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Abstract: A well-defined resin system is needed to serve as a benchmark for 3D printing of
high-performance composites. This work describes the design and characterization of such a system
that takes into account processability and performance considerations. The Grunberg–Nissan model
for resin viscosity and the Fox equation for polymer Tg were used to determine proper monomer
ratios. The target viscosity of the resin was below 500 cP, and the target final Tg of the cured polymer
was 150 ◦C based on tan-δ peak from dynamic mechanical analysis. A tri-component model resin
system, termed DA-2 resin, was determined and fully characterized. The printed polymer post-cure
exhibited good thermal properties and high mechanical strength, but has a comparatively low
fracture toughness. The model resin will be used in additive manufacturing of fiber reinforced
composite materials as well as for understanding the fundamental processing–property relationships
in light-based 3D printing.

Keywords: 3D Printing; resin formulation; photo-polymerizable resins

1. Introduction

Three-dimensional (3D) printing is an additive manufacturing process in which successive layers
of material are patterned and combined to form 3D shapes. 3D printing technologies are currently
experiencing financial growth and are being increasingly adopted across industries. Factors driving
this market growth are aggressive research and development and the growing demand for prototyping
applications from industries such as healthcare, automotive, defense, and aerospace [1]. In fact,
the aerospace 3D printing market was estimated to be USD 1.86 billion as of 2019—only 16.8% of
the total 3D printing market—and is expected to grow annually at a rate of 16.9% over the next
7 years to reach USD 6.72 billion in 2027 [2]. For 3D patterning polymeric materials, extrusion or
melt type techniques, such as fused deposition modelling and selective laser sintering, are common
methods for the fabrication of thermoplastic parts. However, these techniques have the drawback
of comparatively low resolution, weak layer adhesion, and slow processing. On the other hand,
in light-based methods, the printing resolution and production speed are drastically improved due to
the exceptional spatial control and versatility of photo-polymerization reactions [3]. Moreover, the
mechanical properties of the printed objects are significantly enhanced due to better layer-to-layer
cohesion. Thus, light-based technologies offer attractive routes for 3D printing of polymers and
composites. Examples of technologies include stereolithography (SLA), digital light processing
(DLP), and continuous liquid interface production (CLIP) [4–6]. In SLA, specific surface regions of
photo-sensitive liquid resin undergo localized polymerization by exposure to a scanning spot light
source. In DLP, all given portions of a layer are simultaneously photocured, significantly reducing
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part production times. The recently developed CLIP process utilizes a continuous building strategy,
which further increases part production speed and enhances surface finish.

Light-based methods use photo-sensitive resins that can be cured by a light source, often a UV laser.
Typical materials used are acrylic and epoxy resins. Currently, most standard photo-polymerizable
resin formulations on the market produce parts with relatively low thermal and mechanical properties
and, therefore, cannot be used for additive manufacturing of high-performance composite materials.
Moreover, the compositions of commercial resins are proprietary information in most formulations.
A list of commercial resins from reputable suppliers and their property information can be found
in Table A1 in Appendix A. To develop a fundamental understanding of the processing-property
relationships underlying light-based 3D printing methods, a well-defined additive manufacturing resin
formulation is needed to serve as the benchmark resin system. A standard resin formulation should
have the following characteristics [7]: (i) commercially available component monomers; (ii) good
storage stability including long resin shelf life and low monomer volatility; (iii) low viscosity for facile
printing; (iv) good final part properties including good dimensional stability and high thermal and
mechanical properties.

