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Abstract: The dynamics of a straight section of a jet arising during the electrospinning of a polymer
solution without entanglements, and the orientation of polymer chains in the jet were explored based
on the analysis of the forces balance equation and the rheological equation of the finitely extensible
nonlinear elastic model. Two modes of the jet behavior were predicted. At relatively low volumetric
flow rates, the straight jet has a limited length, after that, its rectilinear motion becomes impossible,
while at higher flow rates, the jet always remains straightforward. It is shown that polymer chains
in a jet can be strongly stretched, which leads to phase separation in a spinning solution. Aggregation
of the stretched chains was also studied and the parameters of the emerging inhomogeneous structure
were predicted.
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1. Introduction

Electrospinning is an effective and versatile method of nanofiber production for diverse
technological applications [1,2]. The process is based on the ability of a polymer liquid meniscus to take
on a conical shape, in which the apex emits a thin straight jet when the system is subjected to high
voltage. At some distance, the straight jet often experiences whipping instability and after evaporation
of the solvent, is converted into a nanofiber. Variation of an applied voltage, flow rate, and physical
parameters of the liquid allow for the characteristics of the jet to be controlled. The window of the stable
cone-jet mode resulting in uniform fiber formation is rather narrow and prediction of the operation
area is still an urgent problem.

Three sections can be distinguished in the cone-jet structure, namely, the cone-shaped meniscus,
which is suspended to the nozzle electrode; the cone-jet transition zone; and thin jet (Figure 1).
According to the Taylor theory, stabilization of the cone-shaped meniscus is ensured by the action
of the normal electrostatic force and capillary force [3]. However, the static cone with the angle 98.6◦

proposed by Taylor cannot emit a jet. A number of experiments have revealed a vortex flow inside
the meniscus [4,5]. This flow can be associated with the action of the tangential electric force, which is
the driving force of the jet flow.

In the transition zone, there is a change in the mechanism of the electric current flow as well as
in the balance of acting forces [1,6–8]. Analysis of the cone-jet diameter shows that the rate of flow
deformation exceeded the inverse relaxation time of the polymer chains here [9–11]. The total electric
current in the cone-jet has three main contributions: the current of the bulk ions Ib; the conductive
current of the surface ions Is; and the surface convective current due to the fluid flow Ic: I = Ib + Is + Ic.
The bulk current dominates inside the meniscus, I ' Ib, whereas in the jet, it is mainly determined

Materials 2020, 13, 4295; doi:10.3390/ma13194295 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0001-8989-866X
http://www.mdpi.com/1996-1944/13/19/4295?type=check_update&version=1
http://dx.doi.org/10.3390/ma13194295
http://www.mdpi.com/journal/materials


Materials 2020, 13, 4295 2 of 14

by the convective current Ic and the surface conductive current Is. In the transition zone, Ib ' Ic

or Ib ' Is. Following Taylor’s arguments, the density of the free electric charge σ f on the surface
of the transition zone can be estimated from the balance between the capillary force γ/b where
γ is the surface tension and b is its radius, and the normal electrostatic force of Fn ∼ σ2

f /ε0 (ε0 is

the permittivity of vacuum): σ f ∼ (γε0/b)1/2 [1,3]. The electric field of strength E inside the transition
zone induces the bulk current Ib ∼ πb2KE (K is the bulk conductivity of the polymer liquid) and
the surface conductive current Is ∼ 2πbσ fµE (µ is the mobility of the surface ions). The flow of the liquid
leads to the convective current Ic ∼ 2πbσ f v. Here v = Q/(πb2) is the average flow velocity and Q is
a volumetric flow rate. If the electric field inside the transition zone is defined by the cone surface
charges (i.e., E ∼ σ f /ε0, and Ib ' Ic), then he radius should be b = b1 ∼ (Qε0/K)1/3 and the electric

current is I ' 2Ib ∼ (γKQ)1/2 [6]. When the electric field in the transition zone becomes of the order
of the external field E0, E ∼ E0, another regime in which the radius of the transition zone and the

electric current, respectively, are given by b = b2 ∼
( Q

KE0

)2/7
(γε0)

