

Supplementary

Enhancement of Titania Photoanode Performance by Sandwiching Copper between Two Titania Layers

Fan Yang ^{1,2}, Ruizhuang Yang ¹, Lin Yan ¹, Jiankun Wu ¹, Xiaolin Liu ^{1,2}, Lirong Yang ¹, Minglong Zhong ¹, Xuan Luo ^{1,*} and Lin Zhang ^{1,2}

- ¹ Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China; yangf711@mail.ustc.edu.cn (F.Y.); rzyang99@mail.ustc.edu.cn (R.Y.); yanlin77@mail.ustc.edu.cn (L.Y.); wujiankun19@163.com (J.W.); lxl91003@mail.ustc.edu.cn (X.L.); yanglirong83@163.com (L.Y.); 13110200008@fudan.edu.cn (M.Z.); zhanglin@caep.cn (L.Z.)
- ² Department of Physics, University of Science and Technology of China, Hefei 230026, China
- * Correspondence: luoxuan@caep.cn

Received: 6 August 2020; Accepted: 10 September 2020; Published: date

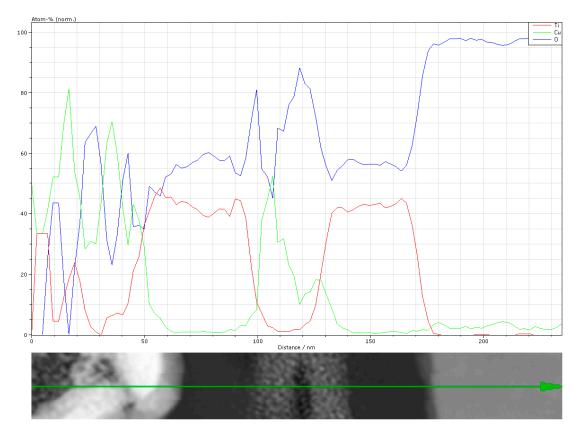


Figure S1. the atomic dispersion of TCT-4 from the line scanning model.

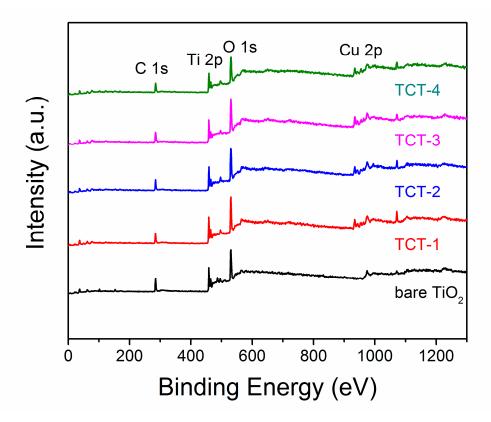


Figure S2. XPS survey spectra of bare TiO_2 and all TCT samples respectively.

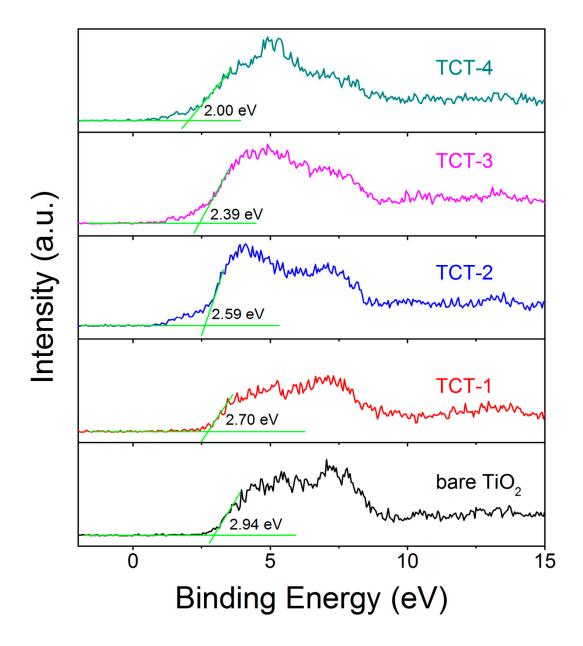
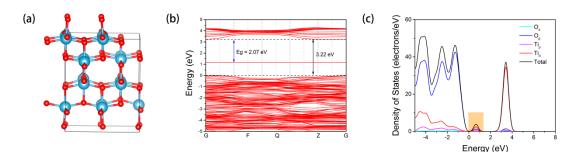



Figure S3. XPS Valence band spectra of bare TiO2 and all TCT samples respectively.

 $\textbf{Figure S4.} \ \text{The lattice structure, calculated band structure and density of states (DOS) of TiO_2-Vo.}$

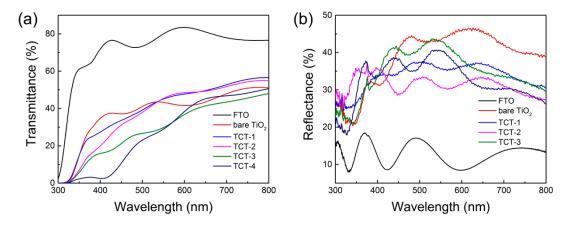


Figure S5. The transmittance (a) and reflectance; (b) of five samples from UV-vis measurement.

The absorptance spectra was calculated by the Equation:

$$A = 1-T-R \tag{1}$$

Calculations

The IPCE can be calculated by the Equation:

$$IPCE(\%) = (1240 \times J_{ph})/(\lambda \times P_{in})$$
 (2)

where Jph is the measured photocurrent density of the experimental sample, λ is the wavelength and Pin is the intensity of the incident light.

Mott-schottky Equation:

$$\frac{1}{C^2} = \frac{2}{N_D e \varepsilon_0 \varepsilon} (E - E_{FB} - \frac{kT}{e}) \tag{3}$$

Where C is the capacitance, N_D is the charge carrier density, e is the elemental charge, ϵ is the relative permittivity of material, ϵ_0 is vacuum permittivity, E is the applied potential in electrochemical measurement, E_{FB} is the flat band potential, k is the Boltzman constant and T is measurement temperature.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).