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Abstract: The aim of the present study is to provide a computationally efficient and reliable hybrid
numerical formulation capable of characterizing the thermomechanical behavior of nanocomposites,
which is based on the combination of molecular dynamics (MD) and the finite element method (FEM).
A polymeric material is selected as the matrix—specifically, the poly(methyl methacrylate) (PMMA)
commonly known as Plexiglas due to its expanded applications. On the other hand, the fullerene C240

is adopted as a reinforcement because of its high symmetry and suitable size. The numerical approach
is performed at two scales. First, an analysis is conducted at the nanoscale by utilizing an appropriate
nanocomposite unit cell containing the C240 at a high mass fraction. A MD-only method is applied to
accurately capture all the internal interfacial effects and accordingly its thermoelastic response. Then,
a micromechanical, temperature-dependent finite element analysis takes place using a representative
volume element (RVE), which incorporates the first-stage MD output, to study nanocomposites with
small mass fractions, whose atomistic-only simulation would require a substantial computational
effort. To demonstrate the effectiveness of the proposed scheme, numerous numerical results are
presented while the investigation is performed in a temperature range that includes the PMMA glass
transition temperature, Tg.
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1. Introduction

Commonly, the nanocomposite materials applications are associated with the simultaneous
action of more than one type of loading. Especially, the investigation of nanocomposites subjected to
both thermal as well as mechanical loads is perhaps one of most interesting fields for research,
since high-temperature applications are very frequent. Recently, polymers that are reinforced
with carbon nanomaterials have greatly attracted the scientific interest because of their enhanced
material properties such as high strength-to-weight ratio. Evidently, the characterization of the
thermomechanical performance of such nanocomposites may offer versatile design solutions for a
variety of novel applications. In an effort to highlight significant innovations and potential applications
in this research area, Burgaz [1] has investigated the current status of thermomechanical properties of
polymers containing nanofillers in the form of nanocylinders, nanospheres, and nanoplatelets.

Since the experimental procedures intended for an adequate characterization of nanostructured
composites are complicated and require extensive resources and time, the development and introduction
of new computational approaches for simulating nanocomposites may be considered as a valuable,
if not necessary, alternative. Perhaps, the MD method is the most popular tool for analyzing
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nanomaterial-reinforced polymers due to its ability to capture, with high accuracy, all the interatomic
phenomena with respect to the temperature and pressure.

Discussion on some of the most interesting MD studies associated with the thermomechanical
response of nanoreinforced polymers is essential. In a relatively early study, Cho and Yang [2] have
performed a parametric study to investigate the effects of composition variables on the thermal
and mechanical properties of carbon nanotube (CNT) reinforced polymers using MD simulations.
Given that the glass transition temperature Tg is a key property for polymers, Allaoui and Bounia [3]
have reviewed and analyzed various literature results dealing with the effect of unmodified multiwall
carbon nanotubes (MWCNT) on the cure kinetics and Tg of their epoxy composites. Aiming at a
similar goal, Herasati et al. [4] have investigated the effects of polymer chain branches, crystallinity,
and CNT additives on the glass transition temperature of polyethylene (PE). Targeting a different
matrix material, Mohammadi et al. [5] have investigated the effect of alumina and modified alumina
nanoparticles on the glass transition behavior of a PMMA/alumina nanocomposite by MD simulations.
The effect of inorganic particles have been studied by Zhang et al. [6], who have established silica–epoxy
nanocomposite models to investigate the influence of a silane-coupling agent on the structure and
thermomechanical properties of the nanocomposites through MD simulation. An extended study
has been performed by Pandey et al. [7] focusing on the computation of viscoelastic, thermal,
electrical, and mechanical properties of graphite flake-reinforced high-density PE composites. Recently,
Dikshit and Engle [8] have employed MD simulations to study the mechanical properties of epoxy
bisphenol A diglycidyl ethe (DGEBA) with and without the reinforcement of CNT, while in a similar
attempt, Dikshit et al. [9] have performed a MD study to investigate the mechanical properties
of graphene-reinforced epoxy nanocomposite. Aiming on the study of functionalizing polymer
carbon nanofillers, Xue [10] have performed a cooling process by MD simulation to predict the Tg

of graphene/PMMA composites. On the other hand, for the first time, Park et al. [11] investigated
the thermomechanical characteristics of silica-mineralized nitrogen-doped CNT-reinforced PMMA
nanocomposites by MD simulations. An interesting investigation regarding the interfacial behavior of
functionalized CNT/PE nanocomposites at different temperatures has been performed by Singh and
Kumar [12] using MD simulations and the second-generation polymer consistent force field (PCFF).
Experimenting in a differently nanostructured reinforcing agent, Zhang et al. [13] have investigated
via MD simulations the thermomechanical properties of nanocomposites consisting of weaved PE and
CNT junctions.

Although there have been numerous efforts to investigate the influence of dispersing CNTs and
graphene nanoribbons in polymers, fewer studies are available on the relevant effects of spherical
carbon nanoparticles. In a study distinguished because of the kind of carbon allotrope that is used
as a nanoreinforcement, Jeyranpour et al. [14] have adopted MD to carry out a comparative study
regarding the effects of fullerenes on the thermomechanical properties of a specialized resin epoxy.
Izadi et al. considered a similar nanocomposite [15] when estimating the elastic properties of PMMA
reinforced with C60 fullerene and C60@C240 carbon onion by using MD simulations; however, they did
not consider the effect of temperature.