1/7 and I ∼ (γε0)
2/7(KE0)

3/7Q4/7 is
produced [12]. At a given E0 and high flow rates, the radius of the cone-jet transition zone equals b2

whereas at low flow rates, it is b1. With a further decreasing flow rate, the convective current decreases,
therefore the cone-jet transition is defined by the condition Ib ∼ Is. The radius of the transition zone now
becomes equal to b = b3 ∼ (µ/K)2/3(γε0)

1/3 and the current is I ∼ eγµ where e is the unit charge [13].
Analysis of the electrohydrodynamic equations showed that the emitted jet in this case has a slender
conical shape [14,15].Materials 2020, 13, x FOR PEER REVIEW 2 of 15 
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Figure 1. Schematic drawing of the cone-jet structure during electrospinning.

In most electrospinning modes, the electric current is mainly determined by the bulk current
Ib and by the convective current Ic, whereas the surface conductive current Is is relatively small.
The dynamics of the jet in this case is governed by the balance between the tangential electric force
on the one hand and the capillary, viscoelastic, and inertial forces on the other hand. The contribution
of the normal electric force becomes insignificant. It follows from the fact that the surface charge
density of the jet decreases with a decrease in the jet radius a as σ f ∼ aI/Q. Thus, the normal electric
force also decreases, Fn ∝ a2, whereas the Laplace pressure γ/a inside the jet increases and cannot
be compensated by normal electric force anymore, and is already compensated by the tangential
electric force Fτ. In order to ensure a smooth change in the balance of the forces in the transition
zone, the normal and tangential components of the electric force and the Laplace pressure should
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be of the same order of magnitude. We believe that for stable outflow of the jet, the viscoelastic and
inertial forces cannot exceed the capillary forces in the transition zone.

The jet shape was studied in detail both theoretically [16–20] and experimentally using various
methods [11,21,22]. Based on the analysis of the forces balance equation, it was shown that when
the tangential electric force and capillary force dominate, the jet radius scales with a distance z as
a(z) ∝ z−1. The similar scaling behavior was obtained from the balance of the tangential electric
and viscous forces [12]. In the case of the viscoelastic forces, a different scaling a(z) ∝ z−1/2 was
predicted [20,21]. Finally, the balance of the electric and inertial forces gives a(z) ∝ z−1/4 [16].

The dynamics of the polymer chains and the process of fiber formation during electrospinning
remain poorly studied. Experiments revealed the appearance of a phase transition accompanied
by the formation of string-like structures in the jet [23,24]. This behavior is consistent with the behavior
of the filaments of polymer solutions under extension [25]. It has been found that threads formed
by solutions of flexible-chain polymers can show exponential thinning, which is further replaced
by the emergence of blistering structures and, as a result, a fiber is formed [26–29]. Exponential
thinning is associated with the unfolding of polymer chains along the stretching axis [30] and
the blistering mechanism can be attributed to the flow-induced phase separation under extension [31].
A polymer/solvent demixing in polymer solutions arises due to flow-induced orientation of the polymer
chains, leading to a subsequent reversal of their effective interactions from repulsive to attractive.
As a result, the elongated chains tend to micro-separate and form a network of fibrils compressing
laterally by squeezing and releasing the solvent out to the jet surface [32,33].

In the present paper, the cone-jet mode formed by polymer solutions without entanglements was
studied. Based on the numerical analysis of the forces balance equation and the FENE-P rheological
equation (the FENE-P model means the finitely extensible nonlinear elastic model with approximation
of A. Peterlin to obtain a closed-form constitutive equation), we explored the orientation of the polymer
chains under electrospinning and the initial stage of aggregation of the stretched chains in the straight
section of the electrospinning jet.

