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Abstract: Hybrid floors infilled with polymeric materials between two steel plates were developed
as a prefabricated floor system in the construction industry. However, the floor’s fire resistance
performance has not been investigated. To evaluate this, fire tests suggested by the Korean Standards
should be performed. As these tests are costly and time consuming, the number of variables were
limited. However, many variables can be investigated in other ways such as furnace tests and
finite element analysis (FEA) with less cost and time. In this study, furnace tests on heated surface
areas smaller than 1 m2 were conducted to investigate the thermal behavior of the hybrid floor at
elevated temperatures. To obtain the reliability of the proposed thermal behavior analytical (TBA)
model, verifications were conducted by FEAs. Thermal contact conductance including interfacial
thermal properties between two materials was adopted in the TBA model, and the values at elevated
temperatures were suggested based on thermo-gravimetric analyses results and verified by FEA.
Errors between the tests and TBA model indicated that the model was adequate in predicting the
temperature distribution in small-scale hybrids. Furthermore, larger furnace tests and analysis results
were compared to verify the TBA model’s application to different sized hybrid floors.

Keywords: polymeric material; hybrid floor; thermal contact conductance; thermal behavior analytical
model; fire resistance performance

1. Introduction

Prefabricated composite hybrid floors, which consist of polymeric materials between top and
bottom steel plates, such as sandwich panels (Figure 1), were developed to apply to steel structures [1–9].
Because the polymeric materials in the floor have strong bond strengths with steel plates under large
deformations, the hybrid floor exhibits fully composite and interaction behaviors under loading [1–3,10–12].
As bottom steel plates and bottom parts of polymeric materials lose their mechanical properties
at elevated temperatures, wire meshes enhance the bending capacity of the floor. The structural
performance of the floor at the ambient temperature was investigated, and the serviceability, including
the floor vibration and damping ratio, was also studied [1–5]. The hybrid floor system with insulating
materials for preventing fire were installed in two actual buildings, a church and a residential
building. Floor vibration tests were conducted, and the dynamic characteristics of the buildings were
investigated [5].
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and integrity-related occurrences of flames at unheated surfaces during fire tests belong to the 
criteria. In the case of this floor system, fire tests were conducted on the horizontal equipment, and 
the lower parts of the specimen were heated by a standard-fire-heating-curve equal to the 
International Organization for Standardization (ISO) 834 curve [15,16]. When any criterion was 
unsatisfied, the time would be the fire resistance ratings of the specimen. Because there is no question 
of a flame appearing at the unheated surfaces of the hybrid floor, only the stability and insulation 
were used for evaluating the fire resistance performance of the floor. Preliminary fire tests were 
conducted to survey the behaviors at elevated temperatures caused by many factors such as the phase 
changes of polymeric materials, interfacial properties between the steel and polymeric material, and 
the possibility of flames in the polymeric materials [6–9]. These tests showed that many factors could 
predict the fire resistance performance of the hybrid floor. 

The fire tests based on the KS and ISO are time intensive and costly to conduct. As the Republic 
of Korea has very few authorized furnaces, a long waiting time was required to conduct the tests, 
and few specimens could be investigated. Therefore, analytical studies or furnace tests with 
numerous variables were the most efficient ways to study the fire resistance performance of the 
hybrid floor [17,18]. The procedure for the analytical studies is shown in Figure 2. Thermal properties 
and the applied theories of heat transfer were quite important because the results of the heat transfer 
analysis determined the mechanical properties of the elements at elevated temperatures in the 
structural analysis. Thus, to improve the reliability of the analytical studies, accurate thermal 
properties including the interfacial properties of the composite members should be adopted. 

 
Figure 2. Procedure of the analytical studies for fire resistance. 

Figure 1. Components of the hybrid floor.

