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Abstract: Explosively welded layered materials made of (a) an AA2519 aluminum alloy (AICuMgMn +
ZrSc), (b) titanium alloy Ti6Al4V and (c) an intermediate layer composed of a thin aluminum alloyed
AA1050 layer are considered herein. This study presents test results connected to measurement
science including microstructural observations of the material combined with the explosive method,
and a basic analysis of the strength properties based on microhardness and tensile tests. Owing to the
joint’s special manufacturing conditions, the laminate was subjected to deformation measurements
with the digital image correlation (DIC) method. The research was supplemented by the residual
stress measurements with the sin21 X-ray method based on the diffraction-reflection analysis that
was verified by the bore trepanation method.

Keywords: deformation analysis; residual stresses measurement; AA2519; Ti6Al4V; explosive welding;
layered laminate

1. Introduction

In this article, a layered composite was tested which will be used as a construction material with
increased ballistic resistance for spacecraft and military vehicles. In space technology, the 2519 alloy is
used for protective panels against micrometeorites and for the construction of space station chambers [1].

The Ti6Al4V alloy is characterized by increased ballistic resistance and therefore it can be,
especially in combination with aluminum alloys with increased ballistic resistance, an alternative to,
inter alia, homogeneous armor plates [2,3]. Due to its special functional properties, the Ti6Al4V alloy
has long been used in the production of aircraft components, including: jet engine rotor blades and wing
caissons, one of the largest elements in the construction of fighters and combat vehicles [4,5]. The Future
Combat System (FCS) program developed by the American army assumes that materials that can play
a special role in the development of special structures for military purposes, including the construction
of combat vehicles, aircraft and satellite structures, include titanium alloy Ti6Al4V, alloys aluminum
AA2519 and AA5083 and polymer composites [6-9]. It is anticipated that the use of the appropriate
materials, especially light alloys with different densities and mechanical properties, can provide an
appropriate level of strength and ballistic resistance while reducing the weight compared to classic
passive shields. The layered structure is to increase the phenomenon of energy dissipation of the
hitting projectile and thus increase the ballistic resistance of the material. Traditional joining techniques
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are not able to effectively join titanium and aluminum alloys, so it was decided to use the explosive
joining technique [10-13].

Combining these theoretically not weldable materials may be by explosive bonding. This process
over the years has not been resolved from the theoretical. There are many theories that describe
the process of merging, and so far, they have not explained specifically which of them is the most
appropriate approach [14-18]. Changing parameter combinations has an amazing effect on the type
and quality of the connection. This translates into the subsequent mechanical properties and structural
material. There is therefore a need to understand and analytically represent intervention input
components affecting the future connection type [19-21].

Layered materials are characterized by different mechanical properties than in monolithic parts.
This phenomenon was taken into account during our previous research of layered materials obtained
through different manufacturing technologies: additively manufactured using selective laser melting
technology [22-26], additively manufactured, double-material restraint joints using fused filament
fabrication technology [27] and explosively welded lightweight materials [28-30]. All the mentioned
manufacturing technologies are characterized by the layered structure of the materials obtained by
joining each layer of the material using high-energy sources. That kind of approach generates high-level
residual stresses which directly affect the mechanical properties of manufactured parts. The joint area
is characterized by different mechanical properties to the other part of the material. The mentioned
area is very small so to properly verify the residual stresses level, special X-ray technologies have to be
used [31].

The produced ballistic material was subjected to basic tests of its strength properties.
Metallographic specimens were cut out of the produced material and examined with a scanning
microscope. The quality of the connection between the layers of the joined material was assessed.
The structure in the joining layers was checked for any separation or fragmentation of the structure.
In addition, the chemical composition of selected elements in critical connection points was checked.
Due to the innovative joining technique, the last monotonic tensile test of the base materials and the
produced laminate were examined. The work also investigates the deformation distribution using
the digital image correlation (DIC) method. This test was performed on each side of the laminate
produced. During the explosive bonding process, a pressure wave is generated, which imparts very
high velocity to the solids (plates made of joined materials). The collision of the joined materials
at such high velocities releases pressures of up to 2 x 10* MPa. Such pressure makes it possible to
obtain physical states unattainable under static load conditions. The effect of their influence is the
presence of significant values of residual stresses, deviating from the primary stress distribution in the
joined materials. The type of residual stress has a decisive influence on the functional properties of the
material and the level of ballistic resistance. For this reason, the residual stresses will be measured by
the X-ray method and the hole-drilling strain gauge method.

