earth Ce increased
the local resistance to corrosion in the NdFeB magnets. These findings are consistent with the results
of the impedance experiment.

Ce mainly replaced Nd in the Nd-rich phase instead of Nd in the main phase. The addition of Ce
led to the decrease in the surface potential of the Nd-rich phase, which decreased the surface potential
difference, hence improving the corrosion resistance of the magnetic materials. The addition of Ce
results in a less Nd-rich phase and lower potential difference between the matrix and the Nd-rich
phase, thus improving its corrosion resistance.

5. Conclusions

We investigated the corrosion behavior of the (Nd, Ce)FeB magnet with varied Ce compositions
in 3.5% NaCl solution using electrochemical and SKPFM tests. Our findings revealed that:

(1) The addition of rare earth Ce remarkably improves the resistance to corrosion of the NdFeB
magnets. Ce mainly replaces Nd in the Nd-rich phase instead of Nd in the main phase. Moreover, the
addition of Ce results in a less Nd-rich phase and lower potential difference between the main phase
and the (Nd, Ce)-rich phase. These factors reduce the accelerating force of corrosion and suppress the
formation of the active reaction channels in the grain boundaries, resulting in the elevated corrosion
resistance of the Ce-doped magnets compared with the Ce-free magnet.

(2) The corrosion resistance was the Nd-rich phase < the void < metal matrix. In the absence
of the Ce, the maximum potential difference between the matrix phase and Nd-rich phase was
350.2 mV. For Ce = 3 wt% and Ce = 5 wt%, the maximum potential differences were 138.4 mV and
97.7 mV, respectively.
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