To be an absolute prefabricated floor system, this hybrid floor must exhibit the fire
resistance performance required in the Republic of Korea. The fire resistance performances of
horizontal members in buildings are evaluated by three criteria based on Korean Standards
(KS) [13,14]. The stability-related deformation and rate of the deformation, insulation-related changes
in temperatures, and integrity-related occurrences of flames at unheated surfaces during fire tests
belong to the criteria. In the case of this floor system, fire tests were conducted on the horizontal
equipment, and the lower parts of the specimen were heated by a standard-fire-heating-curve equal to
the International Organization for Standardization (ISO) 834 curve [15,16]. When any criterion was
unsatisfied, the time would be the fire resistance ratings of the specimen. Because there is no question
of a flame appearing at the unheated surfaces of the hybrid floor, only the stability and insulation were
used for evaluating the fire resistance performance of the floor. Preliminary fire tests were conducted
to survey the behaviors at elevated temperatures caused by many factors such as the phase changes of
polymeric materials, interfacial properties between the steel and polymeric material, and the possibility
of flames in the polymeric materials [6–9]. These tests showed that many factors could predict the fire
resistance performance of the hybrid floor.

The fire tests based on the KS and ISO are time intensive and costly to conduct. As the Republic
of Korea has very few authorized furnaces, a long waiting time was required to conduct the tests,
and few specimens could be investigated. Therefore, analytical studies or furnace tests with numerous
variables were the most efficient ways to study the fire resistance performance of the hybrid floor [17,18].
The procedure for the analytical studies is shown in Figure 2. Thermal properties and the applied
theories of heat transfer were quite important because the results of the heat transfer analysis determined
the mechanical properties of the elements at elevated temperatures in the structural analysis. Thus,
to improve the reliability of the analytical studies, accurate thermal properties including the interfacial
properties of the composite members should be adopted.
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Studies on thermal contact conductance (TCC), an interfacial property, have been conducted since
the 1950s [19]. TCC can be measured by the temperature drops (T2B-T2A) between two materials owing
to invisible interstitial gaps at the contact surfaces (A-B) as shown in Figure 3.
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For building structural members, studies on TCC have been conducted by researchers since the
2000s, and only the TCC between concrete and steel were investigated [20–26]. From the results of these
studies, many researchers applied the TCC theory and the obtained values to the analytical modeling
for estimating fire resistance performance. In addition, studies about TCC between metal and polymers
were performed, and these results provided the values for the analytical modeling in this study [27–29].
The reason TCC should be considered in evaluating the fire resistance performance of hybrid floors is
because the difference in temperature distribution (Figure 4) will determine inappropriate mechanical
properties and predict invalid deformations at elevated temperatures.
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The aim of this study was to investigate the thermal behavior of a hybrid floor at elevated
temperatures based on previous studies and propose an analytical model to predict the temperature
distribution of elements that are the basis of estimations of fire resistance performance. In addition,
the reliability of the proposed analytical model, a thermal contact conductance-based thermal behavior
analytical (TBA) model, was enhanced by verifications using a finite element analysis (FEA) that
simulated the furnace tests.

2. State-of-the-Art Studies

2.1. Hybrid Floor

The polymeric materials are a one of type of polyurethane formed by reacting a diisocyanate
that contains phosphorous with a polyol mixture. The mechanical properties tests of polymeric
materials were conducted based on the American Society for Testing and Materials (ASTM) and
are listed in Table 1 [1–3]. Although the tensile, compressive strengths, and elasticity modulus of
polymeric materials were much weaker than those of general steel plates, the ultimate strains of
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polymeric materials were much larger than those of general steel plates. Based on flexural tests of
the hybrid floor, the experimental flexural strengths were 8% higher than theoretical plastic moment
strengths [1–3]. For predicting the calibration of deformation, Kim [2] suggested that summation of
theoretical bending and shear deformation should be divided by 0.85. In addition, the FEA of the floor
was performed to examine the state of stress generated between the steel plates and the polymeric
materials [3]. Floor vibration of the floor that had both pined supports can be predicted by Steel
Construction Institute (SCI) publication [4,30]. In addition, the floor vibration tests of actual buildings
were performed, and the results exhibited that the floor showed equal performance of original steel
structures slabs recommended by the American Institute of Steel Construction (AISC) [31].

Table 1. Mechanical properties of the polymeric materials [3].