2. Materials

Composites characterized by the unique properties of their constituent materials often comprise a
structural or layered nature. Explosive bonding is a practical-based technique that recognizes the fact
that explosive welding is a special type of pressure bonding. Achievement of material connections is
possible by the massive impact generated between at least two elements in high-pressure conditions
caused by the explosive welding process. This type of technology allows the joining of different
types of metals, which cannot be bonded using all types of methods except from gluing or from
using conventional mechanical joints. This technology makes the joining of materials which are
difficult-to-weld possible, even if these have extremely different properties. The main advantage
of this technology is the higher breaking strength of the joints compared to the strengths of the
constituent materials of the composite [32]. An additional advantage of this technology refers to
the economic benefits that result from the reduction in consumption of expensive materials used as
adhesives. All the physical phenomena observed during the explosive bonding process are extremely
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dynamic. It is thus impossible to analyze and compare phenomena that result from the displacement
of joined material sheets within short time periods. This is the main reason according to which it
is not pertinent to carry out comparisons of the physical phenomena with more classical welding
technologies. Structural changes of joined materials are usually limited only to the connection zone
that spans several micrometers. The lack of changes in the material’s chemical composition is justified
by the fact that composites retain the unique properties of their constituent materials [33].

The layered composite produced with the use of the explosive welding technology from base
materials, i.e., aluminum alloy AA2519 (AICuMgMn + ZrSc) and titanium alloy Ti6Al4V with the
use of an additional intermediate layer of AA1050 alloy with a thickness in the range of 0.6-0.8 mm,
was tested. The technological treatment included surface preparation based on surface rolling and
grinding. Manufactured laminates are shown in Figure 1a. The cross-section of the laminate shows
the connection zone of the Ti6Al4V and AA2519 alloys with the AA1050 alloy interlayer (Figure 1b).
On the AA2519-AA1050 border junction, characteristic wavy and flat surfaces were observed in the
combined Ti6 Al4V-AA1050 construct.

Figure 1. Laminate AA2519-AA1050-Ti6Al4V: (a) sheets produced, (b) metallographic cross-section of
the composite.

The characteristics of material combinations in terms of wavy structures with similar densities and
masses were determined based on the appropriate selection of the joining parameters. The connection
quality of a flat border between AA1050 and Ti6Al4V can be demonstrated by the intermetallic
precipitations formed in the additional sublayer. For more accurate microstructural analyses, the JEOL
JSM-6610 scanning electron microscope (Jeol LTD, Tokyo, Japan) was used. Sample preparations
in the form of metallographic samples were required to obtain high-quality surfaces. The classical
method of sample preparation (mechanical polishing) could not provide a proper surface quality for
all laminate components. Mechanical ion polishing was used only at the initial preparatory stage.
Ion polishing is dedicated to sample metallographic testing preparation. The ion-polishing process
involved the removal of atomic layers from the material surface with an argon ion beam. The surface
preparation of samples for metallographic tests was performed with the Hitachi IM4000 Ion Milling
System (Hitachi LTD, Tokyo, Japan) with a protective mask that allowed the generation of smooth
surfaces. This technology was dedicated to multicomponent material polishing with constituent
materials with different hardness values.

A specially modified AA2519 alloy manufactured at the Non-Ferrous Metals Institute in Gliwice,
Poland, was used to produce the composite. Owing to the increased fatigue durability and diminished
tendency for fragmentation during the dynamic impact of missiles, the AA2519 alloy was used
in the construction of combat vehicles, devices with increased ballistic resistance and in elements
dedicated to aerospace applications. In the space industry, AA2519 alloys are used for protective
panel construction for devices covering against micrometeorites [34]. The AA2519 alloy modification
developed by the Institute of Non-Ferrous Metals consisted of additional alloying elements, including Zr
and Sc, in concentrations in the range of 0.2-0.3%. The improvement of the process allows for
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precipitation strengthening and an increase in the secondary recrystallization resistance of the structure.
The mentioned modifications could obtain stable mechanical properties in high-temperature conditions
as a result of the homogeneous phase dispersion of Al3Zr. The strength properties of AA2519 alloy
were obtained on the basis of our own research. The chemical composition of the material was given
by the manufacturer. The data are presented in Table 1.

