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Abstract: In the paper, the problem of chatter vibration detection in the milling process of carbon
fiber-reinforced plastic is investigated. Chatter analysis may be considered theoretically based on data
from impact test of an end mill cutter. However, a stability region obtained in such way may not agree
with the real one. Therefore, this paper presents a method that can predict chatter vibrations based
on cutting force components measurements. At the beginning, a stability lobe diagram is created to
establish the range of experimental test in the plane of tool rotational speed and depth of cut. Next,
an experiment of composite milling is performed. The experimentally-measured time series of cutting
forces are decomposed with the use of the improved Hilbert–Huang transform (HHT). To detect
chatter, statistical methods and recurrence quantification analysis (RQA) are used. However, much
better results are obtained when new chatter indexes are proposed. The indexes, derived directly
from the HHT and RQA methods, can be used to build an effective chatter prediction system.

Keywords: milling; chatter vibrations; time-frequency analysis; recurrence quantification
analysis; CFRP

1. Introduction

Carbon fiber-reinforced composites (CFRC) are becoming more and more popular every year,
year-round, as a material for the production of responsible machine parts in many industries such
as aerospace, marine and automotive. These materials are featured by high specific strength and
stiffness at low weight [1]. Due to the lower weight of the final product, they lead to less energy and
fuel consumption or better operational productivity. Although the products can be made in complex
shapes, they need however some machining, e.g., milling process, to achieve final dimensional and
assembly requirements. The features of these materials that make them a perfect choice in a variety of
demanding applications, generate, however, many difficulties in their machining and choosing the
right cutting tool. The key problem in machining CFRC is the choice of optimal machining parameters
due the required product quality, abrasive wear of the cutting tool or the occurrence of so-called chatter
vibrations, i.e., strong relative vibrations between a tool and a machined workpiece. The high level
of vibrations usually adversely influences the surface quality parameters, but can also contribute to
accelerated tool wear or even tool or the machined part damage. These difficulties can be further
intensified by the high compliance of typical parts made of these materials. Furthermore, a need to
increase productivity and product quality causes the material removal rate to be increased. Higher
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machining efficiency can be attained by applying high speed or high-efficiency machining, which may,
however, intensify the risk of chatter vibrations.

Therefore, the primary task of the milling machine operator is to select adequate machining
conditions that will protect the process from the adverse effects of chatter vibrations, while ensuring
the maximum possible economics or machining efficiency. Usually, stability lobes diagrams (SLDs) are
created before machining, where the boundary between stable and unstable machining is defined in
the domain of cutting tool rotational speed and depth of cut [2,3]. Various models are proposed, e.g.,
artificial neural networks [4], to describe a stable machining area and predict machining chatter. In
practice, the area of stable machining may be different than expected, due to simplifications regarding
model linearity and inaccuracy in identifying model parameters. As a result, process supervision
systems are crucial, because they can diagnose the process state on-line and accurately modify the
machining conditions when some symptoms of process instability appear [3,5,6].

There are many articles regarding the cutting of composite materials where different methods of
avoiding problems with fiber pullout, fragmentation or delamination are presented [7–11]. Avoiding
these problems is important, because they negatively affect the strength and durability of composite
products. Moreover, experimental research of various cutting tools and their wear are presented in
many papers, e.g., [12,13]. In addition, the influence of cutting parameters on cutting results and forces
is studied [7,9,14]. A comprehensive review of problems with tool wear and final product quality,
related to machining of composite materials, are presented in [15–18]. Fewer articles deal with the
problem of chatter vibrations identification in the milling of composite materials [14,19,20].

Regenerative chatter, known also as the secondary one, is the most common type of chatter
vibrations in machining [21]. However, in cutting composite materials, frictional, known as primary
chatter [22–24], may also be a very important source of vibrations, because composite materials are
very abrasive and have a variable friction coefficient. In general, the coefficient of friction grows as
the cutting speed increases for all composite materials [25]. For this reason, cutting tools made of
high-speed steel or carbide are often covered by special coatings, such as diamond-like carbon (DLC),
that significantly reduce friction and extend the tool life. The problem of frictional chatter and chaotic
vibrations, caused by dry friction are described among other effects in [21,26,27].