Property Value

ρ: Density (kg/m3) 1178
σt: Tensile strength (MPa) 31.4
Et: Modulus of elasticity in tension (MPa) 1277
σc: Compressive strength (MPa) 23.1
Ec: Modulus of elasticity in compression (MPa) 461
ν: Poisson’s ratio 0.39

Preliminary fire tests in accordance with KS and ISO were conducted [5–7]. After 26 min, the fire
tests were stopped because of the spacers that were installed for improving the efficiency of the
manufacturing process in the factory. From these tests results, 2~5 mm charred layer that behaved as
an insulation material was revealed at the bottom part of the polymeric materials and heated through
the exposed surfaces similar to the char of wood structures [32–35] and decomposition of sandwich
systems [36] in fire conditions. In addition, a gap between the lower steel plates and charred layer
occurred due to the air that inevitably appears in polymeric materials during the manufacturing process.
These results indicate that the thermal performance of polymeric materials should be improved to be
a fire-resistant structure. Finally, the fire-resistant polymeric material was developed and compared
with the original materials through a thermal gravimetric analysis (TGA) as shown in Figure 5.
TGA shows the residual mass for the test materials at elevated temperatures. In Figure 5, a differential
thermal analysis (DTA) result that provides data on the transformations that have occurred such as
phase change for fire-resistant polymeric materials were neglected because the DTA result showed
that those values were very small. This meant that the latent heat of polymeric materials due to
phase change can be ignored because DTA shows the latent heat of materials at elevated temperatures.
The differences between the original polymeric materials and fire-resistant polymeric materials were
combustibility and the sustainability of the charred state that would explain the results of the tests.

2.2. Thermal Contact Conductance Studies for Structural Elements

Although fire studies were conducted on various structural members, the heat transfer analysis
containing basic heat transfer theory—conduction, convection, and radiation—and moisture changes
did not include the interface between two materials. For this reason, the numerical studies usually
exhibit more conservative results than the experimental studies [37,38]. Therefore, some researchers
suggested that the TCC between two materials should be considered and that it would make the results
more significant compared with those that ignore the TCC [20,21,26]. Many researchers conducted
tests to determine the TCC between concrete and steel in structural members. Based on these studies,
the values of the TCC range from 38.1 to 200 W/m2

·K [20–26]. However, there is no study on the TCC
between polymers and steel that can be applied to a floor under fire.



Materials 2020, 13, 4257 5 of 16Materials 2020, 13, x FOR PEER REVIEW 5 of 17 

 

 

Figure 5. Thermal gravimetric analysis (TGA) and differential thermal analysis (DTA) results of 
original and fire-resistant polymeric materials. 

2.2. Thermal Contact Conductance Studies for Structural Elements 

Although fire studies were conducted on various structural members, the heat transfer analysis 
containing basic heat transfer theory—conduction, convection, and radiation—and moisture changes 
did not include the interface between two materials. For this reason, the numerical studies usually 
exhibit more conservative results than the experimental studies [37,38]. Therefore, some researchers 
suggested that the TCC between two materials should be considered and that it would make the 
results more significant compared with those that ignore the TCC [20,21,26]. Many researchers 
conducted tests to determine the TCC between concrete and steel in structural members. Based on 
these studies, the values of the TCC range from 38.1 to 200 W/m2∙K [20–26]. However, there is no 
study on the TCC between polymers and steel that can be applied to a floor under fire. 

2.3. Thermal Contact Conductance between Polymer and Metal 

Because there is no study for the TCC between polymers and steel, the values of the TCC 
between the polymer and metal were used. Fuller and Marotta [27] proposed a TCC model of 
polymer/metal and verified it with experimental data. The values of the TCC obtained by the model 
and data were between 40 and 270 W/m2∙K at various contact pressures. Bahrami et al. [28] proposed 
the compact analytical thermal contact resistance (TCR) model that was the inverse of the TCC and 
verified it with 13 polymer-metal data sets containing 127 experimental data points. The values of the 
TCC by the compact analytical model had a range of 22–250 W/m2∙K at various contact pressures. 
Gibbins [29] suggested a TCR value of approximately 8 K/W at atmospheric pressure for a specimen 
with a 25.4 mm diameter. Based on that result, the TCC can be obtained as 246.7 W/m2∙K. In reference 
to the studies, the TCC values between polymer and metal with various air pressures were between 
40 and 270 W/m2∙K. 