All the above investigations have been realized via MD, which is a method that demands extensive
computational power. Due to the high pre-processing and main-processing computational times
required for analyzing material components at the nanoscale, several multiscale techniques [16–18]
have been proposed that combine the benefits of molecular and continuum modeling. Characteristically,
Montazeria and Rafii-Tabar [16] presented a combination of MD, molecular mechanics (MM),
and the finite element method (FEM) that is capable of computing the elastic constants of a
polymeric nanocomposite embedded with graphene sheets and carbon nanotubes at various
temperatures. Similarly, Tsiamaki and Anifantis [17] have utilized a multiscale model based on
MM and FEM to analyze the thermomechanical behavior of graphene/PMMA nanocomposites.
Recently, Giannopoulos [18] proposed a formulation combining MD and FEM to predict the mechanical
behavior of fullerene-reinforced nylon-12; however, this was at room temperature only. An interesting
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review on the recent developments in multiscale modeling of the thermal and mechanical properties of
advanced nanocomposite systems has been given by Reddy et al. [19].

Apart from the more common carbon nanomaterials such as CNTs and graphene, which have
unquestionably attracted the most attention in recent years, many researchers have started to explore
the effects of reinforcing polymers with fullerenes [14,15,18]. Especially giant fullerenes such as C240

present unique characteristics that have been widely studied in the recent years. Giant fullerenes
have already been experimentally observed and successfully produced. Very early, Ruoff et al. [20]
utilized mass-spectrometric techniques to demonstrate the presence of carbon clusters C2n with n as
high as 300, in carbon soot material produced using the arc-synthesis method. On the other hand,
Shinohara et al. [21] successfully extracted a series of very large all-carbon molecules, including C240,
with quinoline from fullerene-rich carbon soot produced by the vaporization of graphite in a helium
atmosphere using the contact arc method. In an effort to provide generalized geometrical relationships
describing the structure of giant fullerenes, Wang and Chiu [22] have also shown that the C240 giant
fullerene cage has the same Ih symmetry as C60 and that it has twelve pentagonal faces in icosahedra
alignment. Having a similar aim, Schwerdtfeger et al. [23] recently presented a general overview of
recent topological and graph theoretical developments in fullerene research over the past two decades,
describing both solved and open problems. In the theoretical field, Kim and Tomnek [24] reported
an MD simulation of melting and evaporation of the carbon fullerenes C20, C60, and C240. Finally,
focusing on the C240, Cabrera-Trujillo [25] used density functional theory (DFT) to study the electronic
structure and binding of Na clusters encapsulated inside the fullerene cage.

Considering the exceptional structural and physical properties of giant fullerenes, which have
been extensively discussed in some of the aforementioned studies, the reinforcing capability of
C240 when compounded with polymers is computationally investigated in the present study over a
wide temperature range. The symmetric fullerene C240 is preferred as a reinforcing agent because
of its high symmetry, which may allow the achievement of an almost isotropic nanocomposite
behavior. In addition, the PMMA is selected as the matrix material due to its high stiffness and wide
range of applications. Moreover, its sensitivity on the temperature around its glass transition point,
which has been investigated in several experimental [26–28] and MD studies [29], may permit the
drawing of more illustrative conclusions about the fullerene reinforcement impact under different
loading and environmental conditions. The adopted numerical technique is performed at two
scales. At the first scale, MD simulations [30] of a low computational cost are performed by using a
periodic unit cell to extract the temperature-dependent properties of the pure PMMA as well as the
C240/PMMA nanocomposite at a high mass fraction of 20%. The Condensed Phase Optimized Molecular
Potential (COMPASS) [31] is adopted in view of its superiority over other potential models describing
polymers [32]. Then, at a second scale, an RVE is developed and simulated via FEM [33] by using the
data outputs from the MD-only analysis, in order to investigate nanocomposites with small C240 mass
fractions, whose analysis via MD would not be computationally feasible by utilizing typical computer
resources. A variety of diagrams are presented that depict the variation of nanocomposite properties
such as elastic modulus, Poisson’s ratio, and linear coefficient of thermal expansion with temperature
and C240 mass fraction. Comparisons with relevant predictions found elsewhere are attempted, where
possible. To the author’s best knowledge, it is the first time that the temperature-dependent mechanical
properties of the C240/PMMA nanocomposite are predicted via a multiscale technique based on MD
and FEM.

2. Multiscale Analysis

It is well known that MD is a numerical simulation method that is capable of predicting the time
evolution of a system of interacting atoms. It is based on the generation of atomic trajectories via the
numerical integration of Newtown’s equation of motion by utilizing a specific interatomic potential,
initial conditions, and boundary conditions. Although the MD method may accurately represent all
the interatomic phenomena, it entails a substantial computational cost, which is dramatically increased



Materials 2020, 13, 4132 4 of 21

with the number of the interacting atoms [18], due to the numerical integrations over long time intervals
that are usually required to reach equilibrium states. Thus, the analysis of large systems such as the
one tested here, i.e., a C240/PMMA nanocomposite, leads to the necessity of combining atomistic with
continuum numerical approaches. The use of a multiscale technique becomes a must when dealing
with composites reinforced with low mass fractions of nanoparticles, since their MD-only analysis
would require extremely large periodic unit cells.

Let us assume that the investigated C240/PMMA nanocomposite is characterized by a uniform and
periodic reinforcement distribution. Given the spherical and symmetric shape of C240 nanoparticles,
the system domain may be fully described by a cubic periodic volume of the system domain illustrated
in Figure 1, which contains a centrally located fullerene surrounded by a number of PMMA chains, i.e.,
the matrix material.
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Figure 1. The nanocomposite representative volume element (RVE) (1/8 of the periodic volume of
the system domain) with a small fullerene mass fraction and the nanocomposite unit cell with a
fullerene mass fraction of 0.2, modeled via the finite element method (FEM) and molecular dynamics
(MD), respectively.