Bisphenol A glycerolate dimethacrylate (Bis-GMA), also known as the vinyl ester of diglycidyl ether
of bisphenol A (VE-DGEBA), is a major component commonly used in dental formulations and in vinyl
ester resins [8–10]. Due to the presence of rigid bisphenol-A core in the backbones, the molecule imparts
excellent performance characteristics to its final products. The strong intermolecular interactions
by hydroxyl groups, however, result in an extremely viscous resin at room temperature [11], so the
use of diluent co-monomers becomes necessary for easy handling [12]. Styrene is the most common
comonomer in vinyl ester resins, but it cannot be used for 3D printing because it is a hazardous air
pollutant (HAP) and a volatile organic compound (VOC, vapor pressure at 25 ◦C is 6.5 mmHg) [10,13,14].
On the other hand, triethylene glycol dimethacrylate (TEGDMA) has been widely used as a comonomer
of Bis-GMA in dental formulations. It significantly reduces the viscosity of the mixture and increases the
polymer degree of conversion [15]. However, the addition of TEGDMA causes an undesirable increase
in polymerization shrinkage due to its higher double bond concentration and increased overall double
bond conversion [16,17]. Neat TEGMDA can shrink by 12.3% compared to 5.2% shrinkage of Bis-GMA
after polymerization [18]. For this reason, low viscosity monomers with higher molecular weights were
developed to decrease polymerization shrinkage and improve processability. To this end, ethoxylated
bisphenol A dimethacrylate (Bis-EMA) has been present in several commercial formulations, partially
or totally replacing TEGDMA [19,20]. The molecular structure of Bis-EMA monomer is almost the
same as Bis-GMA monomer, except for the absence of hydroxyl groups. It shows intrinsically low
viscosity due to the absence of hydroxyl groups that form hydrogen bonding. The lack of hydroxyl
groups also results in a more hydrophobic molecule, which makes Bis-EMA suitable for applications
where moisture uptake is undesirable. The equilibrium water uptake of neat Bis-EMA polymer is
only around 0.6~1.8%, as compared to 2.5~3.1% for Bis-GMA polymer and 6.0~6.3% for TEGDMA
polymer [18,21,22].

This work describes the design of a well-defined benchmark resin formulation that in the future
will be used to investigate the processing-property relationships in 3D printing. The screening
process for resin development was primarily based on viscosity and glass transition temperature
(Tg) considerations. Predictive models, namely the Grunberg–Nissan model for resin viscosity and
the Fox equation for polymer Tg, were used as guiding tools to determine proper monomer ratios.
The preference of di-functional reactive diluents over mono-functional is emphasized in terms of
dimensional stability. The benchmark resin formulation is presented and fully characterized herein.
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2. Materials and Methods

2.1. Materials

Bisphenol A glycerolate dimethacrylate (Bis-GMA, Mw~512 g/mol), ethoxylated bisphenol
A dimethacrylate (Bis-EMA, Mw~540 g/mol), and 1,6-hexanediol dimethacrylate (HDDMA,
Mw = 254 g/mol) were supplied by Esstech, Inc. (Essington, PA, USA). Isobornyl methacrylate (IBMA,
Mw = 222 g/mol) and phenylbis(2,4,6-trimethylbenzoyl)phosphine oxide (PPO, or bisacylphosphine
oxides, BAPO) were purchased from MilliporeSigma (St. Louis, MO, USA). The molecular structures
of the chemicals are given in Scheme 1. All chemicals were used as received.
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2.2. Methods

2.2.1. Resin Formulation and Printing

To prepare photo-polymerizable resins for DLP 3D printing, the monomers with determined
weight ratios were evenly mixed, then 0.7 wt.% PPO (based on resin weight) was added as the
photo-initiator to the resin. The mixture was stirred in an amber bottle to block UV light exposure
until the photo-initiator completely dissolved. Upon degassing, the resin is ready for DLP printing.
Samples were printed in an Anycubic Photon DLP printer (Shenzhen, China). The wavelength of
the projected light by the printer is 405 nm. The light intensity is 0.45 ± 0.05 mW/cm2 determined
by a radiometer (ILT2400, International Light Technologies, Peabody, MA, USA). The default print
settings for this study were 100 µm layer thickness and 100 s exposure time and 10 s off time between
layers. As-printed “green” parts were subject to the following post-processing procedure: samples
first undergo photo post-cure in a blue light oven (Form Cure, Formlabs Inc., Somerville, MA, USA)
at 80 ◦C for 2 h, followed by thermal post-cure in a conventional laboratory oven at 120 ◦C for 3 h,
ramping to 180 ◦C in 60 min and isotherm at 180 ◦C for 30 min.