3. Thermal Behavior at Elevated Temperatures 

3.1. Furnace Tests 

Furnace tests with a 0.01 m2 heated surface were conducted to investigate the fire resistance 
performance of the hybrid floor. The specimen size and setup of the furnace test known as a cone 
calorimeter [39–46] are shown in Figure 6. The aim of the tests was to effectively investigate the 
thermal behavior of the hybrid floor at elevated temperatures. The heated surface was uniformly 
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and fire-resistant polymeric materials.

2.3. Thermal Contact Conductance between Polymer and Metal

Because there is no study for the TCC between polymers and steel, the values of the TCC between
the polymer and metal were used. Fuller and Marotta [27] proposed a TCC model of polymer/metal
and verified it with experimental data. The values of the TCC obtained by the model and data
were between 40 and 270 W/m2

·K at various contact pressures. Bahrami et al. [28] proposed the
compact analytical thermal contact resistance (TCR) model that was the inverse of the TCC and
verified it with 13 polymer-metal data sets containing 127 experimental data points. The values of
the TCC by the compact analytical model had a range of 22–250 W/m2

·K at various contact pressures.
Gibbins [29] suggested a TCR value of approximately 8 K/W at atmospheric pressure for a specimen
with a 25.4 mm diameter. Based on that result, the TCC can be obtained as 246.7 W/m2

·K. In reference
to the studies, the TCC values between polymer and metal with various air pressures were between
40 and 270 W/m2

·K.

3. Thermal Behavior at Elevated Temperatures

3.1. Furnace Tests

Furnace tests with a 0.01 m2 heated surface were conducted to investigate the fire resistance
performance of the hybrid floor. The specimen size and setup of the furnace test known as a cone
calorimeter [39–46] are shown in Figure 6. The aim of the tests was to effectively investigate the thermal
behavior of the hybrid floor at elevated temperatures. The heated surface was uniformly heated at
a rate of 30 kW for 24 min. The k-type thermo-couples that have 0.75% errors were installed at heated
and unheated surfaces. The test was stopped when an unexpected excessive deformation occurred that
was considered in the other tests. The temperature results of the heated, unheated, and side surface are
shown in Figure 7.
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3.2. Insulated Furnace Test

The difference from the previous furnace tests was the boundary conditions of the unheated and
side surfaces. The unheated surfaces of this test were perfectly insulated, and this led to the specimen’s
elevated temperature. The size of the specimen and the setup of the insulated furnace test are shown
in Figure 8. The aim of the tests was to investigate the thermal behavior of the hybrid floor at a more
extreme condition than that of the cone calorimeter tests because there was little significant temperature
and phase change during the previous tests. The k-type thermo-couples that have 0.75% errors were
installed at the unheated surface. The surface was heated for 54 min by the heating curve that targeted
the standard curve, and the unheated and side surfaces were insulated as shown in Figure 9. Therefore,
the temperature changes in the specimen showed large differences.
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3.3. Thermal Behavior Based on the Furnace Tests

The phase changes of the hybrid floor at elevated temperature were divided into three stages as
shown in Figure 10. First, the polymeric materials in the floor were in the solid state. The first stage was
called the solid state. In the solid state, the properties of the polymeric materials were controlled only
by the temperatures. Second, the polymeric materials in the floor displayed rubber and liquid state,
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and the rubber state and liquefied polymeric materials turned into charred polymeric materials or air.
The second stage was called the partially charred state. In the partially charred state, air created a large
gap between the polymeric materials and heated surface. Finally, the charred polymeric materials
created a layer between the solid-state polymeric materials and lower steel plates that were the heated
surface in the tests. The third stage was called the fully charred state, and the thickness of the charred
layer remained at 2–5 mm that was disclosed in the preliminary fire furnace tests. As this layer behaved
as an insulation layer in fully charred state, the heat transfer from the heated surface to polymeric
materials was weak, and the heat flow detoured to the sides or the weak spots in the charred layer.
Based on the TGA results, the range of temperatures for charred were 370–500 ◦C, and the polymeric
materials remained perfectly charred and in a gaseous state over 500 ◦C.
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4. Verifications with Finite Element Analysis