2. Basic Equations

Consider a polymer solution jet emitted by cone-shaped meniscus. As far as the radius
of the straight jet a(z) varies slightly with the distance z, its behavior can be described using the slender
body approximation [17–20]. In the stationary regime, the flow velocity inside the jet and the extension
rate are presented as follows:

vz =
Q

πa2(z)
,

.
ε =

dvz

dz
' −

2Q
πa3

da
dz

(1)

It was assumed that the electrodes generate an electric field of strength E0 directed along the z-axis.
The following physical parameters were used: the polymer solution was characterized by its density ρ
and surface tension γ. Conductivity of ions in the solution was K.

Special attention has to be paid to the constitutive equation describing the polymer solution.
In order to capture the viscoelastic effects, also in a strong elongational flow, the FENE-P model of finite
extensible polymer chains was engaged [34,35]. The FENE-P model contains several parameters, namely
the polymer segment length as, the polymer chain length L, the elastic modulus G, and the relaxation
time τ. The linear viscosity of the polymer solution is expressed by means of the scaling relation η ' Gτ.
The polymer chain is modeled by a non-linear spring with the extension force f = 3kBT

asL
R

1−R2/L2 , where
kB is the Boltzmann constant, T is the temperature, and R is the end-to-end distance of a polymer
chain. The number of segments in the chain is N = L/as � 1. Note, the segment length is defined
through the mean-square end-to-end distance:

〈
R2

〉
0
= asL. The number of segments N is related

to the molecular weight of the chain M as N = M/Ms where Ms is the molecular weight of a segment.
For semi-dilute solutions without entanglements, τ ∝M2 (the Rouse time) and G ' nkBT where n is
the concentration of polymer chains.
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The constitutive equation of the FENE-P model is formulated in terms of a conformations tensor
A = 〈RR〉. Assuming that the stress tensor Σ is mainly determined by the polymer component and
the contribution of the solvent is relatively small, we have

Σ = G
A/R2

0 − I

1− trA/L2 (2)

The conformations tensor A obeys the equation

τ

[
∂A
∂t

+ (v · ∇)A− (∇v)T
·A−A · ∇v

]
+

A−R2
0I

1− trA/L2 = 0 (3)

where v is the velocity field. The velocity gradients in 3D are given by

(∇v)i j =
∂v j

∂xi
, (∇v)T

ij =
∂vi
∂x j

, i, j = 1, 2, 3 (4)

and R2
0 = 1

3

〈
R2

〉
0
.

Let us employ the cylindrical system of coordinates (z, r,ϕ) and assume that the jet is
axially symmetric. The longitudinal electric field Ez acting on the jet depends on z, but not on r.
Below, we consider the stationary straight segment of the jet, for which it is assumed Ez ' E0.
This approximation does not affect the predictions of the jet behavior. The electric current passing
through the jet is given by

I ' Ic + Ib ' 2πaσ f vz + πa2KEz (5)

where σ f is the surface density of the free charges. Here, we omitted the surface current Is, which is
relatively small. The radius of the jet is estimated from the force balance equation [13]

a2 d
dz

(γC− Fn) +
d
dz

[
a2

(
ρv2

z + Σnn − Σzz
)]
= 2aFz (6)

where Σnn ' Σrr is the normal to the free surface component of the stress tensor and C is the total
curvature of the surface. As has been noted above, the contribution of the normal electric force Fn

to the overall balance of forces in the jet is relatively small; therefore we will neglect this in the future.
The tangential component of the electric force is expressed via the surface charge density σ f as

Fz = σ f Ez (7)

In our consideration, we will assume that the electric current is known, therefore the surface
charge density can be expressed through the current based on Equation (5). Taking into account that
the capillary term is approximately γ dC

dz ' −
γ
a2

da
dz and using Equation (2), the momentum Equation (6)

is written as
da
dz

(
γ+

2ρQ2

π2a3

)
+ G

d
dz

 a2(Azz −Arr)/R2
0

1− (Azz + 2Arr)/L2

 = −E0a2

Q

(
I −πa2KE0

)
(8)