2.2.2. Working Curve

To create the working curve, several samples were 3D printed at different values of exposure time
to achieve different thicknesses (cure depth). This requires the build platform to be removed from
the vat to allow samples to have a variety of thicknesses. Initially, three coin-shaped samples with
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the approximate diameter of 2 cm were printed simultaneously at a specific exposure time and as
a single print layer. Next, their thicknesses were measured using a ratchet micrometer and averaged to
provide the average cure depth for that exposure time. This process was repeated for different exposure
time durations to obtain different values of cure depth for each case. Finally, the working curve was
constructed by plotting the average cure depth values against their corresponding energy doses on
a logarithmic axis. Note that for each run, the energy dose is calculated by multiplying the exposure
time of that run by the printer’s light intensity. The slope and the x-intercept of the logarithmic curve
fit are the resin properties known as depth of penetration (Dp) and critical energy dose (Ec) [23].

2.2.3. Characterization

Steady shear viscosity measurements were performed on TA Instruments AR2000 rheometer
(New Castle, DE, USA) at 25 ◦C under steady state shear mode using a cone-plate geometry with
shear rate ramping from 0.001 s−1 to 100 s−1. For every resin, three viscosity measurements were
taken. Fourier transform near infrared (FT-NIR) experiments were performed on a Nicolet Nexus 670
spectrometer (Thermo Electron Corporation, Waltham, MA, USA), operating in transmission mode
with a deuterated triglycine sulfate (DTGS) detector. FT-NIR spectra were recorded with 32 scans
at a 4 cm−1 resolution in 4000–8000 cm−1 range. Dynamic mechanical analysis (DMA) experiments
were performed on bar samples of size 35 mm × 12.7 mm × 3.2 mm using a TA Instruments Q800
Dynamic Mechanical Analyzer in a single cantilever mode with the oscillation frequency set to 1 Hz,
the amplitude set to 10 µm, and temperature ramping at a rate of 2 ◦C/min. Resin densities were
measured using an Anton Paar DMA 500 density meter (Graz, Austria), and a density value was
obtained as an average over three measurements. Densities of cured polymers were determined using
a density-gradient column in accordance with ASTM D1505-18 standard [24]. For each polymer, at
least three samples were tested. The liquid system in the column consisted of water and sodium
bromide. All mechanical testing was performed on an Instron tester, model #: A1740-3003 (Norwood,
MA, USA). Tensile testing was carried out according to ASTM D638-14 standard [25]. At least five
dog-bone specimens of type IV were tested at a test speed of 5 mm/min. An extensometer was applied
to obtain accurate strain values, and the tensile modulus was calculated based on data up to 0.25%
strain. Flexural properties were determined according to ASTM D790-17 standard [26]. At least
three long rectangular bars of size 120 mm × 12.7 mm × 3.2 mm were tested in a three-point bending
configuration and the span-to-depth ratio was kept at 16. Fracture toughness was measured using
at least five single-edge-notch-bend (SENB) specimens according to ASTM D5045-14 standard [27].
Pre-cracks were initiated by tapping a fresh razor blade inserted in the notch.

3. Results and Discussion

In many resin formulations, the preferred major component is Bis-GMA resin because of its good
final properties. The addition of Bis-EMA resin maintains a low cure shrinkage, but also reduces
resin viscosity and final material moisture sensitivity significantly. In this work, a combination of
Bis-GMA and Bis-EMA served as the base resin of the formulations. A reactive diluent is needed to
further reduce the viscosity to make suitable formulations for DLP printing. Two reactive diluents,
isobornyl methacrylate (IBMA) and 1,6-hexanediol dimethacrylate (HDDMA), were selected for the
study after screening. HDDMA had been used in this research group as a reactive diluent in vinyl-ester
resins [13]. HDDMA is known for its hydrophobic nature. A photo-cured polymer network containing
HDDMA was found to uptake three to four times less water compared to the corresponding network
containing the same amount of TEGDMA [28]. IBMA was selected for the high Tg of its polymer [29–32].
Both diluents have high boiling points (258 ◦C for IBMA and 315 ◦C for HDDMA) and low vapor
pressures (0.01 mmHg at 25 ◦C for IBMA and 0.02 mmHg at 100 ◦C for HDDMA) [33,34]. The use
of monomers with low vapor pressures is essential for a safe work environment and minimizes the
composition drift due to possible monomer evaporation during printings. Table 1 summarizes the
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measured room temperature viscosities of the component monomers, and the Tgs of corresponding
neat polymers available from the literature.