In practice, chatter vibrations may be suppressed using vibration eliminators, which change the
dynamical characteristics of the machine-tool system or a phase between the external and internal
modulations in trace regeneration [28,29]. However, these methods are passive. This means that
a system that eliminates chatter should be tuned before each cutting operation. The effect of trace
regeneration may be also reduced or canceled by a change of the phase shift using a variable spindle
rotational speed [28]. During machining using multi-point tools stability may be increased by changing
the rake angle or by using unequal spacing of cutting inserts in the milling head. A comprehensive
study on the performance of variable helix and variable pitch end mills is provided in [30]. In this work,
an analytical model of the cutting process for the prediction of chatter stability of variable helix end
mills is also presented. However, solutions that use special tools increase production costs. Another
method, widely used in industry, is the use of commercial applications, such as CutPro software, which
allow us to create SLDs [31]. This software creates SLDs based on modal analysis of a tool–spindle
system but its accuracy depends a lot on the number of modes taken into account and many other
assumptions [32].

Due to the difficulties and limitations mentioned above many works concentrates on the
development of methods that could detect the initial symptoms of chatter, based on measurements of
different signals, i.e., force, vibrations or acoustic emission [14,19,33,34]. These signals are analyzed
with the use of various signal processing techniques in time, frequency and time–frequency domains.
In literature, works can be found that use, for this purpose, among others, standard and nonstandard
statistical methods [5,14,35,36], entropy measures [5,19,36], wavelet transform [37–39], different
versions of Hilbert–Huang transform (HHT) [5,36,40,41], recurrence plot technique (RP) and recurrence
quantification analysis (RQA) [36,42]. Methods based on statistical and entropy measures are very
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popular in chatter analysis. They are used in grinding [43–45], turning [46] and milling processes [47].
Although nonstandard statistical methods are not new, they are often very effective in diagnostics of
various machining processes. The methods of process state analysis mentioned here are presented
in [48,49]. In these studies, chatter vibrations are investigated with the use of rescaled range and
detrended fluctuation analysis. The RP technique is used to identify various physical phenomena [50],
also among other in machining processes [14,19,35,36,42]. The use of HHT transform may also be
a useful method for identification of early symptoms of process instabilities in different machining
processes, e.g., in grinding [44] or milling [5,37,40,41]. However, still some methods of signal
analysis are necessary to reveal some useful features from frequency components obtained after signal
decomposition. A quite new method for signal decomposition and dynamical behavior analysis is
presented in [51], where chatter is investigated using the Hilbert vibration decomposition (HVD) [52].

To conclude, in our opinion it is better when diagnosing the process state during the machining
and avoid chatter vibrations by an adequate change of cutting conditions, e.g., cutting speed, with the
highest possible machining efficiency at the same time. In the paper, investigations of the milling
process stability of carbon fiber reinforced plastic (CFRP) based on force time series analysis are
presented. In order to distinguish the chatter-free and chatter vibrations, the improved HHT transform
and the RQA analysis are used.

The paper is divided as follows. In Section 1, a brief review of the literature related to chatter
vibrations is presented. Section 2 describes the experimental test stand, the methodology of experiments
and numerical tools used for preliminary stability region analysis. Section 3 includes results of
preliminary force measurements and a theoretical description of the methods used for the cutting
force decomposition and signal analysis, i.e., the improved Hilbert-Huang transform and recurrence
quantification analysis. In Section 4 results of force signal decomposition are presented. In Section 5,
an analysis of force–frequency components is performed for identifying process instability. New indexes
of process instability are introduced based on improved HHT and RQA methods. Next, some remarks
regarding the real area of stable machining conditions are presented Finally, in Section 5, practical
conclusions and propositions of future research are presented.

2. Experimental Test Stand and Research Procedure

The milling test of the CRFP workpiece was performed on the milling machine—BlueBird
MG6037PKK (Certus, Wadowice, Poland, www.mg-certus.pl). During the experiment, two components
of the total cutting force Fx, Fy were measured with the help of the experimental setup presented
schematically in Figure 1.

The experimental setup was composed of two subsystems: a dynamometer for measuring cutting
force components and a modal analysis system. The force measurement subsystem consisted of the
piezoelectric dynamometer Kistler 9257B, the charge amplifier 5017B, the simultaneously-sampled
differential amplifier NI SC2040 and the NI data acquisition card. Measuring cutting force components
and storage in computer memory was the main aim of the subsystem. The second subsystem, i.e.,
the modal analysis system was used at the beginning to identify the dynamic characteristics of
a tool-holder structure. It was composed of the modal hummer PCB 086C03, the ceramic shear
accelerometer PCB 352B10 and the signal acquisition module NI 9234. Both subsystems of the
experimental rig were integrated into a PC computer and controlled by CutPro9 and specially
developed measurement software.

www.mg-certus.pl
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Figure 1. Scheme of experimental setup consisting of milling machine, modal analysis system and
dynamometer system.