The adopted numerical analysis is contacted at two scales. The MD-only method is utilized
at the first scale while a CM method, realized via FEM and by using the previous MD output data,
is performed at the second scale. The MD method offers the important precise representation of
interfacial interactions and stress transfer mechanisms between the fullerene and the matrix while the
CM method, based on FEM, provides modeling simplicity and a low computational cost.

At the first scale, MD simulations of the pure PMMA with respect to the temperature are initially
performed to extract the necessary temperature-dependent property curves for the matrix material.
Then, another periodic unit cell is developed and simulated that represents a nanocomposite with
a high weight concentration of C240 equal to wC240 = 0.2. The MD-only simulation of the specific
nanocomposite unit cell, whose topology is defined by the yellow colored ijklmnop cubic domain in
Figure 1, leads to the computation of corresponding temperature-dependent property curves.

At the second scale, a CM-based RVE, denoted as ijklmnop in Figure 1, is developed for three small
mass fractions of C240, i.e., wC240 = 0.01, 0.03, and 0.05, and then, it is simulated through FEM using
appropriate boundary conditions of symmetry and loading. Note that only the 1/8 of the periodic volume
of the whole system domain is required to be represented due to the symmetry of the nanoparticle and
its assumed uniform distribution within PMMA. Evidently, the red-colored subdomain of the RVE
close to the vertex O (common volume between ijklmnop and IJKLMNOP cubes) is governed by the
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thermomechanical behavior of the nanocomposite with wC240 = 0.2, while the remaining blue-colored
subdomain of the RVE represents the pure PMMA matrix. The temperature-dependent material
properties, extracted from the MD-only simulations at the first scale analysis, are utilized in order
to enable the finite element simulation of both RVE subdomains. The material properties in both
subdomains are considered isotropic elastic, given that very small static strains are applied for the
requirement of the present study.

3. First Simulation Scale: MD-Only Formulation

3.1. Unit Cells Construction

At the first scale of the analysis, as aforementioned, two different simulation stages take place.
Initially, the pure PMMA is analyzed at various temperatures by utilizing a large enough unit cell to
ensure convergence. Evidently, as the pure PMMA unit cell becomes larger, the number of polymer
chains increases. Furthermore, when the simulation box contains a high number of polymer chains,
its response becomes statistically independent of the relative chain nanostructural positioning and
alignment. As a result, the MD-based numerical solution remains stable for large unit cells. Here,
a series of polymeric chains of 10 monomers each are adopted in order to represent the PMMA,
as Figure 2a depicts.
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Figure 2. Molecular structure of the: (a) poly(methyl methacrylate) (PMMA) chain and (b) C240 fullerene.

The pure PMMA unit cell is analyzed according to a global Cartesian coordinate system (x, y, z)
for each tested temperature level. When performing MD simulations, it is very convenient to initially
adopt a small unit cell density in order to obtain a sparse molecular distribution. Then, common
equilibrium algorithms are applied at each time point, to obtain the actual density of the unit cell as
well as its equilibrated configuration. Here, it is assumed that the PMMA has an initial density at the
room temperature T = 300 K equal to 0.6 g/cm3. According to this PMMA density value, by utilizing
20 polymer chains and by taking into account the molecular weight of each chain, a cubic periodic unit
cell may be defined [30]. It should be noted that the adoption of more than 20 chains inside the unit cell
has been shown to have a negligible effect on the computed thermomechanical response of the pure
PMMA. After conducting the full MD procedure described in the following section, the converged
variations of volume, density, elastic modulus, and Poisson’s ratio with the temperature are obtained.
The equilibrated amorphous unit cell of the pure PMMA at 300 K is illustrated in Figure 3a.
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fullerene-reinforced PMMA at a mass fraction of wC240 = 0.2.

Secondly, the initial structure of the nanocomposite unit cell with wC240 = 0.2 is defined in a more
complicated manner. First of all, the fullerene C240 of Figure 2b is maintained at the center of the unit
cell at all times. The average radius of the specific fullerene is about rC240 = 7.07 Å [22,23]. In addition,
its wall thickness is assumed to be equal to the usual distance between two successive carbon layers in
graphite, i.e., t = 3.35 Å. Given, the specific wall thickness and the almost spherical shape of the tested
fullerene, its density at the room temperature may be approximated by the following equation:

ρC240 =
4
3

240mC

π(rC240 + t/2)3 (1)

where mC = 1.9927 × 10−23 g is the mass of a carbon atom.
In order to enable packing [30] of the PMMA chains into the unit cell, an initial nanocomposite

density of 0.6 g/cm3 is beforehand assumed for the room temperature. Then, the initial nanocomposite
unit cell volume may be estimated by the following relationship:

V =
mC240

wC240ρC240
(2)

Finally, before the initial packing of PMMA chains inside the unit cell and around the central
positioned fullerene, the following nanocomposite unit cell length may be assumed:

L =
3√

V (3)

After having defined the size of the three-dimensional (3d) nanocomposite unit cell for the room
temperature, a number of PMMA chains are inserted into it, while the packing algorithm evenly
increases their population until the initial assumed density is achieved. The equilibrated unit cell of
the nanocomposite with wC240 = 0.2 at 300 K is shown in Figure 3b.