We can dimensionalize Equation (8) and rheological Equation (3) by using the following substitutions

a = b∗a, z = `z, A = AR2
0 (9)

where b∗ = γ/G and ` = Qτ
πb∗2 =

QηG
πγ2 are the intrinsic length-scales. After some transformations,

Equations (3) and (8) take the dimensionless form

dAzz

dz
+

4Azz

a
da
dz

+
a2

(
Azz − 1

)
1− δ

(
Azz + 2Arr

) = 0 (10)
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dArr

dz
−

2Arr

a
da
dz

+
a2

(
Arr − 1

)
1− δ

(
Azz + 2Arr

) = 0 (11)

da
dz

1 + ω

a3 −
2a

(
Azz + 2Arr

)
1− δ

(
Azz + 2Arr

) − 4δa
(
Azz −Arr

)2(
1− δ

(
Azz + 2Arr

))2

 = a4
(
Azz −Arr

)
(1− 3δ)(

1− δ
(
Azz + 2Arr

))3 − χa2
(
1− αa2

)
(12)

In the above formulas, δ =
R2

0
L2 = 1

3N , χ =
ηIE0
πγ2 , ω =

2ρQ2

π2γb∗3 =
2ρQ2G3

π2γ4 , and α = πb∗2KE0/I. The total

electric current is equal to twice the bulk current in the transition zone, I = 2Ib = 2πb2KE0, therefore
α = b∗2/(2b2). The parameter χ depends on the strength of the electric field and also on the flow rate
as far as the electric current generally depends on Q. The parameterω depends on the flow rate and can
be used to determine the magnitude of the inertia force. In our numerical calculations, we estimated χ
and ω based on the values of the process parameters, which usually vary over a wide range.

The initial conditions for Equations (10)–(12) are formulated in the transition zone. It is assumed
that b∗ exceeds the radius of the transition zone b. This allows the capillary forces to compensate
for the large normal stresses that occur in the transition zone. The initial radius of the jet is chosen from
equality of the bulk and convective currents (Ib = Ic): a(0) = 1/

√
2α. In the numerical calculations,

we put α = 10 and α = 400. The second case corresponds to a dilute solution of very long chains
having a small elastic modulus G ≤ 10 Pa [10,19]. Finally, the initial conformations of the polymer
chains were assumed to be close to Gaussian (i.e., Azz(0) = Arr(0) = 1).

3. Orientation of Polymer Chains

Equations (10)–(12) allow the conformations tensor of the stretched polymer chains and their
orientation to be found as a function of position z along the jet. We will characterize the orientation

by the order parameter s =
√(

Azz −R2
0

)
/L =

√
δ
(
Azz − 1

)
, where 0 ≤ s ≤ 1. For highly elongated

chains, Azz � 1, the order parameter equals to s = Rz/L where Rz is the size of the chain
along the jet axis. In our numerical analysis of Equations (10)–(12), we used the following three
combinations of the parameters N, χ, and α: (N = 200; χ= 1.4; α = 10), (N = 2000; χ= 10; α = 10),
and (N = 10, 000; χ= 0.5; α = 400). The values of the parameter ω were chosen in such a way
as to identify different modes of the jet behavior.

The calculations showed two modes of the jet behavior. In the first mode, when the parameter ω
was less than some critical value ω∗, ω < ω∗, a straight jet has a finite length (i.e., it terminates at a finite
distance from the transition zone). The corresponding dependences a(z), s(z), and Arr(z) are shown
in Figure 2a–d. The finite jet length is related to the divergence of the derivative da

dz → −∞ at some
distance from the transition zone. This behavior arises due to the finite extensibility of the polymer
chains and elastic deformation of the solution. Obviously, the slender body approximation cannot be
applied at the terminal point. The order parameter monotonically increases along the jet axis to some
maximum value at the end of the straight jet, whereas the transversal size of the elongated chain,
which is characterized by the component Arr(z), shows more complex behavior. It either decreases
monotonously or first decreases and then increases. The jet behavior after the straight section requires
special consideration. We expected the appearance of whipping instability in this case.