2.1. Tool-Holder Modal Analysis

At the beginning of the experiment, a single point impact test was done to determine the natural
frequency, stiffness and damping ratio of the spindle–tool system, which are demanded to predict the
stability lobes diagram (SLD). The modal hammer was applied to excite the tooltip. Next, the output
signal was measured with the accelerometer fixed to the tooltip. After that, the modal parameters for
the X and Y directions were obtained in the form of the frequency response function (FRF) presented
in Figure 2.
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The first natural frequency of the tool-holder system was about 600 Hz, and the second one
about 700 Hz. This can estimate chatter vibration frequency fo equal to about 600–700 Hz. The higher
frequencies, about 1200 Hz shown in the FRF, were the second harmonic of chatter. Therefore, the SLD



Materials 2020, 13, 4105 5 of 22

created by means of the CutPro9 software has the mother lobe, i.e., the first at the highest rotational
speed no, equal to 60fo/z, where z is the number of the tool flutes (z = 2). According to the linear theory
implemented also in CutPro9 software [2,53], the next lobes appear at n = no/lo where lo is a lobe order,
lo = 2, 3, etc.

Based on the FRF function (Figure 2), a theoretical SLD was generated (Figure 3) by means of
CutPro9 software for the feed rate per tooth fz = 0.05 mm and the radial depth of cut ae = 12 mm.
However, to verify the SLD and to find new indexes useful in chatter prediction, machining conditions
are proposed in the next subsection.Materials 2020, 13, x FOR PEER REVIEW 5 of 20 
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together with proposed points of milling tests.

2.2. Conditions of Experiment

As mentioned before, the theoretical SLD, obtained with the use of CutPro9 software, is shown in
Figure 3. According to Figure 3, the experimental test was divided into two parts. First, the rotational
speed n was changed from 2000 rpm to 8000 rpm, while the depth of cut ap equal to 0.5 mm. Next,
in the second part of the test, rotational speed was constant and equal to 6000 rpm, while the cutting
depth ap was changed from 0.5 to 2 mm. The feed rate per tooth fz and the radial depth of cut ae for all
tests were constant and equal to fz = 0.05 mm and ae = 12 mm, as assumed for the SLD.

The range of parameters used during tests is collected in Table 1. The milling cutter was made of
diamond-coated cutting steel, having a diameter of 12 mm and two flutes (z = 2). The experiment
was repeated for every set of parameters applying identical conditions, that are: the tool and the
workpiece position, tool wear and temperature of the test. Finally, 16 tests were performed and only
the representative part of the time series was taken for the analysis.

Table 1. Range of parameters used in experimental tests.

Test of rational speed (constant ap): ae = 12 mm, fz = 0.05 mm/flute, ap = 0.5 mm

n
2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000(rpm)

Test of cutting depth (constant n): ae = 12 mm, fz = 0.05 mm/flute, n = 6000 rpm

ap 0.5 1.0 1.5 2.0(mm)

ap—cutting depth, ae—radial depth of cut, fz—feed rate per tooth, n—rotational speed.

X and Y components of the total cutting force were measured using a sampling frequency of 4 kHz.
The analyses presented in the next section were undertaken to verify whether the theoretical stability
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region presented in Figure 3 was determined properly and to find some new features of measured
signals useful in chatter vibrations prediction.

3. Nonlinear Time Series Analysis

To predict stability and to identify chatter vibrations in the milling process, the analysis of the
force-time series is shown in this section. Generally, in the cutting process, the measured cutting force
components are usually non-stationary and nonlinear by nature. Therefore, it is necessary to use an
adequate signal processing techniques which could properly decompose the analyzed signal into the
specific frequency components and reveal the dynamic content of the signal. Standard methods like the
short-time Fourier Transform or the wavelet transform (WT) can analyze stationary and non-stationary
signals, but not nonlinear ones. When using WT the results rely to a great extent on the basic wavelet
function and the discretization of scales. Improper selection of any of these parameters may reduce the
applicability of this method in analyzing non-stationary and nonlinear signals.

The HHT is a self-adaptive signal decomposition technique designed to analyze nonlinear
signals [54]. This method can decompose the signal into separate frequency components for which
instantaneous amplitude and frequency can be determined. The use of this technique should enable to
solve process stability prediction problem.