3.2. Geometry Optimization of Molecular Structures and Potential Model

Firstly, geometric optimization (GO) [30] is performed for each initially assumed molecular
structure, i.e., the main PMMA chain as well as the C240 fullerene, which are depicted in Figure 2a,b,
respectively. During the GO, energy minimization is achieved by using the steepest descent
algorithm [30]. It is assumed that convergence is accomplished when the absolute difference of the
computed system energy and force between two subsequent iterations becomes less than 0.001 Kcal/mol
and 0.5 Kcal/mol/Å, respectively. The required numerical calculations are based on the COMPASS
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potential, which consists of the ten valence terms and two non-bonded interaction terms given
below [31].

U =
∑

bond
[kb2(b− b0)

2 + kb3(b− b0)
3 + kb4(b− b0)

4] +
∑

angle
[ka2(θ− θ0)

2 + ka3(θ− θ0)
3 + ka4(θ− θ0)

4]

+
∑

torsion
[kt1(1− cosφ) + kt2(1− cos 2φ) + kt3(1− cos 3φ)] +

∑
out of plane angle

kχ(χ− χ0)
2 +

∑
bond/bond

kbb(b− b0)(b′ − b′0)

+
∑

bond/angle
kba(b− b0)(θ− θ0) +

∑
angle/angle

kaa(θ− θ0)(θ′ − θ′0)+

+
∑

bond/torsion
(b− b0)[kbt1 cosφ+ kbt2 cos 2φ+ kbt3 cos 3φ] +

∑
angle/torsion

(θ− θ0)[kat1 cosφ+ kat2 cos 2φ+ kat3 cos 3φ]

+
∑

angle/torsion/angle
kata(θ− θ0)(θ′ − θ′0) cosφ+

∑
nonbond

εi j

[
2
(

ri j0
ri j

)9
− 3

(
ri j0
ri j

)6
]
+

∑
nonbond

qiq j
4πε0ri j

(4)

In the last equation, the first four sums denote the energies required to stretch bonds (b), bend angles
(θ), change torsion angles (φ) by twisting atoms about the bond axis, and distort atoms out of the plane
(χ) formed by the atoms to which they are bonded. The next six sums denote the energies between
the four types of internal coordinates described as functions of the Cartesian atomic coordinates [31].
The final two sums that contain functions of the atom pair distance qij denote the Lennard–Jones-based
van der Waals (vdW) non-bond interactions and the Coulomb’s electrostatic non-bond interactions due
to the charges qi and qj, respectively. The subscript 0 found in some parameters denotes corresponding
reference values. The constant ε0 is the well-known vacuum permittivity. Depending on the atom-type
combinations, the COMPASS force field predefines the stiffness-like parameters kb2, kb3, kb4, ka2, ka3, ka4,
kt1, kt2, kt3, kχ, kbb, kba, kaa, kbt1, kbt2, kbt3, kat1, kat2, kat3, and kata as well as the functional form of each term
qi, qj, εij, and rij0. Here, the vdW contributions are computed according to the atom-based summation
method using a cut-off radius of 12.5 Å and long-range corrections, while the electrostatic contributions
are computed by adopting the Ewald summation method with an accuracy of 0.001 kcal/mol [34].

Evidently, the relevant positioning of the molecules is performed after computing the interactions
between neighbor atoms via the COMPASS force field whereas the single chain conformations,
ring spearing, and close contacts are constantly monitored. To achieve a minimized initial unit cell
state, low-energy sites are preferred over high-energy sites for each molecular structure. A GO process,
as the one described earlier, is executed to additionally reduce the overall potential energy of the 3D
problem domain.

3.3. NPT Dynamic Analysis of the Unit Cells

All the MD simulations take place under the NPT ensemble and by using a time step of 1 fs.
The external pressure of the unit cell is maintained at 1 atm throughout each dynamic analysis. After the
finalization of the procedure at a specific temperature level, the relaxed equilibrium state, true final
density, and side lengths of the unit cell are obtained. Performing a dynamic analysis by introducing
additional time intervals under different ensembles such as NVT or using a time step lower than 1 fs
has no observable effect on the final numerical solutions. Due to the dynamic nature of the simulation,
in order to keep the system under a specific temperature and pressure level, the Andersen thermostat
and Berendsen barostat are utilized, respectively [34].

3.4. Thermomechanical Properties Calculation

After achieving equilibrium at a given temperature T, the elastic properties are computed by
applying to the 3D unit cells a set of three pairs of uniaxial tension/compression and three pairs of pure
shear static strains of a maximum amplitude of ±0.001.

The stresses at each strain level may be estimated through the following average virial stress of a
system of particles [34]:

σav =
1

2V

∑
j(,i)

ri j ⊗ fi j (5)
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where V is the volume of the system, i and j denote two particles at positions ri and rj, respectively,
rij is equal to rj − ri, and fij is the inter-particle force applied on particle i by particle j.

By considering the symmetry of the stress, strain, and stiffness tensors, Hooke’s law may be
expressed as:

σ = Cε (6)

Since the nanocomposite is assumed to be isotropic, the Lamé coefficients λ and µ may be defined
by diagonal stiffness coefficients of C as:

λ =
1
3
(C11 + C22 + C33) −

2
3
(C44 + C55 + C66) (7)

µ =
1
3
(C44 + C55 + C66) = G (8)

where G is the shear modulus.
Evidently, the elastic modulus E and the Poisson’s ratio ν may be calculated, respectively, by the

following equations:

E =
µ(3λ+ 2µ)
λ+ µ

(9)

ν =
λ

2(λ+ µ)
(10)