Table 1. Room temperature viscosities of monomers and the Tgs of their respective polymers.

Monomer η (cP) Tg (tan δ) (◦C)

Bis-GMA 750,000 200–230 1

Bis-EMA 900 150–180 2

IBMA 8 110–150 3

HDDMA 6 ~100–150 4

1 Ref. [35–38]; 2 Ref. [39]; 3 Refs. [29–32]; 4 Refs. [40,41].

Predictive models for resin viscosity and polymer Tg were used as guiding tools to determine
proper monomer ratios. The Fox equation, shown in Equation (1), has been widely used to predict the
Tg of a polymer mixture based on the Tgs of the neat components [42]:

1
Tg

=
∑ ωi

Tg,i
, (1)

where Tg,i andωi are the glass transition temperature and the mass fraction of component i, respectively.
The simplest model for predicting the viscosity of liquid mixtures is the Arrhenius equation [43], but
the additive model neglects thermodynamic parameters characteristic of the interactions between
components and results in inaccurate predictions. The Grunberg–Nissan model, based on a modification
of the Arrhenius equation to account for the excess free energy of mixing, shown in Equation (2), is
commonly used to describe the viscosity of liquid mixtures [44–46]:

ln η =
∑

i

xi ln ηi +
∑

i

∑
j

xix jGi j, (2)

where η is the viscosity of a mixture, ηi and xi are the viscosity and the mole fraction of each component
in the mixture, respectively, and Gij is an interaction parameter dependent on the components and
temperature. A negative value of Gij indicates favorable mixing.

Binary interaction parameters Gij were determined from the viscosity measurements of binary
liquid mixtures of the monomers and calculated using Equation (2). The interaction parameters are
found to be relatively constant with regards to monomer mixing ratios (see Table A2). Table 2 lists the
averaged interaction parameters between Bis-GMA and Bis-EMA; Bis-GMA and a reactive diluent;
and Bis-EMA and a reactive diluent such as G12, G13, and G23, respectively. The interaction parameters
show that Bis-GMA mixed favorably with Bis-EMA and HDDMA, but IBMA did not efficiently mix
with Bis-GMA or Bis-EMA, likely due to the bulky nature of the isobornyl group that hinders flow [47].
Interestingly, the excess free energy of mixing is close to zero when mixing Bis-EMA with HDDMA.

Table 2. Interaction parameters determined for monomer mixtures.