Table 1. Strength properties and chemical composition of the AA2519 alloy.

Strength Properties Chemical Composition [wt %]
Rpo [MPa] Ry [MPa] A [%] Si Fe Cu Mg Zn Ti A% Zr Sc Al
312 335 6.5 006 008 577 018 001 004 012 02 036 rest

Advantageous mechanical properties, good weldability, high corrosion resistance and a melting
point temperature of 1955 K indicate that titanium alloys can be extensively used in the aerospace,
space and military industries. The Ti6Al4V alloy is also characterized by increased ballistic resistance
that makes it an alternative material to those used for homogeneous armor plate productions [35].
The specific properties of the Ti6Al4V alloy allow its use in the production of aircraft components,
including jet engine rotor blades and wing caissons [36]. The strength properties of Ti6Al4V alloy were
obtained on the basis of our own research. The chemical composition of the material was given by the
manufacturer. The data are presented in Table 2.

Table 2. Strength properties and chemical composition of the Ti6Al4V alloy.

Strength Properties Chemical Composition [wt %]
Rp [MPa] Rm [MPa] A [%] (@) \Y Al Fe H C N Ti
950 1020 14 <0.20 35 5.5 <0.30 <0.0015 <0.08 <0.05 rest

The explosive bonding of AA2519 and Ti6Al4V alloys was achieved with the use of an AA1050
aluminum alloy interlayer. The strength properties of AA1050 alloy were obtained on the basis of our
own research. The chemical composition of the material was given by the manufacturer. The data are
presented in Table 3.

Table 3. Strength properties and chemical composition of the AA1050 alloy.

Strength Properties Chemical Composition [wt %]
Ry [MPa] Ry [MPa] A [%] Fe Si Zn Mg Ti Mn Cu Al
78 168 29 04%  025< 0.07< 0.18 0.05< 0.05< 0.05< rest

Owing to its high plasticity, the AA1050 alloy has very good adhesive properties which improve
the strength properties of the connection zone.

The microstructure of the AA2519-AA1050-Ti6Al4V joint was considered. Particular attention
was paid to areas near the junction zone, such as the area near Ti6Al4V with the AA1050 alloys and
that near the AA2919 and AA1050 alloys. The surface of the Ti6Al4V alloy, shown in Figure 2 has a
proper structure for this type of material and does not show visible deformations or damages. In the
case of the AA1050 aluminum alloy, grain deformations in the form of elongated shapes are visible.
This phenomenon is connected to the process of the high pressure generated during the explosive
joining process and the location of the material next to the hard deformable titanium alloy. The use
of the same material interfaced with the AA2519 aluminum alloy in the connection area retains a
regular grain structure. The AA2519 aluminum alloy structure yields fine, copper-rich precipitations,
which are visible as bright areas in Figure 2. The presence of copper in the AA2519 aluminum alloy
improves the bonding capacity of the explosive.
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Figure 2. Metallographic cross-sections obtained with scanning electron microscopy of the manufactured
laminate AA2519-AA1050-Ti6Al4V.

A more detailed analysis of the AA1050 aluminum joining zone and the AA2519 alloy showed
that during the explosive bonding, a precipitation sublayer with an increased copper concentration in
phase © was formed owing to the increased pressure and short-term temperature growth. This zone
is a natural obstacle to the dislocation movement that strengthens the entire alloy. In addition to the
increasing distance from the joining zone, grain growth was also observed [37,38].

In the case of the border of the titanium alloy Ti6Al4V with the 1050 aluminum alloy, an intermediate
layer was observed with a thickness of approximately 8-15 um (Figure 3a). In this layer, the presence
of numerous precipitates of various sizes and irregular shapes was found. To identify the chemical
composition of materials in the diffusion layer, an energy-dispersive spectrometry (EDS) analysis was
performed (Figure 3b).

Layer Al;T1

Spectrum 10 Spectrum 11

+

BES SV 8850
Al-Ti_przed OC

L Spectum

(b)

Figure 3. Micro-area of the AA1050-AA2519 material connection zone: (a) microstructure, (b) chemical
composition measurement locations.
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The results of the additional chemical composition measurements (the spectral points in Figure 3b)
indicated the presence of Ti-Al compounds in the intermediate layer. The relative chemical compositions
of these elements in the selected spectra are listed in Table 4.