The computation of the initial and final unit cell volume V0 and V1, respectively, at a reference
temperature T0 and an arbitrary temperature T1 > T0, respectively, enables the estimation of the volume
coefficient of thermal expansion aV via the equation:

aV(T0 ≤ T ≤ T1) =
V1 −V0

T1 − T0

1
V0

(11)

Finally, the linear coefficient of thermal expansion aL for an isotropic medium may be approximated
by:

aL = aV/3 (12)

4. Second Simulation Scale: FEM Formulation

4.1. Geometry Definition and Finite Element Discretization

At the second scale, nanocomposites with small mass fractions of C240 are modeled and simulated
through FEM. A representative FEM model of the RVE, which corresponds to the case wC240 = 0.05,
is illustrated in Figure 4 and defined by the IJKLMNOP cubic domain. The problem is analyzed
according to a global Cartesian coordinate system (x, y, z) positioned at the vertex O. As depicted in
the figure, the RVE is consisted of the C240/PMMA subdomain with wC240 = 0.2 and the outer pure
PMMA subdomain.

The edge length of the nanocomposite subdomain with wC240 = 0.2 is taken equal to L/2, where L
is the corresponding unit cell length computed via the MD-only simulation at the first scale analysis.
On the other hand, Equations (1) to (2) may be combined in order to estimate the length of the RVE
LRVE as follows:

LRVE =
1
2

3

√
mC240

wC240ρC240
(13)

Both subdomains are discretized with isoparametric, hexahedral, linear, eight-noded finite
elements that have four degrees of freedom per node, i.e., the displacements ux, uy, uz, and the
temperature T [33]. The finite element meshes for the three case studies wC240 = 0.01, 0.03, and 0.05 are
depicted in Figure 5a–c, respectively.
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4.2. Material Properties Input and Output

The properties of both subdomains of each RVE FEM model are considered as temperature-
dependent elastic. The elastic modulus and Poisson’s ratio of both the nanocomposite with wC240 =

0.2 and the pure PMMA are input as functions of temperature, i.e., E(T) and ν(T). These functions
are determined by fitting corresponding data points computed by the MD-only simulations at the
first scale of the analysis. In order to compute the elastic properties of the nanocomposite RVE,
appropriate boundary conditions are applied. For the calculation of the elastic modulus ERVE(T)
and the Poisson’s ratio νRVE(T), a uniform strain of εz(T) = 0.001 is applied on the edge z = LRVE.
Simultaneously, the constraints ux = 0, uy = 0, and uz = 0 are applied on the edges x = 0, y = 0, and z
= 0, respectively, while the edges x = LRVE and y = LRVE are kept parallel to their original shape by
nodal coupling, since the symmetry implies that shear stresses on these edges should be zero. Then,
the elastic modulus of the nanocomposite ERVE(T) is calculated from the ratio of average stress σzav(T),
which are obtained from the sum of reactions in the ground edge z = 0 to the applied strain εz(T) =

0.001. Finally, the Poisson’s ratio νRVE(T) is estimated by the ratio of the arisen average transverse
strain εxav(T) = εyav(T) to the applied normal strain εz(T) = 0.001.

Considering the FEM simulation of the RVE thermal expansion behavior, a different load case
is applied. Evidently, the constraints remain the same in accordance with the symmetry. The linear
coefficient of thermal expansion aL(T) of both subdomains is defined according to the corresponding
output from the MD-only simulations again. Then, a small temperature load increment ∆T = T1−T0 is
applied in the whole RVE to compute its arisen edge length increment ∆LRVE = LRVE1 − LRVE0. As a result,
the linear coefficient of thermal expansion of the RVE may be estimated by the following relationship:

aLRVE(T0 ≤ T ≤ T1) =
LRVE1 − LRVE0

T1 − T0

1
LRVE0

(14)

5. Results and Discussion

5.1. First Simulation Scale

For both material cases under investigation, i.e., the pure PMMA and the PMMA reinforced
with fullerene C240 at a mass fraction of 0.2, the MD simulations are conducted under the NPT
ensemble with a target pressure of 1 atm and a time-dependent temperature T, which varies from 300
to 560 K as defined in Figure 6. For the figure, it may be seen that initially, the target temperature
is considered stable at 300 K for a time interval of 1000 ps, so that both the pure PMMA unit cell
and the nanocomposite unit cell with wC240 = 0.2 reach a minimized energy and an equilibrium state.
Then, it is assumed that temperature exhibits a step increment with time. Specifically, at each step,
the temperature remains stable for 300 ps and then increases by 10 K. Following such a technique,
the equilibrium is achieved much faster at each temperature level, expect for the first investigated
temperature level at 300 K for which a longer time interval is required for convergence.

The density variation of the pure PMMA and the C240/PMMA nanocomposite unit cells during
the dynamic analysis may be seen in Figure 6. Note that the initial density of 0.6 g/cm3 assumed
for both unit cells increases to reach its proper value at room temperature and then decreases as
the temperature elevates. The variation of the potential and kinetic energies of the two cells with
temperature is illustrated in Figure 7. All variations are almost linear ascending, while the kinetic
energy of the pure PMMA is higher for the whole temperature range and presents a higher gradient in
comparison with the nanocomposite unit cell. On the other hand, the pure PMMA presents a lower
potential energy up to 500 K in contrast with its reinforced version with wC240 = 0.2.
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Figure 8 depicts the volume change of the two unit cells versus temperature. As it can be seen,
the volume variation of each unit cell is characterized by two different regions, i.e., the glassy and
the rubbery one. At each region, the MD data points imply a linear behavior of a different slope.
A linear regression is applied on the set of data of the glassy and rubbery region of each medium. Then,
the glass transition temperatures Tg are estimated from the intersection of the arisen lines at 421 and
462 K for the pure and reinforced PMMA, respectively. The glass transition temperature is considerably
increased by reinforcing the PMME with fullerene C240 at a weight concentration of 20%. A similar
phenomenon has been observed regarding the case of PMMA filled with functionalized graphene [10].
The computed Tg regarding the pure PMMA is in good agreement with the corresponding values 411.4
and 430 K, which have been predicted in the MD-based studies [10] and [29], respectively. The details
about all the linear regressions shown in Figure 8 may be found in Table 1. Using the fitting parameters
of the table, one may define the volume of the unit cells as a function of temperature.
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Table 1. Definition of all the fitting functions adopted throughout the analysis.

