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Abstract: Electrical and noise properties of graphene contacts to AlGaN/GaN heterostructures
were studied experimentally. It was found that graphene on AlGaN forms a high-quality Schottky
barrier with the barrier height dependent on the bias. The apparent barrier heights for this kind
of Schottky diode were found to be relatively high, varying within the range of ϕb = (1.0–1.26) eV.
AlGaN/GaN fin-shaped field-effect transistors (finFETs) with a graphene gate were fabricated and
studied. These devices demonstrated ~8 order of magnitude on/off ratio, subthreshold slope of ~1.3,
and low subthreshold current in the sub-picoamperes range. The effective trap density responsible
for the 1/f low-frequency noise was found within the range of (1–5) · 1019 eV−1 cm−3. These values
are of the same order of magnitude as reported earlier and in AlGaN/GaN transistors with Ni/Au
Schottky gate studied as a reference in the current study. A good quality of graphene/AlGaN Schottky
barrier diodes and AlGaN/GaN transistors opens the way for transparent GaN-based electronics and
GaN-based devices exploring vertical electron transport in graphene.

Keywords: graphene; AlGaN/GaN; Schottky diode; field-effect transistor; finFET; noise

1. Introduction

The invention of graphene opened the road to new exciting physics and new devices based on the
unique ultimate geometry of graphene and its specific physical properties and effects. Among them
are extremely high carrier mobility [1–3], quantum Hall effect at room temperature [4], huge thermal
conductivity [5], extreme sensitivity, and possible selectivity to ambient gases [6,7].

The majority of the graphene research deals with in-plane (lateral) current transport. A much less
explored field is vertical transport through graphene and other two-dimensional materials. Indeed,
there are just a few fields of research activity in this direction: transparent electrodes for light-emitting
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diodes and displays [8], vertical graphene-based hot electron transistors [9–11], and phase transitions
in 2D transition metal chalcogenides [12].

Another promising field, which is the topic of the current letter, is graphene electrodes for
electronic devices. It is known that graphene can form either an ohmic or Schottky barrier contact
to semiconductors (see Reference [13] and references therein). This gives an opportunity to fabricate
all transparent electrodes field-effect transistors and other devices. In the case of wide bandgap
semiconductors, like GaN and SiC, which are transparent in the visible spectral range, it provides
an opportunity for all transparent circuits. Graphene contacts withstand very high temperature [14],
therefore graphene contact circuits are promising for high-temperature applications as well.

The combination of graphene on the top of the AlGaN layer in AlGaN/GaN high-electron-mobility
transistors (HEMTs) and 2D electron gas (2DEG) on AlGaN/GaN interface create a unique system with
two closely spaced high-conductivity 2D layers. This kind of system is a promising platform to study
the Coulomb interactions [15] and two-stream instability in the terahertz frequency band [16,17] in the
system of massless electrons in graphene and 2D electrons in GaN.

Although graphene/AlGaN/GaN heterostructures are promising for several applications,
the properties of them are only preliminary studied.

In this work, we studied the properties of the graphene for AlGaN contact and the behavior
of AlGaN/GaN finFETs with the graphene Schottky barrier gate. Special attention was paid to the
low-frequency noise properties, which characterize the quality of the structures and are crucial for the
majority of applications.

2. Device Fabrication and Experimental Details

The AlGaN/GaN structures were grown by the Metalorganic Vapour Phase Epitaxy method
in the closed coupled showerhead 3 · 2 inch Aixtron reactor (Aixtron, Herzogenrath, Germany).
The epistructure consisted of 2 nm GaN cap, 25 nm Al0.15Ga0.85N barrier layer, 2.7 µm intentionally
undoped GaN layers, and 100 nm Al0.03Ga0.97N buffer. The schematic of the layer sequence and
qualitative band diagram of the structure are shown in Figure 1. All epilayers were grown on the
c-plane sapphire substrate.
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Figure 1. Layer structure and qualitative band diagram of graphene/AlGaN/GaN heterostructure used
to study graphene/AlGaN Schottky barrier and graphene gate finFETs (not in scale).

The device processing was performed using a commercial laser writer system (Microtech, Palermo,
Italy) for lithography processing with the 405 nm GaN laser source. In order to separate devices on the
wafer, the shallow 150 nm mesas were etched using Inductively Coupled Plasma-Reactive Ion Etching
(ICP-RIE) (Oxford Instruments, Bristol, UK) (also shown in Figure 1). The mesas had the shape of the
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rectangles with sides sized from 2 to 20 µm. Graphene layers were deposited first on the whole wafer
and then patterned using oxygen plasma etching.