Table 4. Results of chemical composition measurements in the connection zone of the Ti6Al4V and
AA1050 aluminum alloys.

Chemical Composition [%
Measurement Point Name P [%]

Ti Al
Spectrum 9 92.8 7.2
Spectrum 10 69.6 30.4
Spectrum 11 83.1 16.9
Spectrum 12 0 100

Boronski et al. [39] and Milosavljevi M et al. [40] proved that the observed intermediate layer was
formed as a result of aluminum deposition on the titanium substrate due to the high temperature
and pressure.

3. Testing Basic Strength Properties

Microhardness measurements were carried out with a Struers DURA SCAN 70 metallographic
microhardness tester (Struers Inc, Cleveland, OH, USA) with the Vickers method in accordance
with the methodology included in the standard PN-EN ISO 6507-1:2007. The obtained results
of the microhardness measurement of the AA2519-AA1050-Ti6Al4V alloys in the connection area,
including the microhardness of constituent materials before the connection, are presented in Figure 4.

[HV(.]
400
350
300
250
200
150
100

50

AA1050

>
=
<
©
1|:

0

-950 -750 -550-350 -150 0 150 350 550 750 [um]
—— composite AA2519-AA1050-Ti6AI4V
+  AA2519 before joining = TIBAI4V before joining

Figure 4. Microhardness distribution in the AA2519-AA1050-Ti6Al4V laminate.

The gray graphs indicate the transition layer in the form of AA1050 aluminum. The microhardness
tests in the laminate indicate an increase in the microhardness of the AA2519 aluminum alloy compared
with the base alloy. This change is the effect of the dislocation strengthening phenomenon that results
owing to the crumple caused by the explosion.

Tensile tests of the AA2519-AA1050-Ti6Al4V laminate and its base materials in the presence of
uniaxial, quasi static and crosshead-controlled tensile testing conditions were carried out in accordance
with PN-EN ISO 6892-1:2010 with an Instron 8802 hydraulic pulsator (Worldwide Headquarters,
Norwood, MA, USA). Deformation measurements were carried out with an Instron 2630-112
extensometer (Worldwide Headquarters, Norwood, MA, USA) with a 50 mm measuring base in the
presence of axial stretching conditions. Monotonic tensile tests were carried out on samples made of
the manufactured laminate (Figure 5) and on samples produced with the use of base materials before
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and after heat treatment. All samples subjected to tensile testing had the same geometry. Six samples
were made of each material.

A
1
i A-A
s vamey o m
e o B B ‘y
- 50 o | o5 | _51_0_4.5
L 220 & | &
! . 86 A
—
A

Figure 5. Samples subjected to a static tensile test made of the AA2519-AA1050-Ti6Al4V laminate.

The tensile test chart of AA2519-AA1050-Ti6Al4V is shown in the Figure 6. In the case of the
titanium alloy, the maximum tensile strength Ry, = 910 MPa was reached. This value exceeded the
maximum tensile strength of the AA2519 alloy (R, = 358 MPa) by >2.5 times. The relative elongation
A for the titanium alloy Ti6Al4V is approximately 11.2%, while that for the aluminum alloy AA2519 is
approximately 6.8%. The tensile strength Ry, of the elements produced by the method of explosive
welding was 657 MPa, and the conventional yield strength Ry, was 436 MPa, with a total elongation A
of 6.5%.

(@)
[MPa] R_[MPa] R,,[MPa]| A[%]
o —
™\, | — Ti6Alav POC 910 901 11,2
800 —— AA2519 POC 418 249 23,6
—— AA1050 POC 76 38 40,6
600
400 =
200
0 0
0 5 10 15 20 25 30 35 ¢ [%]

Figure 6. Monotonic tensile test chart for dog-boned samples made of the base material.

The tensile strength R, of the manufactured composite in which the constituent materials are
characterized by the solid material structure can be compared with the theoretical composite strength
calculated based on the “mixtures law”.

For the tested AA2519-AA1050-Ti6Al4V material, the mixtures law can be expressed as

Rk = Ry X Vi + Rypo X Vot Ry X Vi @)

where R, is the composite tensile strength, Ry, is the tensile strength of the base material, Vy, is
the tensile strength ratio of the reinforcement cross-sectional area to the matrix cross-sectional area,
Ry is the warp tensile strength, V, is a ratio of the matrix cross-sectional area to the strengthening
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cross-sectional area, Ry is the interlayer resistance and V, is the ratio of the cross-sectional area of the
interlayer to the cross-sectional area of reinforcement.