Fitting of MD Data with Functions of Temperature

Property
Fitting

Equation
(T→K)

Nanocomposite with wC240 = 0.02 Pure PMMA

Volume,
V (Å3)

Linear
V = f + gT

T range 300 ≤ T ≤ 462 462 < T ≤ 560 300 ≤ T ≤ 421 421 ≤ T ≤ 560
f 19,038.73973 16,537.08047 44,046.02025 35,216.40195
g 7.50775 13.10966 6.0055 26.96125

Adjusted R2 0.96339 0.89922 0.83912 0.98609

Density,
ρ (g/cm3)

Linear
ρ = h + lT

T range 300 ≤ T ≤ 462 462 < T ≤ 560 300 ≤ T ≤ 421 421 < T ≤ 560
h 1.2401 1.33445 1.13239 1.3125
l −3.81086 × 10−4

−5.84103 × 10−4
−1.40928 × 10−4

−5.71409 × 10−4

Adjusted R2 0.96111 0.91912 0.85399 0.98549

Elastic
modulus, E

(GPa)

6th order
polynomial
E = A + B1T

+ B2T2 +
B3T3 + B4T4

+ B5T5 +
B6T6

T range 300 ≤ T ≤ 500 300 ≤ T ≤ 500
A −2209.3885 409.32795
B1 33.54518 −5.76718
B2 −0.20948 0.0332
B3 6.90037 × 10−4

−9.88824 × 10−5

B4 −1.26453 × 10−6 1.60037 × 10−7

B5 1.22205 × 10−9
−1.33008 × 10−10

B6 −4.86522 × 10−13 4.40984 × 10−14

Adjusted R2 0.99509 0.99509

Poisson’ s
ratio, ν

Boltzmann
ν = (D1 −

D2)/{1 +
exp[(T −
τ0)/τ]} + D2

T range 300 ≤ T ≤ 500 300 ≤ T ≤ 500
D1 0.2731 0.28715
D2 0.46094 0.49459
τ0 497.04191 414.53197
τ 14.45546 12.68674

Adjusted R2 0.9982 0.99698

The linear coefficient of thermal expansion aL of the pure PMMA and the nanocomposite with
wC240 = 0.2 with respect to the temperature is illustrated in Figure 9. The relevant estimations are
based on Equations (11) and (12). As observed for both materials, the linear coefficient of thermal
expansion has a lower and constant value for the temperatures below Tg, while it exhibits a notable
constant increase after this temperature point and up to 560 K. The presence of C240 within the PMMA
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matrix, as expected [10], appears to lead to a rise in thermal expansion, especially for temperatures
below 421 K, i.e., the glass transition point of the matrix.
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Figure 9. Linear thermal expansion coefficient of the pure PMMA and the nanocomposite with wC240 =

0.2 unit cell with respect to the temperature.

The calculated aL of the pure PMMA is 4.4 × 10−5 and 1.9 × 10−4 K−1 in the glassy and rubbery
state, respectively, which are in decent agreement with the corresponding values 7.3 × 10−5 K−1 and
2.6 × 10−4 K−1, as reported in a different MD analysis [10]. Note that experimental evidence [35]
suggests that the pure PMMA presents a coefficient of linear thermal expansion in the range from
5 × 10−5 to 9 × 10−5 K−1 at room temperature (glassy state).

The dependence of the density ρ on the temperature T is illustrated for the pure PMMA and
nanocomposite unit cell in Figure 10. The density for both cases follows a linear decrease characterized
by two slopes. The kink positions reveal the corresponding glass transition points, which are identical
with those found from Figure 8. At all temperature levels, the density of the nanocomposite remains
higher. Again, a two-slope linear regression of the density–temperature variations is performed,
the results of which may be found in Table 1.
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The elastic modulus of the two unit cells with respect to the temperature is shown in Figure 11a. 
It becomes obvious that the C240/PMMA nanocomposite presents an advanced stiffness. This is due 
to the enhanced stiffness of the carbon nanoparticle. As expected, a stress relaxation is observed at 
the glass transition points for both materials, which is implied by the significant drop of elastic 
modulus. The elastic modulus–temperature nonlinear variations are fitted well with polynomial 
functions of 6th degree that are fully defined in Table 1 for temperatures up to 500 K. 
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The elastic modulus of the two unit cells with respect to the temperature is shown in Figure 11a.
It becomes obvious that the C240/PMMA nanocomposite presents an advanced stiffness. This is due to
the enhanced stiffness of the carbon nanoparticle. As expected, a stress relaxation is observed at the
glass transition points for both materials, which is implied by the significant drop of elastic modulus.
The elastic modulus–temperature nonlinear variations are fitted well with polynomial functions of 6th
degree that are fully defined in Table 1 for temperatures up to 500 K.
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Figure 11. The (a) elastic modulus and (b) Poisson ratio of the pure PMMA and the nanocomposite
with wC240 = 0.2 with respect to the temperature and corresponding nonlinear fittings up to 500 K.