We used a commercially available single-layer graphene (Graphenea, San Sebastián, Spain)
produced by chemical vapor deposition (CVD) method on the surface of thin copper foils [18].
The step-by-step procedure of graphene transfer from a copper foil to AlGaN/GaN structures is
shown in Figure 2. In order to detach graphene from Cu substrate, the high-speed electrochemical
delamination (ED) process was used [19]. For this purpose, a thin layer of poly (methyl methacrylate)
PMMA solution (4% in anisole) (MicroChemicals, Ulm, Germany) was spin-coated onto graphene/Cu
stack. Then, using a custom-made mechanism, the Cu/Gr/PMMA stack was slowly and vertically
immersed in potassium chloride solution (KCl, 1 mol/dm3) (Chempur, Piekary Śląskie, Poland) starting
from the edge of the stack. As a result, Gr/PMMA separated from Cu foil and remained floating on
the electrolyte surface. After that, the detached Gr/PMMA stack was moved to deionized water to
rinse the electrolyte residue, transferred onto AlGaN/GaN structure, and heated at ~130 ◦C to make
better contact. Finally, the PMMA support was carefully removed in acetone, and the structure with
graphene was rinsed in IPA. This procedure allowed us graphene deposition on large area substrates of
1 inch or more in diameter. Measurements of the back-gate transistors fabricated using this graphene
indicated its p-type.
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Figure 2. Main technological steps of graphene transfer procedure from copper foil to AlGaN/GaN
structure. (a) graphene grown on copper; (b) PMMA coating; (c) Gr/PMMA is separated from Cu foil;
(d) Gr/PMMA is transferred onto AlGaN/GaN structure; (e) Gr/PMMA onto AlGaN/GaN structure;
(f) clean Gr/AlGa/GaN heterostructure.

The quality of the graphene layers was controlled with Raman spectroscopy and Scanning Electron
Microscopy (SEM). The surface morphology of the transferred graphene samples was investigated by
Auriga CrossBeam Workstation (Carl Zeiss) (Oberkoche, Germany). Figure 3a shows SEM images of
graphene layers transferred onto AlGaN/GaN structure. Dark spots are regions of multilayer graphene,
which are characteristic of graphene grown on copper foil. Raman spectra were measured with
Renishaw InVia micro-Raman (Renishaw, Wotton-under-Edge, UK) using the 532 nm wavelength laser.
The representative Raman spectrum of the graphene structure shown in Figure 3b includes three main
peaks: G (1585 cm−1), 2D (2680 cm−1), and D (1350 cm−1). Low Full Width at Half Maximum (FWHM
about 32 cm−1) of the 2D peak, as well as a much higher intensity of the 2D mode by comparison with
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the intensity of the G peak (2D/G > 2) are characteristic of the monolayer of graphene. Very low D mode
amplitude indicates the high quality of the graphene structures. After high-speed electrochemical
delamination, graphene was patterned in oxygen plasma using an Oxford Instruments Plasmalab 80
Plus ICP-RIE system (Oxford Instruments, Bristol, UK).
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Figure 3. SEM image of graphene on the top of AlGaN/GaN structure (dark spots correspond to
multilayer graphene islands) (a), Raman spectra of graphene (b).

As a result of the etching, graphene remained on the mesas leaving the short ends of the rectangular
mesas free from it. These parts of the mesas were used to fabricate ohmic contacts to 2DEG. In order
to form ohmic contacts, Ti/Al/Ni/Au (150/1000/400/500 Å) layers were deposited and rapid thermal
annealed at 800 ◦C in the nitrogen atmosphere for 60 s.

Parts of the graphene remained out of the mesas on GaN buffer and were used to fabricate
Cr/Au (50/1850 Å) ohmic contacts to it. The resulting design represents finFET with the graphene
gate. This design allowed us to study the properties of the graphene AlGaN Schottky barrier and the
characteristics of the finFETs themselves.

The schematic view of the fabricated finFET and optical microscope image of one of the graphene
gate transistors are shown in Figure 4a,b, respectively. The graphene gate is seen in Figure 4b as a low
contrast rectangular over the fin. The gate width and length of the fabricated transistors were Lg =

5–20 µm and Wg = 4–20 µm, respectively. As a reference, finFETs with standard Ni/Au (250/750 Å)
Schottky barrier gates were also fabricated.
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All measurements were done at room temperature using a probe station. The spectral noise

density of drain current fluctuations was calculated as SI = Sv
[RL + Rd

RLRd

]2
, where Sv is the drain voltage

fluctuations and Rd is the differential device resistance.

3. Results and Discussion

Figure 5a shows examples of the current–voltage characteristics of graphene/AlGaN and
Au/Ni/AlGaN Schottky barrier diodes.
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Figure 5. Current–voltage characteristics of Schottky diodes with Ni/Au contact (green) and graphene
contact (red) lines (a). Transfer current–voltage characteristics of finFETs with graphene gate (b).