Interaction Parameter G12 G13 G23

Bis-GMA/Bis-EMA/IBMA −2.76 3.85 2.05
Bis-GMA/Bis-EMA/HDDMA −2.76 −3.68 −0.07

Figure 1a,b, shows the predictions of viscosity and the Tg of final cured material using
the Grunberg–Nissan model and the Fox equation, respectively, for ternary mixture system
Bis-GMA/Bis-EMA/HDDMA. In Figure 1a, the shaded area denotes a predicted viscosity ≤500 cP.
In Figure 1b, the shaded area denotes a predicted final Tg higher than 150 ◦C. Figure 1c,d show the
overlap area where the predicted viscosity is lower than 500 cP and Tg is higher than 150 ◦C. The same
graphs for Bis-GMA/Bis-EMA/IBMA system are shown in Figure A1 (Appendix C). Note the slightly
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higher cut-off viscosity, 600 cP. For the Tg predictions, the final Tgs of Bis-GMA, BisEMA, and IBMA
polymers are 200 ◦C, 160 ◦C, and 140 ◦C, respectively [29–32,35–39]. The Tg of the HDDMA polymer is
not commonly reported in the literature, but it should be higher than the Tg of its acrylate counterpart,
1,6-hexanediol diacrylate (HDDA), which was reported to be 93 ◦C [29,40]. Only one reference [41]
reported 150 ◦C Tg for the HDDMA polymer. To be conservative, the final Tg of HDDMA polymer is
assumed to be 110 ◦C for predictive calculations. Tg is a primary consideration only once the viscosity
values are satisfactory for facile 3D printing. In the predicted overlap areas shown in Figure 1c,d,
higher Tgs appears on the high viscosity side. Additionally, other factors need to be considered to
obtain optimal material properties. Bis-EMA polymer has a relatively low Young’s modulus, typically
less than 2 GPa [22,48]. Also, impact resistance was reported to decrease as Bis-EMA was added to the
Bis-GMA/Bis-EMA copolymer [49]. This can be explained by the decrease in the overall strength of
intermolecular interactions; as the hydroxyl group concentration decreases, the number of physical
crosslinking sites is reduced. On the other hand, if the Bis-GMA content is increased, more reactive
diluent is needed, which will increase cure shrinkage. Therefore, to retain mechanical performance
and minimize cure shrinkage, the formulations at the center of the high viscosity side of the overlap
areas were selected for this study. These two formulations are called DA-1 and DA-2. Given in Table 3,
DA-1 consists of Bis-GMA 33.3 wt.%, Bis-EMA 33.3 wt.%, and IBMA 33.3 wt.%, and DA-2 consists of
Bis-GMA 37.5 wt.%, Bis-EMA 37.5 wt.%, and HDDMA 25 wt.%. The predicted viscosities for the DA-1
and DA-2 resins based on the Grunberg–Nissan model are 620 cP and 450 cP, respectively. Rheological
measurements showed DA-1 and DA-2 have viscosity values of 580± 40 cP and 490± 50 cP, respectively.
The values are summarized in Table 4.
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Figure 1. Ternary plots of predicted viscosity and Tg as functions of changing composition of
Bis-GMA/Bis-EMA/HDDMA system; the axes are weight percentages, and values are represented by
color. (a) Predicted viscosity lower than 500 cP; (b) predicted Tg higher than 150 ◦C; (c,d) predicted
overlap area where viscosity is lower than 500 cP and Tg is higher than 150 ◦C. The star in (c,d) marks
the DA-2 composition.
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Table 3. The DA-1 and DA-2 formulations.

Formulation Weight Fraction

DA-1
Bis-GMA Bis-EMA IBMA

0.333 0.333 0.333

DA-2
Bis-GMA Bis-EMA HDDMA

0.375 0.375 0.25

Table 4. The predicted and measured viscosities at 25 ◦C and final Tgs of the DA-1 and the
DA-2 formulations.

Formulation
Viscosity, η (cP) Final Tg (◦C)

Predicted Measured Predicted Measured

DA-1 620 580 ± 40 165 -
DA-2 450 490 ± 50 160 165 ± 4

DA-1 and DA-2 green parts were printed using the default print settings (100 µm layer thickness
and 100 s exposure time). Green parts created by room temperature DLP printing often need to be
post-cured to promote additional conversion. The post-cure process is especially necessary for parts
printed with high Tg resins because these resins reach vitrification at low monomer conversions under
the printing temperature [50]. When a DA-1 green part was directly placed in a conventional oven for
thermal post-cure, cracks developed throughout the part (shown in the right picture of Figure 2) and
some delamination was observed between layers. This is due to the unreacted monofunctional isobornyl
methacrylate molecules, which diffuse out before they can react because the thermal activation of the
methacrylate double bond reaction is relatively slow [47]. Such cracking and delamination phenomena
would not happen if mono-functional monomers of higher reactivity were used, such as p-methyl
styrene and N-vinylpyrrolidone. Another way to overcome this problem is to use multifunctional (≥2)
monomers, proved by the case of DA-2. Direct thermal post-cure of DA-2 green parts did not cause
cracks or delamination because most unreacted reactive diluent functionality exist as dangling chain
ends. For this reason, the DA-2 formulation was chosen as the standard resin for the study.
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The fractional monomer conversion, α, is determined using Equation (3) from the decreasing
integral of the characteristic near-IR absorption band of the methacrylate double bond, shown in
Figure 3 [51]:

α = 1−
A1

(
6225− 6105 cm−1

)
A0(6225− 6105 cm−1)