To apply the thermal behavior to predict the temperature distribution of the floor, the reliability of
the TBA model should be obtained. In this study, the reliability of the TBA model was obtained by
an FEA that simulates furnace tests. The FEA program ABAQUS 2017 was used. The DC3D8, which is
an 8-node linear heat transfer brick, was used to generate the meshes. The material properties including
density, thermal conductivity, and specific heat at elevated temperatures of steel were obtained
from Eurocode 3 [47]. Other material properties including density, thermal conductivity, and specific
heat of polymeric materials below 300 ◦C were obtained from material tests and linear proportional
assumptions based on the standards [48]. The tests, known as the flash method used to measure values
of thermal diffusivity of a wide range of solid materials, based on the standards measure the thermal
diffusivity that consists of specific heat, density, and thermal conductivity. The material properties
of polymeric materials over 500 ◦C were assumed as air and obtained from a study [49]. The TCC
between steel and polymer at ambient temperature was determined by previous studies [27–29] as
250 W/m2

·K. The reduction ratio of TCCs at elevated temperatures followed the results of the TGA
with insignificant modification based on FEA results and previous TCC studies between polymers and
metal. The boundary conditions, including the heat transfer, convection, and radiation, at heated and
unheated surfaces, were determined by several studies [47,50–68]. A summary of the material and
interfacial properties is shown in Figures 11–13. The proposed TCC at elevated temperatures in this
study can be written as

TCC(W/m2
·K) =



250

250− 0.6932(T − 260)

173.75− 1.3875(T − 370)

104.38− 0.2734(T − 420)

82.5− 0.05438(T − 500)

55.31

(T ≤ 260 °C)

(260 °C < T ≤ 370 °C)

(370 °C < T ≤ 420 °C)

(420 °C < T ≤ 500 °C)

(500 °C < T ≤ 1000 °C)

(1000 °C < T)

(1)
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where T is the temperature. The furnace tests were selected to verify the TBA model based on the FEA.
In addition, other furnace tests had a 6.25 times larger heated surface and were used to obtain the
reliability of the TBA model for larger-scale tests. The results of the conventional model that simulates
the furnace tests without the TCC were also compared to determine the importance of the TCC in
this study.
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4.1. Furnace Tests

The boundary conditions showing the emissivity and convection coefficients in the FEA for the
heated and unheated surfaces are listed in Table 2. The reason the convection at the unheated surfaces
was not considered was because of the body frame that fixed the specimen surrounding the unheated
surfaces as shown in Figure 6. The average errors of the analysis results from the TBA and conventional
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models compared with the test results were 9.60% and 15.90%, respectively, while the corresponding
standard deviations of the errors were 14.09% and 13.44%, as shown in Table 3. The error reduction of
the TBA model compared with the conventional model was 60.38%. The reason the errors showed
these larger results was because the thermal lag time was ignored in the interstitial properties and this
caused a significant difference at the early time [69]. The errors at a specific time can be written as

εtime(%) =

∣∣∣∣∣∣∆Tanalysis − ∆Ttest

∆Ttest

∣∣∣∣∣∣ =
∣∣∣∣∣∣∣
(
Tanalysis,time − Tinitial

)
− (Ttest,time − Tinitial)

(Ttest,time − Tinitial)

∣∣∣∣∣∣∣ (2)

where T is the temperature. In calculating the errors’ average and standard deviation, the unheated
surfaces that significantly influenced the TBA model in this study were considered. The small
temperature differences at the heated surfaces were generated by the initial temperature of the
specimen because of the error in the thermocouples.

Table 2. Boundary conditions of furnace tests in FEA.

Tests

Heated Surface Unheated Surface

Convective
Coefficient
(W/m2

·K)

Emissivity
of Fire

Surface Emissivity
of Member

Convective
Coefficient
(W/m2

·K)

Emissivity
of Fire

Surface Emissivity
of Member

Furnace tests 10 1 0.7 - 1 0.7
Insulated furnace tests 25 0.8 0.7 Insulated

Larger
furnace tests (Thickness:

50 mm)
25 1 0.7 4 1 0.7

Larger
furnace tests

(Thickness: 60 mm)
120 1 0.9 4 1 0.7

Table 3. Errors average and deviation of analysis results compared with the test results.