As seen, the Au/Ni/AlGaN Schottky barrier diode demonstrates exponential forward
current–voltage characteristics I–exp (Vg). In accordance with the thermionic emission (TE) model,
the current–voltage characteristic of the Schottky diode at Vg > kB·T/q is given by:

I = I0· exp
(

q·V
n·kB·T

)
(1)

where I0 = A∗ T2
·S· exp

(
−

q· φb
kB· T

)
is the saturation current, q is the elemental charge, V is the applied

voltage, n is the ideality factor, kB is the Boltzmann constant, T is the temperature, A* is the modified
Richardson constant, S is the contact area, and ϕb is the barrier height. Although under the TE model
the ideality factor n = 1, experimental characteristics are always characterized by n > 1. The higher
than unity ideality factor can be attributed to the effects of image force barrier lowering and the
non-idealities of the barrier, such as inhomogeneity of the barrier height and the contribution of other
current mechanisms (trap assisted tunneling, for example). Therefore, the ideality factor is often used
as a figure of merit of the barrier quality. The current-voltage characteristic of Au/Ni/AlGaN Schottky
barrier diode in Figure 5a demonstrates an ideality factor of n = 1.32. The whole range of ideality factor
for all studied Au/Ni/AlGaN Schottky barrier diodes was from n = 1.3 to n = 1.6. The ideality factor
reported in publication for Ni/AlGaN is within the range of 1.1–3 [20]. The vicinity of the ideality
factor to unity in the current work indicates the good quality of the Schottky barrier.

Current–voltage characteristics for the graphene/AlGaN/GaN Schottky diode also demonstrated
the exponential trend. However, one can see that contrary to the Au/Ni/AlGaN Schottky barrier diode,
the characteristic of the graphene-based diode is not a straight line in a semi-logarithmic scale.

This feature is known for graphene/semiconductor Schottky contact, and it can be attributed to the
dependence of the Fermi level position in graphene on the bias and, as a result, to the dependence of the
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barrier height on the bias [21]. The characteristic for the graphene/AlGaN diode can be approximated
by several exponents with different slope, as it is shown in Figure 5a. The ideality factors for different
parts of the characteristics for this specific diode are 1.7, 1.8, 2.4.

Equation (1) allows us to estimate the saturation current and the barrier height. However,
the ideality factor n > 1 is an indication of the non-ideality of the barrier. Therefore, the barrier height
for the diodes with the ideality factor significantly higher than unity should be considered only as an
apparent barrier height. We found ϕb = 0.9 eV for the Au/Ni/AlGaN diode in Figure 5a, and within the
range of ϕb = (0.7–1.1) eV for all studied diodes. The apparent barrier heights for the graphene/AlGaN
diode in Figure 5a are 1.0, 1.15, and 1.2 eV. For all studied graphene-based diodes we found ϕb =

(1.0–1.26) eV.
The barrier height for Ni/AlGaN Schottky barrier reported in the publications is within the range

of (0.85–0.99) eV (see Reference [20] and references therein). The barrier height for graphene/GaN
and graphene/AlGaN Schottky reported earlier is within the extremely wide range from 0.33 to
1.53 eV [13]. It was proved that apparent barrier height depends strongly on the defects concentration
in the semiconductor and on Al mole fraction in AlGaN [13]. The maximum reported value of the
graphene barrier height for AlGaN with the same as in the current study Al mole fraction is 1.25 eV [13].
The relatively high value of the apparent barrier height in this work is an indication of low defects
concentration in AlGaN.

Figure 5b shows two examples of the representative graphene gate finFETs transfer current–voltage
characteristics with a subthreshold slope of ~1.3 and ~8 orders of magnitude on/off ratio. It is interesting
to note that, contrary to the forward current-voltage characteristic of the Schottky diode (Figure 5,
the exponential (subthreshold), part of the transfer current–voltage characteristic is an exponent
without any noticeable deviation. Although the barrier height should depend on the reverse bias as
well, this dependence might be negligible in comparison with the total negative voltage Vg < −1.0 V.

The subthreshold leakage current was below 0.1 pA, which is an indication of low gate leakage
current. Several measurements of transfer characteristics during a 6 months period did not indicate any
noticeable change in their shape. An example of the output current-voltage characteristics is shown in
Figure 6.
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The noise spectra of the finFETs drain current fluctuations had the form of 1/f a with a = 0.95–1.05.
In the linear regime the spectral noise density of the drain current fluctuations, SI, was always
proportional to the current squared.