, (3)

where A0 and A1 are the area integrals of the absorption band from 6225–6105 cm−1 of the pristine
resin and cured sample, respectively. Note that the calculated conversion is based on the absorbance
averaged over the thickness of the tested sample. The fractional conversion is 0.67 for a DA-2 green
part. Figure 4 shows the DMA thermogram of a DA-2 green part with a Tg of 22 ◦C identified as the
peak of loss modulus, E”. The Tg value indicates that the vitrification conversion of the DA-2 resin is
around 0.67 at room temperature. The tan δ curve shows a bimodal glass transition with a slightly
more intense peak at 64 ◦C and a very broad second one at 120 ◦C. The E” curve also shows a shoulder
above the main transition. Though this might be interpreted as a heterogeneous network morphology
or spatial inhomogeneity of reaction, the likely cause of the behavior is a dark reaction by trapped
radicals upon heating past the first Tg resulting in partial revitrification and devitrification upon
continued heating. The slight plateau in E′ following the first transition supports this explanation.
After post-processing, the fractional conversion becomes 0.88. Figure 5 shows the DMA thermogram
of a fully post-cured DA-2 sample. Based on three DMA tests, the Tg of post-cured DA-2 material
is 97 ± 3 ◦C and 165 ± 4 ◦C, identified as the maxima of loss modulus E” and of tan δ, respectively.
The latter number agrees with the predicted 160 ◦C Tg via the Fox equation.
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Successful printing of objects by stereolithography requires predetermined knowledge of the
photo-curing properties of the starting material. Principles laid out by Jacobs to describe the
photo-polymerization process were used to create a working curve that provides two key parameters
that govern the polymerization of a photo-sensitive resin: depth of penetration, Dp, and critical energy
of polymerization, Ec [52]. Knowing Dp and Ec allows users to choose the appropriate settings for light
exposure and z-axis increments, which optimizes the curing conditions to achieve the desired results.
Here, the working curve is constructed for the DA-2 resin with 0.7 wt.% PPO photo-initiator, shown
in Figure 6. Under irradiation wavelength of 405 nm, the depth of penetration Dp is 550 ± 55 µm
and the critical energy Ec is 5.6 ± 0.5 mJ/cm2. The DA-2 resin has a large Dp, which enables it to 3D
print fiber-reinforced composite structures. The depth of penetration can be reduced by adding photo
absorbers to allow for a better printing resolution.
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The DA-2 resin’s density is 1105 g/cm3, and the fully cured DA-2 material (fraction conversion:
0.88) has a density of 1200 g/cm3. Cure shrinkage is, therefore, calculated based on the shrinkage in
specific volume to be 7.9%. The tensile, flexural, and fracture toughness properties are measured for
the fully cured DA-2 material. Table 5 and Scheme 2 summarize the properties and the composition
information of the DA-2 material. Compared to the commercial resins shown in Table A1, DA-2 is
a strong material with an elastic modulus around 3 GPa and a flexural strength over 100 MPa. It has
a low viscosity and a high depth of penetration for blue lightcuring, both of which make the resin
suitable for the additive manufacturing of fiber-reinforced composites. DA-2 has a comparatively low
fracture toughness that is typical of free radical polymerization systems. Future work will focus on
improving the fracture toughness of the resin, studying the effects of 3D printing parameters, as well
as understanding the processing-property relationships in light-based 3D printing technologies.
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Table 5. DA-2 property table.

DA-2 Properties

Viscosity, η 490 ± 50 cP
Density, resin, ρ0 1.105 ± 0.001 g/cm3

Density, cured, ρ 1.200 ± 0.002 g/cm3

Depth of Penetration, Dp
1 550 ± 55 µm

Critical Energy, Ec
1 5.6 ± 0.5 mJ/cm2

Glass transition, Tg (E”) 97 ± 3 ◦C
Glass transition, Tg (tan δ) 165 ± 4 ◦C

Tensile modulus, E 2.8 ± 0.1 GPa
Tensile strain at break, ε 2.5 ± 0.6 %

Tensile strength, TS 61.9 ± 6.3 MPa
Flexural modulus, E 3.0 ± 0.1 GPa
Flexural strength, FS 110 ± 10 MPa

Fracture toughness, KIc 0.45 ± 0.02 MPa·m1/2

Fracture toughness, GIc
2 58.8 ± 0.3 J/m2

1 DA-2 with 0.7 wt.% PPO; 2 Calculated using the equation: GIc =
(1−ν2)KIc

2

E , where E is the flexural modulus, KIc is
the experimental fracture toughness, and the Poisson’s ratio ν is assumed to be 0.35.
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Scheme 2. The DA-2 Formulation.