The temperature dependence of Poisson’s ratio of the PMMA and nanocomposite is illustrated in
Figure 11b. The Poisson ratio tends to reach the value of 0.5 as the temperature increases for the pure
PMMA case. On the other hand, the Poisson ratio of the PMMA reinforced with C240 at a mass fraction
of 20% presents lower values due to the effects of the fullerene constituent. An obvious intense Poisson
ratio increase occurs nearby the Tg point. Table 1 includes details about the fitting of the two Poisson
ratio–temperature variations for the temperature range from 300 to 500 K with the Boltzmann sigmoid
function, which are defined in the table as well.

In order to evaluate the performance of the MD-only simulations, Table 2 is presented. The table
includes some comparisons between the present results regarding the pure PMMA mechanical
properties at the room temperature with other corresponding predictions.

Table 2. Comparison of the elastic properties of the pure PMMA computed here via MD, with
corresponding results from other studies.

Study Materials Properties of Pure PMMA at T = 300 K

Elastic Modulus, E (GPa) Poisson’s Ratio, ν

Present MD-only formulation 3.065 0.286
Different MD formulation [15] 3.052 0.257

Experimental [26] 3.400 -

5.2. Second Simulation Scale

Three small C240 loadings of 1%, 3%, and 5% by weight are investigated by using the FEM models
shown in Figure 5a–c. The linear coefficient of thermal expansion, elastic modulus, and Poisson’s ratio
of the pure PMMA subdomain and nanocomposite subdomain with a C240 concentration of 20 wt % are
inserted into the model by utilizing the temperature-dependent functions provided from the first-scale
MD analysis and illustrated in Figure 11a,b and Figure 9, respectively. The same number of finite
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elements is used in all cases. Denser meshes than the ones depicted in Figure 5 lead to negligibly
different numerical solutions.

Figure 12a,b presents the elastic modulus E and the Poisson ratio ν of the tested C240/PMMA
nanocomposites, respectively. The limit cases for wC240 = 0 and wC240 = 0.2 treated with the MD-only
method are included in these figures for comparison reasons. A nonlinear reduction of the mechanical
performance, as expressed by the elastic modulus decrease and Poisson ratio increase, is observed for
all the materials as the temperature rises. Contrary, the higher the fullerene mass fraction, the higher
the elastic modulus and the lower the Poisson ratio. For a given temperature, almost a linear change
occurs in these properties as the reinforcement concentration increases.
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and for a temperature of 420 K are depicted in Figure 13a–c. As seen, the maximum equivalent stress, 
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is increased. This reveals an enhanced capability of the fullerene to carry loads. 

Figure 12. The (a) elastic modulus and (b) Poisson ratio of the nanocomposite with small fullerene
mass fractions with respect to the temperature, predicted by combining FEM and MD.

Table 3 shows a qualitative comparison between some present estimations via the proposed
multiscale analysis and others predicted via MD [15] in which a rather dissimilar fullerene structure
such as the carbon onion C60@C240 has been considered. Unfortunately, to the author’s best knowledge,
there is not any relevant experimental contribution regarding the stiffness of the C240/PMMA
nanocomposite, in order to provide a more comprehensive assessment. However, regarding the
elastic modulus of the pure PMMA, a comparison with a corresponding experimental value is included
in Table 2.

Table 3. Present elastic properties of the nanocomposite with wC240 = 0.05 in contrast with some
comparable results from another theoretical study.

Theoretical Study Material Properties at T = 300 K

Elastic Modulus, E (GPa) Poisson’s Ratio, ν

Present FEM combined with MD
of PMMA reinforced with C240 at 5.00 wt % 3.247 0.284

Different MD simulation [15]
of PMMA reinforced with onion C60@C240 at 5.01 wt % 3.590 0.271

The contours of the von Mises equivalent stress of the nanocomposite with wC240 = 0.01, 0.03,
0.05 and for a temperature of 420 K are depicted in Figure 13a–c. As seen, the maximum equivalent
stress, which is located in the nanocomposite subdomain with wC240 = 0.2, rises as the fullerene
concentration is increased. This reveals an enhanced capability of the fullerene to carry loads.



Materials 2020, 13, 4132 16 of 21Materials 2020, 13, x FOR PEER REVIEW 17 of 22 

 

  
(a) (b) 

 
(c) 

Figure 13. Contours of the resultant von Mises equivalent stress of the nanocomposite RVE at a 
temperature of 400 K, with mass fractions of (a) wC240 = 0.01, (b) wC240 = 0.03, and (c) wC240 = 0.05. 

The proposed FEM analysis is not efficient enough to compute straightforwardly the linear 
coefficient of thermal expansion aL for the whole temperature range from 300 to 500 K, since complex 
molecular phenomena occur in the interphase zone near the phase transition temperature, which may 
only be described via atomistic models. Thus, in order to assure that the FEM computations take 
place exclusively in the glassy or rubbery state of the nanocomposite with wC240 = 0.01, 0.03, and 0.05, 
a targeted temperature change is applied from 300 to 301 K or from 499 to 500 K, respectively. 
Accordingly, the two boundary values of aL in the temperature interval [300 K, 500 K] are obtained 
through Equation (14). These two FEM data points are inserted in Figure 14, which also includes the 
step functions aL(T) for the limit cases, investigated via MD only, where wC240 = 0 and wC240 = 0.2. To 
assure safe estimations for the cases wC240 = 0.01, 0.03, and 0.05, a linear interpolation is required, 
which is graphically realized by interconnecting the two lower corner points (Tg, aL(Tg-)) of the two 
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Figure 13. Contours of the resultant von Mises equivalent stress of the nanocomposite RVE at a
temperature of 400 K, with mass fractions of (a) wC240 = 0.01, (b) wC240 = 0.03, and (c) wC240 = 0.05.