The theoretical tensile strength was determined on the basis of the mixtures law for R, = 604 MPa.
The obtained test results carried out on the produced laminates indicate that the tensile strength of
the AA2519-AA1050-Ti6Al4V laminate is R,;, = 657 MPa (Figure 7). Explosive bonding increased its
strength by >8%. The observed increase in the R, value was influenced by the strengthening of the
constituent material caused by the crushing during the evolution of the explosive bonding process.
Another factor that increases tensile strength is the formation of Al3Ti intermetallic phase materials in
the intermediate layer [41,42]. Owing to the diffusive nature of the Al-Ti joint formation process and
the thermo-mechanical processes, elements are segregated in a very narrow area of the transition zone.
This results in a local change in mechanical properties. These factors in conjunction with the layered
structure of the produced composite can have a significant impact on the different values of the material
deformation. Verification of the laminate surface deformation process in a monotonic tensile test was
carried out with the use of the digital image correlation (DIC) method. Deformation observations were
carried out from the three sides of the laminate, namely the aluminum alloy, titanium alloy and side
sample surfaces. The tests results are shown in Figure 7.

[Mga] Laminate joint surface 0.2 L 4.0 (2 ©
700 AA2519/AA1050/Ti6AI4V ' 8.0
600 (1 ®© O (s
500 Fa 3578 458

& -
400 0.16
30-  7.0-
300 o1a)
200 s
B os 6
o — AA2519-AAL0S0-Ti6AI4V | | | w 0.12
0 s R |
0 1 2 3 4 5 6 7 € [%] = X M 6.0
alloy surface Ti6Al sl
| Ef: A 0.08 = :
1.5+
5.0
0.06
2 B
0.04 3
0.5
0.02 4.0
0 0 3.5

Figure 7. Deformation distribution using the digital image correlation (DIC) method for selected
points of the monotonic tensile test of a flat-layered AA2519-AA1050-Ti6Al4V composite sample: 1:
conventional yield point R, 2: tensile strength for ¢, = 2%, 3: maximum tensile strength R;, and 4:
crack sample.

Obtained test results for points 1 and 2 (in Figure 7) yield homogeneous strain distributions on all
sides. Visible material deformation areas were only observed after the yield strength was exceeded.
It should be noted that the images of deformation fluctuations on the side of the sample did not yield
banding effects. This may be attributed to the layered arrangement of materials with different strength
properties. At point 3 in Figure 7, the concentration of maximum deformations was observed at the
crack initiation site. The location of the maximum deformations and the continuous nature of their
growth indicate joint plain consistency within the entire range of the load during the test. Sample
cracks were present in the zones of maximal deformation.
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4. Residual Stress Measurements

4.1. X-ray Stress Measurements

X-ray stress tests were carried out in cooperation with the Institute of Metallurgy and Materials
Engineering of the Polish Academy of Sciences in Krakow. The tests were conducted on a Bruker
D8 Discover X-ray diffractometer (Bruker AXS GmbH, Karlsruhe, Germany) with a Euler wheel
(Bruker AXS GmbH, Karlsruhe, Germany) and a sample positioning table (Figure 8).

Place of measurement

\4 AA2519
[ 1

AA1050 |

-
/ Ti6AI4V

Place of measurement

(b)
Figure 8. Bruker D8 Discover diffractometer with a Euler wheel (a), and locations of areas of self-stress
measurements based on the X-ray method (b).

X-ray stress measurements were carried out on the surface of the cross-sections of the sample.
Measurements were made locally at various points (separated by 1 mm distances) on the surface
(area of 25 mm?) in accordance with Figure 9. During the tests, standard residual stress measurements
were made according to the sin2\p method using a scintillation detector in a parallel beam system with
a Soller 0.34 collimator. The Texture-aided Residual Stress Investigation System software package
(TARSIuS) was developed by Professor Bonarski and Mr. Kania from the Institute of Metallurgy and
Materials Science of the Polish Academy of Sciences. The software regulates the analysis process of the
tested samples, including the application of direct control of the diffractometer during measurements,
or the automatic processing of partially acquired results and the visualization of the final results in the
form of stress maps. The identified residual stresses in the tested samples are compressive and tensile.
To facilitate the interpretation of the stress values, two-dimensional maps are presented separately in
the graphical form of the tested composites’ measurements (Figure 9). Measurements for the AA2519
alloy are shown in Figure 9a—c, and for the Ti6Al4V alloy in Figure 9d—f.