4. Conclusions

The additive manufacturing field lacks a well-defined photo-sensitive resin formulation for high
performance composite applications. Current commercial resins produce parts with relatively low
thermal and mechanical properties and contain proprietary composition information. The DA-2
formulation was herein developed as a model resin system for high performance 3D printing
applications. Predictive models, namely the Grunberg–Nissan model for the prediction of resin
mixture viscosity and the Fox equation for polymer Tg, were successfully applied to determine proper
monomer ratios to give optimal material properties. The clear resin has a large depth of penetration
suitable for the additive manufacturing of fiber-reinforced composites. The depth of penetration can be
reduced for 3D printing with the addition of photo absorbers. The high Tg resin has to be post-cured
after printing to achieve maximum cure due to early vitrification of the resin at the room printing
temperature. The post-cured polymer exhibited good thermal properties and high mechanical strength
but has a comparatively low fracture toughness, typically observed in free radical polymerization
systems. Future work will focus on improving the fracture toughness of the photo-polymerizable resin,
applying the resin to the additive manufacturing of fiber-reinforced composites and understanding the
fundamental processing-property relationships underlying light-based 3D printing technologies.
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Appendix A. Commercial SLA Resin Systems and Their Properties

Table A1. Commercial SLA resin systems and their properties.

Resin Supplier Composition Price (USD/L)

Peopoly Model Resin Peopoly, Inc. Ltd. Proprietary 70
MakerJuice Standard Resin MakerJuice Labs Proprietary 60

Type D PRO UV Resin DruckWege, GmbH Proprietary 120
PR48-Clear Resin CPS Polymers Open source 1 120

VeroClear (RGD810) Resin Stratasys, Ltd. Proprietary 350
Standard Clear (FLGPCL04) Resin Formlabs, Inc. Proprietary 150

High Temp (FLHTAM02) Resin Formlabs, Inc. Proprietary 200

η (cP) HDT (◦C) E (GPa) TS (MPa) IZOD (J/m)

Peopoly Model Resin 600 - 0.83 60 -
MakerJuice Standard Resin 146 - 1.03 52 -

Type D PRO UV Resin 33–57 - 1.12 35 -
PR48-Clear Resin 400 - 1.4 28 -

VeroClear (RGD810) Resin 70–75 2 45–50 2–3 50–65 20–30
Standard Clear (FLGPCL04) Resin 800–900 3 73 2.8 65 25

High Temp (FLHTAM02) Resin N/A 238 2.9 51 24.2
1 Ref. [53]; 2 Ref. [54]; 3 Ref. [55].

Appendix B. The Experimental Viscosity Data of Binary Resin Mixtures, Calculated Viscosities
Based on Arrhenius Equation, and Binary Interaction Parameters

Table A2. The experimental viscosity data of binary resin mixtures, calculated viscosities based on
Arrhenius equation, and binary interaction parameters.

Binary Mixture (Weight Ratio) ηexp (cP) ηArrhenius (cP) G12

Bis-GMA:Bis-EMA = 1:1 14000 28400 −2.83
Bis-GMA:Bis-EMA = 1:2 5000 9200 −2.68
Bis-GMA:Bis-EMA = 2:1 47400 86400 −2.75
Bis-GMA:HDDMA = 1:1 130 290 −3.68
Bis-GMA:HDDMA = 1:2 34 62 −3.74
Bis-GMA:HDDMA = 2:1 840 2080 −3.63
Bis-EMA:HDDMA = 1:1 31 32 −0.09
Bis-EMA:HDDMA = 2:1 70 73 −0.16
Bis-EMA:HDDMA = 3:1 121 120 0.03

Bis-GMA:IBMA = 1:1 620 255 4.21
Bis-GMA:IBMA = 1:2 80 61 1.81
Bis-GMA:IBMA = 2:1 3900 1640 3.49
Bis-EMA:IBMA = 1:1 52 33 2.1
Bis-EMA:IBMA = 2:1 113 72 1.82
Bis-EMA:IBMA = 3:1 200 116 2.23
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Appendix C. Predicted Tg and Viscosity for Bis-GMA/Bis-EMA/IBMA Ternary System
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