In the second mode, the jet always remains straightforward. The order parameter first increases
along the jet axis, and after reaching the maximum value, it begins to decrease (Figure 3a–c). In the case
of very long chains, N = 10, 000, we did not reach the maximum in our calculations (Figure 2c).
We believe that this is due to the very long relaxation time of such chains. The maximum should
appear at longer distances. The component Arr of the conformations tensor first decreases, and then
starts to grow. Such behavior indicates the occurrence of the chain relaxation process. It is interesting
to note that the relaxation of the transversal size of the chains begins earlier than the longitudinal one.
The second mode occurs when ω > ω∗.
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Figure 2. The jet radius a, the order parameter s, and the component Arr of the conformations
tensor as a functions of distance z in the case when the straight jet has finite length.
(a) N = 200; χ= 1.4; ω = 0.0071; α = 10; (b) N = 2000; χ= 10; ω= 0.01; α = 10;
(c) N = 10, 000; χ= 0.5; ω= 2× 10−6; α = 400 and (d) N = 10, 000; χ= 0.5; ω= 4× 10−6; α = 400.
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as a functions of distance z for straightforward jet mode. (a) N = 200; χ= 1.4; ω = 0.0095; α = 10;
(b) N = 2000; χ= 10; ω= 0.012; α = 10; (c) N = 10, 000; χ= 0.5; ω= 2× 10−5; α = 400.
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In order to elucidate the results, we plotted A
1/4
zz as a function of 1/a (Figure 4a–c),

and the Weissenberg number Wi =
.
ετ = 2

a3

∣∣∣ da
dz

∣∣∣ as a function of z (Figure 5a–c). The information
in Figure 4a–c allows us to estimate the role of elasticity in the behavior of the jet. Based on the graphs
in Figure 4a–c, we find component Azz as a function of the jet radius: Azz ' a4

0/a4. This dependence
is associated with the almost elastic deformation of the polymer solution after leaving the transition
zone. If we consider a small section of the jet of length ∆z0 and a volume πa2

0∆z0 inside the transition
zone, then due to conservation of the volume, its length after displacement by a certain distance is

∆z =
a2

0

a2 ∆z0 where a is the current radius. Thus, the longitudinal size of the chains increases a2
0/a2

times [9]. The order parameter changes according to the law s ' a2
0
√
δ/a2. It is interesting to note

that in this regime, the viscoelasticity partially compensates the inertia. This conclusion follows from
the analysis of the left-hand side of Equation (12) (the second and the third terms in the brackets behave
as 1/a3 but with the opposite sign).
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The calculations show that the Weissenberg number was large in the transition zone, Wi� 1, which
is in agreement with the experiment [9–11]. For N = 200 and N = 2000 (Figure 5a,b), the Weissenberg
number initially decreases with the distance when moving away from the transition zone. This decay
is associated with the effect of the inertial force, the value of which in the transition zone is close
to the value of the capillary force. Indeed, the inertial force leads to a slight decrease in the radius
of the jet with respect to distance, a ∝ z−1/4 [16]; therefore, the Weissenberg number decreases with
a decrease in the deformation rate as Wi =

.
ετ ∝ z−1/2. In the first mode (the red lines in Figure 5a–c),

at some distance from the transition zone, the fall gives way to rapid growth of the Weissenberg
number to infinity (the derivative da

dz → −∞ ), so the straight jet can no longer exist. This behavior is
associated with the increasing role of the finite extensibility of the chains. In the second mode (the green
lines), the Weissenberg number decreases monotonously and the chain conformations gradually relax
to equilibrium.
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In the case of very long polymer chains, N = 10, 000 (Figure 5c), the behavior is more complex.
The Weissenberg number initially increases with a distance. This means that the inertial forces are
relatively small in the transition zone and the jet dynamics are governed by the capillary, viscoelastic,
and electric forces. Note, the capillary and electrical forces lead to an increase in the rate of stretching,
.
ε ∝ z. A rapid increase in the Weissenberg number up to infinity proceeds when ω = 2× 10−6. Another
scenario arises when ω = 4 × 10−6: the Weissenberg number passes through a maximum and then
decreases with distance. After decreasing, it begins to grow again and rapidly goes to infinity. For large
values ω (we considered ω = 2× 10−5), the Weissenberg number decreases gradually with distance and
becomes less than one. The polymer chains relax and inertia dominates with respect to the capillary
and viscoelastic forces.