Tests

TBA Model Conventional Model Error Reduction
(mwT)

/(mwoT)
Average
(mwT)

Standard
Deviation

Average
(mwoT)

Standard
Deviation

Furnace tests 9.60% 14.09% 15.90% 13.44% 60.38%
Insulated furnace tests 14.74% 24.30% 20.61% 23.26% 71.52%

Larger
furnace tests (Thickness: 50 mm) 20.99% 23.49% 23.77% 24.63% 88.30%

Larger
furnace tests

(Thickness: 60 mm)
26.03 33.31% 35.86% 32.58% 72.59%

4.2. Insulated Furnace Tests

The boundary conditions showing the emissivity and convection coefficients in the FEA at the
heated surfaces are listed in Table 2; moreover, the unheated surfaces were perfectly insulated. In the
insulated furnace tests, only the temperatures of the furnace and unheated surface were measured due
to a limitation of the furnace shown in Figure 8. The average error of the analysis results with the TBA
and conventional models were 14.74% and 20.61%, respectively, while the error deviations were 24.30%
and 23.26%, as listed in Table 3. The error reduction of the TBA model compared with the conventional
model was 71.52%. The average error reduction was 65.95%. Based on the verification results of the
two furnace tests, the TBA model proved to be a valid thermal model to predict the temperatures of
the hybrid floor at elevated temperatures.

4.3. Larger Furnace Tests

The aim for verifying the larger furnace test results was to obtain the reliability of predicting the
temperature distribution of a larger-sized floor with the FEA results. The specimen size and the test
setup are shown in Figure 14. The k-type thermo-couples that have 0.75% errors were installed at
heated, unheated, and side surfaces. The boundary conditions showing the emissivity and convection
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coefficients in the FEA at the heated and unheated surfaces are listed in Table 2. As the heating
capacity of the larger furnace was irregular, two tests results were used. The test with a 60-mm
specimen thickness showed the largest heat capacity, and the other test that had a 50-mm specimen
thickness took the longest time to complete. The test results and analysis are shown in Figures 15
and 16. The average errors for the 50-mm analysis results with the TBA and conventional models were
20.99% and 23.77%, respectively, while the corresponding error deviations were 23.49% and 24.63%.
The average errors for the 60-mm analysis results with the TBA and conventional models were 26.03%
and 35.86%, respectively, while the corresponding error deviations were 33.31% and 32.58%. The error
reductions for the 50- and 60-mm TBA models compared with the conventional model were 88.30%
and 72.59%, respectively. The entire average error reduction including the smaller furnace tests was
73.20%. The reliability of the TBA model applied to larger furnaces that was proposed for smaller
furnace tests was obtained by the above results.
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5. Conclusions

A hybrid floor was developed as a prefabricated floor system for steel structures. Based on
previous studies, the floor has a good structural performance and serviceability. To be a more effective
floor that can be applied to actual buildings without insulating materials for fire prevention, the floor
should show an acceptable fire resistance performance as evaluated through tests conducted in Korea
based on the KS. As the fire tests demand enormous costs and time to conduct, the number of specimen
variables was limited. Therefore, more efficient methods such as the FEA and furnace tests that allowed
for numerous variables were performed in this study to investigate the thermal behavior of the hybrid
floor at elevated temperatures. In addition, FEAs with ABAQUS 2017 were performed to verify the TBA
model, and larger furnace test results were used to verify the effect on larger-sized floors. In accordance
with the furnace tests and FEA, the following points summarizes the results presented herein.
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(1) The application of TCC related to the contact issues between two materials for predicting the
time history of temperature distributions obtained more reliable analysis results compared with
the results without considering TCC. The analysis results with TCC showed errors reduced by
73.20% compared with the results without TCC.

(2) When the TCC between polymeric materials and steel at elevated temperatures could not be
measured, it can be determined by the results of the TGA that was reliable deduction based on
previous studies and the analysis results.

(3) The proposed TBA model showed average errors of 17.84% in the analysis results compared with
the time history of tests results. This means the proposed analytical modelling was a reliable way
to predict the temperature distribution of the hybrid floor at elevated temperatures.

(4) When the polymeric materials exhibited thermal properties and TGA results analogous with the
ones in this study, the TCC at elevated temperatures with steel in Equation (1) could be used to
calculate the temperature distribution in the elements that contained contact problems between
polymeric materials and steel.
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