In the composite formed after explosive welding, the topographies of the main stresses in the
titanium and aluminum layers are characterized by their laminar natures that are determined by the
interaction of both composite component layers. The titanium layer is characterized by considerably
increased stress values (up to —800 MPa) compared with the aluminum layer (up to —100 MPa).
The closer the titanium layer is to the intermediate layer, the more profound is the increase in the
compressive stress. Near the AA1050 alloy layer, compressive stresses are transformed into tensile
owing to the shear forces that increase the effect generated by the crystal lattice mismatches in the
two joined materials. The intermediate results obtained for one of the directional stress measurements
in this alloy are illustrated in Figure 10. The recorded peaks differ significantly in intensity, and the
obtained dj; relations are neither linear nor elliptical.
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Figure 9. Distribution of residual stress in a sample made of the AA2519-AA1050-Ti6Al4V laminate
after explosive joining: AA2519 stresses in vertical direction (a), AA2519 stresses in the horizontal
direction (b), AA2519 principal stresses (c), Ti6Al4V stresses in vertical direction (d), Ti6Al4V stresses
in the horizontal direction (e), Ti6Al4V principal stresses (f),

Counts

. _ . : RN
925 93.0 935 94.0 545 95.0 95.5 96.0
267

Figure 10. Distribution of intermediate results of one measuring direction for AA2519 alloy.

Reproduction of reliable curves based on the obtained measurement data using the Reuss
methodology. In these cases, reliable interpretation of stress measurements was not possible owing to
the grain growth and/or the presence of precipitations.

4.2. Residual Stresses Based on the Hole-Drilling Strain Gauge Method

Nondestructive methods used to measure stress are subject to increased uncertainties. It is
advisable to carry out measurement verification using experimental methods. One of the most
commonly used methods for this type of experiment is bore trepanation using standard strain
gauges. This method is often referred to as the “semidestructive technique” because the hole does
not usually cause significant damage to the structural integrity of the test object (usually holes have a
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diameter of 0.8 mm and a depth of 4.8 mm). Removing material using a drill allows measurements of
deformation changes caused by the relaxation of residual stress. In this research study, a hole-cutting
device was used to perform hole trepanation based on the process described in the RS-200 Milling
Guide-VPGMicro-Measurements. This measurement system (Figure 11) was adapted to allow the
precise drilling of holes at the marked points of the geometric rosette at specific depths with simultaneous
measurement of its diameter.

Figure 11. Stand for residual stress measurements: Esam Traveler Plus strain gauge bridge with a
power supply (1), RS-200 device (2) and tested material (3).

Residual stress measurements were carried out on the produced laminate from the titanium and
aluminum alloy sides. The preparation of the surface before the installation of the strain gauge rosettes
was carried out based on the guidelines contained in the Instruction Bulletin B-129-8 Surface Preparation
for Strain Gauge Bonding, which included the degreasing of the aluminum and titanium surfaces and
grinding. The prepared surfaces were stripped of oxides with Conditioner A, and were then neutralized
with Neutralizer 5A, which allowed the application of strain gauges. The measurement methodology
has been developed for the ASTM Standard Test Methods E 837. It included the attachment of at least
three strain gauges with cable installations on each type of tested surface. The EA-13-062RE-120 rosettes
were used for the aluminum alloy, while the EA-05-062RE-120 rosettes were used for the titanium
alloy. The next step was to drill holes (with a diameter of 1.6 mm and a maximum depth of 2.0 mm) in
designated measurement locations at 0.1 mm increments. Voltage signals from strain gauges were
amplified by means of the Esam Traveler Plus-type 1032-S Strain Gauge Bridge. Residual stresses and
their angular orientations were determined on the basis of measured strain values. Figure 12 shows
the emplacement of strain gauges on plates of the laminate produced for the needs of conducting tests
using the hole trepanation method.

The resulting output signal registered in the respective depths of the bore was then converted to
strain values in accordance with Equation (2).