4. Dynamics of Chain Aggregation

As shown in earlier studies [31–33], the flow-induced orientation of the polymer chains reduces
their steric repulsion and shifts their interactions from repulsive to attractive. The attraction between
the polymer segments weakly depends on their orientation [36]. This leads to phase separation
of the polymer solution into a polymer and solvent. In the previous section, we showed that
macromolecules in the electrospinning jet become strongly stretched, therefore, phase separation can
also be in this case. Below, we study this effect in more detail. For analysis of the polymer/solvent
demixing, we considered a semiflexible chain of diameter d, Kuhn segment length l, and total length
L so that d � l � L. We associated this chain model with the previous chain model that was used
in the FENE-P rheological equation, assuming that the size of the polymer coils in both models was
equal (i.e.,

〈
R2

〉
0
' lL = asL = a2

s N). From here, we get as = l. The free energy of interactions

between the segments in the third virial approximation is given by Fint = 1
2 B2c2 + 1

3 B3c3, where
c is the concentration of the polymer segments (c = nN), and B2, B3 are the second and the third
virial coefficients, respectively. Within standard approximation, the second virial coefficient includes
the contribution from the steric repulsion and van der Waals attraction (i.e.,B2 '

π
2 l2dk, where

k = I(s)− Θ
T and Θ is Θ− temperatute). The function I(s) = 4

π

〈
sin β

〉
takes into account the anisotropy
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of steric repulsion. Here, β is the angle between two segments and averaging is performed over
the orientations of all pairs of segments. The graph of the function I(s) is shown in Figure 6. The third
virial coefficient is B3 '

3π2

32 l3d3I(s) [31].
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The steric repulsion between the extended chains decreases with an increase in their orientation,
therefore the balance between repulsive and attractive interactions is shifted toward attractions
as the Weissenberg number Wi =

.
ετ increases. The polymer/solvent phase separation occurs once

the osmotic modulus κ = 1
kBT

∂Π
∂c , where Π, the osmotic pressure, becomes negative. The osmotic

pressure involves the ideal gas term and contribution due to interactions,

Π = kBT
( c

N
+

1
2

B2c2 +
2
3

B3c3
)

(13)

We assumed that the chains were long, N � 1, therefore the osmotic modulus of the polymer
solution can be written as

κ '
πl
2d
φ(k + 3I(s)φ) '

πl
2d
φk (14)

Here, φ = π
4 d2lc < d

l is the volume fraction of the polymer in the solution, which is
below the transition point to the nematic phase. When the parameter k becomes negative,
the polymer solution starts to separate into polymer-rich and solvent phases. The volume fraction
of the polymer in the polymer-rich phase is obtained from the equality of osmotic pressure to zero:
φc ' |k|/I(s) ' T| k|/Θ � φ (it is assumed that |k| � 1) [31–33].

Next, we will consider the kinetics of phase separation in the jet, which occurs according
to the scenario of spinodal decomposition. The transitions between the states of the polymer solution
in the electrospinning process are shown in Figure 7. Let us assume that the critical condition
for the onset of phase separation occurs at some point z = z∗ when the Weissenberg number is
Wi(z∗) = Wi∗ � 1 and the order parameter is s∗ = s(z∗) (k(s∗) = 0). The spinodal decomposition
of the polymer solution should occur over a certain section of length ∆z = z− z∗ from the critical point.
In this case, the order parameter slightly increases by the value

∆s = s− s∗ ' a2
o
√

δ
(
1/ a2

∣∣∣
z∗+∆z − 1/ a2

∣∣∣
z∗
)
' s∗a∗2Wi∗∆z (15)