The proposed FEM analysis is not efficient enough to compute straightforwardly the linear
coefficient of thermal expansion aL for the whole temperature range from 300 to 500 K, since complex
molecular phenomena occur in the interphase zone near the phase transition temperature, which may
only be described via atomistic models. Thus, in order to assure that the FEM computations take
place exclusively in the glassy or rubbery state of the nanocomposite with wC240 = 0.01, 0.03, and 0.05,
a targeted temperature change is applied from 300 to 301 K or from 499 to 500 K, respectively.
Accordingly, the two boundary values of aL in the temperature interval [300 K, 500 K] are obtained
through Equation (14). These two FEM data points are inserted in Figure 14, which also includes the
step functions aL(T) for the limit cases, investigated via MD only, where wC240 = 0 and wC240 = 0.2.
To assure safe estimations for the cases wC240 = 0.01, 0.03, and 0.05, a linear interpolation is required,
which is graphically realized by interconnecting the two lower corner points (Tg, aL(Tg−)) of the two
step functions aL(T) defined by MD. Then, some good approximations of the aL of the nanocomposites
with wC240 = 0.01, 0.03, and 0.05 around their Tg may be graphically derived by defining specific
intersection points and making linear interpolations as Figure 14 describes in detail.
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Figure 15. Glass transition temperature of the nanocomposite for small fullerene mass fractions, 
predicted by combining FEM and MD as well as using linear interpolations. 

Figure 14. Linear thermal expansion coefficient of the nanocomposite with small fullerene mass
fractions with respect to the temperature, predicted by combining FEM and MD as well as using
linear interpolations.

Note that the Tg points for the small fullerene concentrations are also indirectly revealed by the
arisen intersection points. The good performance of the proposed graphical procedure, which is
grounded on the utilization of both FEM and MD data points, in predicting Tg is demonstrated in
Figure 15, where a theoretical estimation via the well known Flory–Fox equation [36] is included.
The specific equation is defined as follows:

1
Tg(wC240)

=
wC240

TgC240
+

1−wC240

TgPMMA
(15)

where TgC240 are TgPMMA is the glass transition temperature of the component C240 and pure PMMA,
respectively, while the nanocomposite Tg(wC240) function is assumed to pass through the two MD
data points.
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Figure 15. Glass transition temperature of the nanocomposite for small fullerene mass fractions, 
predicted by combining FEM and MD as well as using linear interpolations. 

Figure 15. Glass transition temperature of the nanocomposite for small fullerene mass fractions,
predicted by combining FEM and MD as well as using linear interpolations.
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Figure 16a,b present the colored distributions of the resultant displacement due to a temperature
change from 300 to 301 K (glassy state) and from 499 to 500 K (rubbery state), respectively, for the
nanocomposite with wC240 = 0.01. It becomes obvious that the consequent expansions are more intense
at a higher temperature level since the coefficients of thermal expansion for all subdomains are higher
in their glassy state. Similar contours are presented in Figures 17 and 18 for the cases wC240 = 0.03 and
0.05, respectively, leading to analogous conclusions.
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Figure 18. Contours of the resultant displacement of the nanocomposite RVE with a mass fraction with
wC240 = 0.05, for a temperature change (a) from 300 to 301 K and (b) from 499 to 500 K.

6. Conclusions

A theoretical attempt was made to provide a multiscale numerical formulation for the efficient
prediction of the thermoelastic response of nanomaterial/polymer composites. The aim was to provide
an accurate numerical tool of a low computational cost that is capable of treating large problem
domains, which would require substantial resources if treated via atomistic methods alone. To deal
with such problems, the proposed method is applied into two phases. It starts from the molecular
scale via MD and ends up to the continuum scale via FEM. Thus, the hybrid simulation is capable of
capturing the complicated atomistic and interphase phenomena as well as reducing the computational
effort simultaneously.

For the purpose of the study, the fullerene C240 and the PMMA were utilized as the reinforcement
and the matrix material, respectively. A MD formulation was initially developed in order to predict the
temperature-dependent elastic modulus, Poisson ratio, and linear coefficient of thermal expansion of the
pure PMMA and the C240/PMMA with a high fullerene mass fraction. The glass transition temperature
of the specific media was also defined by the change in the slope of relevant thermal expansion curves.
The extracted data points were fitted via appropriate functions and inserted into several FEM models
to simulate nanocomposites with smaller fullerene mass fractions. The computations showed that the
proposed multiscale formulation may perform well for low nanofiller contents up to 5 wt %.

The FEM computations led to the full definition of the same properties for the whole investigated
temperature and fullerene mas fraction range. It was demonstrated that for a given temperature level,
the rise of the fullerene mass fraction leads to an almost linear increase of the nanocomposite stiffness
but also to an analogous decrease of its Poisson’s ratio. The linear coefficient of thermal expansion of
the nanocomposite was found to be constant before and after the glass transition temperature. Its value
was significantly higher for the glassy state, while it showed a nearly linear increase with the increase
of the nanofiller mass fraction. Finally, a drastic drop of the nanocomposite mechanical performance
was observed near the glass transition point due to the stress relation.

A further investigation is planned to be made in a future work, where the effects of utilizing different
fullerene sizes, several combinations of fullerene types, and non-uniform nanofiller distributions will
be extensively studied.
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