In order to verify the theoretical SLD the resultant cutting force Fxy acting on the milling cutter in
the XY plane, is taken into consideration. During preliminary force components analysis, it was found
that the character of the Fx and Fy components is similar and they are shifted in phase by about 90
degrees. For this reason, the resultant cutting force Fxy is considered to be a representative of milling
dynamics. This force is calculated as the square root of the sum of force component Fx and Fy according
to the following formula:

Fxy =
√

F2
x + F2

y. (1)

As an example, changes of Fx, Fy components and resultant force Fxy are presented in Figure 4 for
stable and unstable conditions, that are taken from the SLD shown in Figure 3. The determination
of the stability region seems to be quite easy based on the stability lobe diagram of CFRP. However,
when visually analyzing changes of force components and resultant force, no clear differences between
stable and unstable conditions can be discerned. As may be seen in Figure 4 amplitudes of resultant
force are almost the same for stable and unstable conditions, although the waveforms obviously differ
in the content of dynamic components. Therefore, the theoretical SLD of CFRP will be verified using
the methods described in this section.
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3.1. Improved Hilbert-Huang Transform

The HHT is a signal decomposition technique, introduced by Huang et al. [54], which recently
has gained much attention due to its successful use in many applications. This method was developed
especially for analysis of non-stationary and nonlinear signals changing even within a single oscillation
cycle. In general, the HHT is composed of two processing methods, i.e., the empirical mode
decomposition (EMD) and the Hilbert transform. The aim of the EMD is a decomposition of the
signal x(t) into a set of so-called intrinsic mode functions (IMFs), denoted here as cj(t), j = 1, ..., m−1.
Assuming that the last IMF is a data trend rm(t), the original signal x(t) may be represented as follows:

x(t) =
m−1∑
j=1

c j(t) + rm(t). (2)

The presented modes can have a variable amplitude and frequency along the time, unlike simple
harmonic functions. By default, this method decomposes the signal in a few steps. The first finds all
local minima and maxima points of the analyzed signal. These points are interpolated by cubic splines
to create the upper and lower envelops, see Figure 5a. In the next step, a mean line m1(t) between the
upper and lower envelopes is created and subtracted from the original signal x(t). As an effect, a new
signal h1(t) is obtained, as presented in Figure 5b.

h1(t) = x(t) −m1(t). (3)
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The above procedure is called a sifting process. It is repeated for the successive data hk(t) until the
mean line between upper and lower envelopes is close enough to zero at any point.

hk(t) = hk−1(t) −mk(t), k = 2, . . . , n. (4)

At this moment, the data hn(t) becomes the first IMF component c1(t). In Figure 5c the data after
the second sifting process are shown.

c1(t) = hn(t). (5)

This component represents the highest frequency component of the original signal x(t). Next,
the first IMF component c1(t) is subtracted from the original signal x(t) and the whole sifting process is
repeated for the new data x1(t).

x1(t) = x(t) − c1(t) (6)

In Figure 5d, new data x1(t) are shown. Thanks to this procedure, the successive components
cj(t) of decreasing mean frequency are obtained. This process is stopped at the moment when the
component cm(t) becomes small enough or it remains a monotonic function and no more IMFs can be
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extracted. As can be seen in Figure 5d, using the standard method proposed by Huang, the components
are not properly separated after the two sifting operations and are partially mixed with each other.

Although the empirical mode decomposition has been shown to be very effective in many
practical applications, it has some significant drawbacks. One of these drawbacks is the inability to
separate components that are close enough to each other in the frequency domain [55]. In literature,
this problem is called the separation problem. It also applies to the situation where the ratio of
component amplitudes is appropriately small. In this case, the higher frequency component cannot be
distinguished, as it does not form local extremes against the carrier component, i.e., the lower frequency
component. As shown in Figure 5a, not all necessary interpolation points have been found, as they are
not local extremes. This creates the possibility that separated components may be mixed, i.e., the higher
frequency component may also partially contain a carrier component of lower frequency, see Figure 5c.
This leads to the so-called mode mixing problem and to distortion of both separated components.
Therefore, the sifting process proposed originally by Huang does not guarantee that all the necessary
interpolation points will be found. A number of alternative methods of finding interpolation points for
the upper and lower envelopes or finding the mean line have been proposed in the literature [55–57].
The sifting process may be improved by the use of a time-varying filter technique [55], a heuristic search
optimization approach [56] or a local integral mean-based sifting [57]. Interpolation points may also
be found based on a derivative of the analyzed signal. For the first derivative of a single component
signal, the interpolation points for upper and lower envelopes correspond to the intersection of this
derivative with the zero axis. For multi-component signals, the derivative of the whole signal contains
the derivatives of the fast and low oscillating components. For this reason, in the paper [58] a number
of sifting operations on the first derivative are done to obtain derivative of only the highest frequency
component. The zero-crossing points of this derivative are used to find interpolation points for upper
and lower envelopes. This method requires however many sifting operations and therefore may
be time-consuming.