4-Uwy

_ 6
_quoxKxAxw [ue] @

€
where Uy is the output voltage [V], U is the input voltage [V], N is the bridge layout factor for the
quarter bridge N = 1, K is the strain gauge constant and A is the output signal amplification.
As a result of the measurements and calculations, the characteristics of the relative deformation
changes as a function of the depth of the hole were obtained. To determine the values of the main
stresses and their direction, the following dependencies were used:

o 7€1+€2_ 1
X 4x A 4xB

(e3—e1)> + (e3 + &1 — 2¢2)* [MPa] 3)
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€1+ & 1 2 2
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omin = A T g V€~ €)" + (e + €1 - 2¢2)" [MPa] @
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= —arctg———= |MP, 5
a = jaretg———— [MPa] ©)

where 0y4¢ and o,,;,, are the principal stresses, 1, €, and €3 are the strains measured on strain gauges 1,
2 and 3 and A and B are the coefficients that depend on the material properties, measuring rosettes

and hole geometry, while « is the angle between strain gauge 1 and the direction of the nearest
residual stress.
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Figure 12. Emplacement of measuring rosettes on a section of the AA2519-Ti6Al4V laminate plate in
the initial state: on the aluminum alloy side (a), on the titanium alloy side (b).

The results obtained for selected measuring points are illustrated in the form of strain change courses
as a function of the hole depth. Figure 13 shows the results for the AA2519-AA1050-Ti6Al4V laminate.
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Figure 13. Graphs of strain changes depending on the hole depth on the AA2519 side (a) and on the
Ti6Al4V alloy side (b) of the AA2519-AA1050-Ti6Al4V laminate.

The minimum values of principal residual stress 0, determined at all the measurement points
in the case of the AA2519 alloy differ from each other (in the range of —121 to —104 MPa), while the
maximum values of 6,4 differences are in the range of —88 to —31 MPa. The observed differences in
the values of 0, and o4y are associated with stress value changes as a function of distance from the
material surface. The orientation analysis of the principal stress vector showed that the direction of the
minimum stress 0,,;,, was almost perpendicular with respect to the longer edge of the plate, while the
maximum stress direction o, was parallel to this edge. The residual stress level in the aluminum alloy
was very close to a homogeneous distribution (invariant as a function of depth). No tensile stresses
were recorded. The stress values determined at all the measured points in the Ti6Al4V alloy were in
the following ranges: o,,;;, = —349-—184 MPa and 0 = —111-—140 MPa. The obtained test results are
associated with changes in stress values as a function of the measurement depth. The analysis of the
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residual stress orientation vector showed that the direction of the external load that affected the tested
laminate was perpendicular to the longer edge of the plate. This caused higher compressive stresses
that were similar to those observed during the measurements of the internal stress in the aluminum
alloy AA2519.

5. Conclusions

Explosive bonding enables the combination of hard bond materials, such as titanium and
aluminum alloys. The combination of the proposed method generated an interlayer between the base
materials in the microstructure. As a result of the short-term effects of the high pressure in the layer
between the Ti6Al4V and AA1050 alloys, Al;Ti precipitates were formed. This interlayer significantly
changed the functional properties of the material. It was used to form ballistic panels in spaceships.
Recognition of the stress values will allow for improving the numerical design in the phenomena of
ballistic resistance [43]. In addition, the explosive joining process increased the tensile strength by
approximately 8% compared with the strength that resulted from the law of mixtures. Measurements of
internal stress by both X-ray and bore trepanation methods showed an increase in the internal stress
near the joining zones. Long-range testers should consider the heat treatment of the laminate to relax
natural stress.

It should be noted that the stress values obtained in the titanium alloy may be subject to increased
uncertainty. This is owing to the fact that titanium cannot be easily cut. Titanium tends to cause
increased temperatures in the vicinity of the hole surface owing to the increased friction between the
drill and the low-thermal conductivity titanium surface. The described difficulties caused an increase
in the cutting resistance and interfered with the recorded output signal that manifested in the form
of changes in voltage pulses toward negative values, i.e., caused tensile stresses. These assumptions
confirmed that there was a significant increase in the cutting resistance that caused either a decrease
in the rotational speed of the tool, or stopped the drill completely, followed by an abrupt increase in
the output voltage. It should be stated that certain stress values in the titanium alloy may be altered,
however, the degree of this disturbance is impossible to determine.
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