Here, a∗ = a(z∗) and the condition a∗ � ∆z � a∗
∣∣∣ da
dz

∣∣∣−1
z∗ = 2

(
a∗2Wi∗

)−1
must be fulfilled. The last

inequality gives a limitation on the polymer concentration in the solution that will be formulated below.
We determine the decomposition time t∗ as t∗ = `∆z/vz(z

∗) = τa∗2∆z. Obviously, inequality t∗/τ� 1
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is valid. To estimate t∗, consider the dynamics of concentration fluctuations δc(q, t) (q is the wave
vector, t is time), which in the linear approximation obeys the equation [32,33]

δc(q, t) = δc(q, 0)eΓ(q)t (16)

Here, the growth rate Γ(q) is given by

Γ(q) '
q2l2

τ0

(
|κ| −

q2l2

2
−

q2
zs∗2

2q2

)
'

q2l2

τ0

(
φl
d
θ∆z−

q2l2

2
−

q2
zs∗2

2q2

)
(17)

where θ = π
2 s∗a∗2Wi∗

∣∣∣I′(s∗)∣∣∣ and τ0 = τ/N2 is the segment relaxation time (we used approximation∣∣∣k(s∗ + ∆s)
∣∣∣ ' ∣∣∣I′(s∗)∣∣∣∆s). Depending on the wave vector q, some fluctuations will grow and some

will fade. Fluctuations will grow when Γ(q) > 0. The maximum growth rate Γ∗ corresponds to the

wave vector q∗, the modulus of which is
∣∣∣q∗∣∣∣ = q∗ =

(
φθ∆z

ld

)1/2
, and the projection onto the extension

axis is zero, qz = 0: Γ∗ ' 1
2τ0

(
φlθ∆z

d

)2
. As a result, in the jet cross-section (the plane (r,ϕ)), the

solution decomposes into polymer-rich and polymer-depleted regions (domains) so that the difference
in concentration between the regions is δc ∼ c (Figure 7c).
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of the transition zone, (b) stretched chains away from the transition zone, (c) inhomogeneous domain
structure formed after spinodal decomposition, (d) fibril network consisting of aggregates of the oriented
chains, (e) bundles formed by the fibrils.

The domains are characterized by a transversal size ξ = 2π/q∗ and the number of chains passing
through the cross-section of the polymer-rich domain is estimated as nd ∼ ξ

2cls∗. Taking into account
that spinodal decomposition occurs in time t ∼ t∗ and using the ratio Γ∗t∗ = Γ∗τa∗2∆z ∼ 1, we find
a characteristic interval ∆z = `∆z, the characteristic time t∗, and the size of the domains ξ in the emerging
inhomogeneous structure:

∆z '
Qτ
πa∗2

(
a∗2d
φLθ

)2/3

, t∗ ' τa∗2∆z ' τ
(

a∗2d
φLθ

)2/3

, ξ ' 2π(Ll)1/2
(

a∗2d
φLθ

)1/6

(18)
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The domains are elongated along the axis z and their typical longitudinal size is ξz = 2π/q∗z
where the wave number q∗z is found from the function Γ(q) of Equation (17) and is equals
to q∗z ∼ q∗2l/s∗. Therefore,

ξz ' 2πs∗L
(

a∗2d
φLθ

)1/3

(19)

Thus, an anisotropic domain microstructure (ξ � ξz � L) is formed (Figure 7c). Restrictions
on the interval ∆z result in the following restrictions on the polymer concentration: d

Nl
Wi∗1/2

|I′(s∗)|
� φ < d

l .
The last inequality is always valid when N is large enough.

Since the polymer concentration in the polymer-rich domains is less than the equilibrium
concentration, φ � φc, in the next stage of phase separation, these domains collapse. As a result,
a network of highly-oriented fibrils with diameter of d f ∼ ξ

√
φ/φc emerges (the number of chains

in the domain remains fixed) (Figure 7d). The characteristic collapse time is of the order of t∗ and is
much shorter than τ [32], therefore the network of fibrils could be fully developed in the straight jet
during the stretching regime. The latest stages that include aggregation of fibrils in bundles (Figure 7e),
and collapse of the network accompanied by the solvent release were studied for threads of polymer
solutions in [32,33]. Since the travel time of the chains inside the jet during electrospinning is very
short, these stages may not have time to be completed before the jet attains the collector. Rapid
solvent evaporation can also affect the kinetics of the phase transition. All of these issues require
further analysis.