The dependences of the relative spectral noise density SI/I2 on the gate voltage swing (Vg − Vt) at
frequency f = 10 Hz for three representative graphene gate transistors are shown in Figure 7a.
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In the McWhorter model, the spectral noise density of the drain current fluctuations SI/I2 in the
linear regime is given by [22]:

SI

I2 =
kB·T·Nt

γ·f·Wg·Lg·n2
s

(2)

where f is the frequency, Nt is the effective trap density, Wg and Lg are the gate width and length,
respectively, ns is the concentration, and γ is the attenuation coefficient of the electron wave function
under the barrier:

γ =
4·π·
√

2·m∗·Φ
h

(3)

Here m* is the electron effective mass, h is the Planck’s constant, and Φ is the tunneling barrier
height at the interface. In Si MOSFETs, the γ value is usually taken to be γ = 108 cm−1. For the
AlGaN/GaN system, the attenuation coefficient is somewhat smaller: γ � 0.45 × 108 cm−1 [23].

Since in the linear regime ns ~ (Vg − Vt), the McWhorter model predicts the dependence of noise
on the gate voltage as SI/I2

∼ (Vg − Vt)
−2. In many publications on noise in AlGaN/GaN transistors,

deviations from this law have been reported (see, for example, References [24,25]). These deviations
from the McWhorter model are usually attributed to the influence of the contact resistance, gate
leakage current, mobility fluctuations, and dependence of the trap density Nt on energy (gate voltage).
As seen in Figure 7a, the gate voltage dependence of noise in studied devices is well described by the
McWhorter model, unless the gate voltage swing is small, in which case the model is not applicable.
Therefore, Equation (2) allows estimating the effective density of traps responsible for the noise.

The effective trap density can be also found from the input gate voltage noise

SVg =

(
SI

I2

)
·

(
I2

g2
m

)
=

k·T·Nt·q2

γ·f·W·Lg·C2 (4)
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where gm is the external transconductance, q is the electron charge, and C is the gate capacitance per
unit area. This method allows us to get rid of the uncertainty of the threshold voltage and take into
account the possible influence of the contact resistance [23].

Figure 7b compares the effective trap density as a function of the gate voltage swing extracted
using Equation (4) for the same transistors as in Figure 7a. The right panel indicates the ranges of the
trap densities published for Si MOSFETs with high-k dielectric and for similar AlGaN/GaN transistors
with the metal Schottky gate [23–32].

One can see that the effective trap density for studied devices only weakly depends on the gate
voltage, reflecting the SVg dependence on Vg. This effect can be due to the dependence of the trap
density on the energy. At high gate voltage, the trap density is close to 1019 eV−1 cm−3. Similar or
higher values of the effective trap density within the range of (1018–1020) eV−1 cm−3 were found in
the majority of publications on Si MOSFETs with a high-k dielectric (see References [26–31]). We are
aware of only one study of noise in high-k Si MOSFET that reported a very small trap density of Nt

� 1017 eV−1 cm−3 [31]. Other studies of noise in AlGaN/GaN HEMTs with metal gate indicated Nt

= (1018–1020) eV−1 cm−3 (see Figure 7b and References [23–25,32]). We also found a similar range of
effective trap density Nt = (2.3 × 1019–1.7 × 1020) eV−1 cm−3 in AlGaN/GaN HEMT structures with
Ni/Au gate.

Although AlGaN/Schottky barrier interface is relatively far from the two-dimensional channel,
it is known that this interface still may affect the noise originated from the channel. In Reference [32],
it was shown that N2O or O2 plasma oxidation treatment of AlGaN surface strongly increases the noise.
On the other hand, AlGaN/GaN transistors with insulated Al2O3 or SiO2 gate have shown to have
lower noise [33]. Therefore, one can assume that graphene gate might make AlGaN surface vulnerable
to air contamination and lead to the noise increase. However, our study showed similar noise levels
and effective trap densities for graphene and Ni/Au Schottky gates finFETs.

4. Conclusions

In summary, we fabricated and studied graphene gate AlGaN/GaN finFETs. Study of the vertical
transport in graphene/AlGaN Schottky diodes indicated the dependence of the Schottky barrier on
the bias. The apparent barrier heights for the graphene/AlGaN diodes were found to be within the
range of ϕb = (1.0–1.26) eV. The relatively high value of the apparent barrier height in comparison with
other published results is an indication of low defect concentration in AlGaN and good quality of the
interface. AlGaN/GaN finFETs demonstrated good characteristics with ~8 order of magnitude on/off

ratio and subthreshold slope of ~1.3. The effective trap density found from the low-frequency noise
measurements was ≥1019 eV−1 cm−3, which is of the same order of magnitude as in the transistors
with Ni/Au Schottky gate. This is an indication that graphene forms a high-quality Schottky barrier to
AlGaN which can serve as a gate for various types of transistors. It is important that the open surface
of graphene does not deteriorate electrical and noise properties of 2D gas on the AlGaN/GaN interface.
These results pave the way towards transparent high-temperature GaN-based electronics and to study
Coulomb interactions in the graphene/AlGaN/GaN system.
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