5. Conclusions

The aim of the present theoretical work was to study the orientation of polymer chains during
electrospinning of semi-diluted polymer solutions without entanglements as well as to understand
how the orientation of the chains affects the dynamics of the jet and formation of the fiber. Evolution
of the chain conformations along the jet was examined based on a numerical solution of the forces
balance equation and the FENE-P rheological equation, allowing us to understand how the orientation
of the chains affects the dynamics of the jet and formation of the fiber. This made it possible to clarify
the role of the nonlinear viscoelasticity associated with the finite extensibility of polymer chains and its
correlation with the capillary and inertia forces. A non-equilibrium thermodynamic approach was
used to explore the kinetics of the oriented chain aggregation.

A new type of the jet instability, which differs from the Rayleigh instability and electrically
driven axisymmetric and non-axisymmetric (whipping) instability due to repulsion between charges
on the jet surface [1,37,38] was discovered. At a fixed electric field strength, this instability arises
when the Weissenberg number is Wi > 1, and the polymer solution mainly deforms elastically. In
this mode, the polymer chains are stretched monotonously up to some maximum value Rz,max, after
which their further stretching becomes impossible and the jet cannot be straight anymore. The
orientational order parameter, which is defined as the ratio of longitudinal size of the chain to its
contour length, increases along the jet axis as s ' a2

0
√
δ/a2

∝ (z/M)1/2 and attains the maximum
value smax = Rz,max/L in the end of the straight part of the jet. The length of the straight jet section
increases with the molecular weight linearly, L j ∝ M. We believe that furthermore, the jet exhibits
whipping motion and the polymer chains relax. For larger flow rates exceeding some critical value
the jet dynamics is stabilized by the inertial force, so it is always rectilinear. In this mode, the order
parameter changes non-monotonically along the jet: first, it increases up to a certain maximum value
(at that the Weissenberg number reduces to Wi ∼ 1) and then decreases. The decrease is associated with
relaxation of the polymer chains and is characterized by the Rouse time τ ∝M2. Thus, the dynamics
of growth and relaxation of the order parameter slows down with an increase in the molecular weight
of the chains. Transition between straightforward and whipping jet has been observed experimentally
in the electrospinning of concentrated solutions of polystyrene in dimethylformamide [39].
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The formation of fibers from the jet occurs as a result of the chain orientation, aggregation,
and evaporation of the solvent. The structure and properties of the fiber depend on the orientation
of the chains [40]. We showed that polymer chains can become strongly stretched along the flow
in the straight jet section, so that their orientational order parameter reaches the value of s > 0.5.
The high orientation of polymer chains can lead to phase separation of the polymer solution [33]. In our
model, the attraction between the chains is due to the van der Waals interaction, while the repulsion
occurs due to the steric interaction that is reduced with increasing orientation of the chains. Analysis
of the phase separation kinetics shows the formation of an inhomogeneous concentration pattern

on the jet section of length ∆z ∼ Qτ
a∗2

(
d
φL

)2/3
∝ M4/3 after passing the critical point. This pattern

emerged during the time t∗ ∼ τ
(

d
φL

)2/3
∝M4/3, which is much shorter than the chain relaxation time τ,

and is characterized by the lateral length ξ ∼ (Ll)1/2
(

d
φL

)1/6
∝M1/3, and longitudinal correlation length

ξz ∼ s∗L
(

d
φL

)1/3
∝M2/3 (see Figure 7c). After aggregation of the chains in the concentrated domains,

the inhomogeneous structure transformed into a network of fibrils, from which string-like structures are
formed [32,33]. The emergence of the string-like structures in the straight jet of concentrated polymer
solutions has been predicted experimentally [23,24], and this behavior correlated with our results.
However, the question of the effect of entanglement remains open.
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