On the other hand, the mean line can be estimated directly from the inflection points derived
based on local extremes of the first derivative of the signal, as shown in Figure 5e. In this case, inflection
points correspond to the location of extremes of the odd derivative of the signal x(t). As can be seen
in Figure 5f, after the first sifting operation, the high oscillating component was almost properly
separated, although it requires several additional sifting operations in order to be isolated. In Figure 5g
this higher frequency component is shown after two sifting operations. Since using this method,
the sifting process may gradually distort the extracted component, in practice the sifting process should
be performed once or at most twice. After that, the sifting process is carried out using the standard
method proposed by Huang. In Figure 5h the second, low oscillating component is shown. As may be
seen, both components were separated in a better way and no mode mixing occurred. Additionally,
the presented method enables the separation of the signal components in a smaller number of sifting
operations. This method, denoted here as DHHT (Derivative based HHT), is used in this work to
decompose the resultant force Fxy signal into individual frequency components.

The second part of the HHT needs a Hilbert spectral analysis [59] that is engaged to each IMF
component separately in order to calculate instantaneous amplitude and frequency. Based on the
Hilbert transform the instantaneous amplitude and frequency obtained from the IMFs may be converted
to full time–frequency distribution of energy contained in the data, i.e., a Hilbert spectrum [60]. Using
the Hilbert transform, every signal x(t) may be altered into a complex function z(t) by including
a complex part y(t) which is the same as x(t) but moved in phase by 90 degrees.

z(t) = x(t) + jy(t) = a(t)eiθ(t) (7)
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where a(t) is the instantaneous amplitude and θ(t) is the phase of the analyzed signal. The instantaneous
amplitude and frequency can be calculated based on x(t) and y(t) signals using the following formulas:

a(t) =
√

x(t)2 + y(t)2 (8)

ω(t) =
.
θ(t) =

d
dt

(
tan−1

(
y(t)
x(t)

))
. (9)

Since the instantaneous frequency and amplitude cannot be used to describe a multi-component
signal, the EMD and the Hilbert transform must be applied together. In the beginning, the original
signal was transformed into separate frequency components and next, instantaneous amplitude and
frequency were calculated.

3.2. Reccurence Quantificatin Analysis

After the DHHT analysis, several components of the force signals Fxy are obtained, whichmay
be responsible for chatter in milling. Here, these components (modes) were analyzed by means of
the recurrence quantification analysis (RQA), which is based on the recurrence plots (RP) technique
proposed by Eckmann [61]. The concept of the RP and RQA assumes that any time series can be
presented as a delayed vector, with delay d in an m-dimensional space. Parameters m and d are
called as the embedding dimension and the time delay, respectively. In the beginning, the embedding
parameters (m and d) should be estimated. Here, the average mutual information function and the
false nearest neighbors method is used to calculate embedding parameters. Having these parameters,
the RP and the RQA can be done. The RP indicates all the time instants when the phase space trajectory
of the dynamical system meets almost the same area in the phase space [50,62]. Mathematically, the RP
is expressed as a matrix:

Mij = θ
(
ε−

∣∣∣si − sj
∣∣∣), (10)

where θ is the Heaviside step function, ε is a threshold parameter, si and sj are delay vectors.
If recurrence appears then Mij = 1, otherwise Mij = 0. These results are plotted in RPs as black (Mij = 1)
and white (Mij = 0) dots, respectively. However, analyzing patterns in RPs is not objective enough
therefore usually the RQA is used to describe RPs statistically. In this paper, the following RQA
indicators are employed:

• The largest Lyapunov exponent (Lyap) calculated by the Kantz algorithm described in [63],
• The averaged diagonal line length (L):

L =

∑N
l=lmin lP(l)∑N
l=lmin P(l)

. (11)

• The longest diagonal line length (Lmax):

Lmax = max({li; i = 1, . . . , Nl}). (12)

• The L-entropy (Lent) is Shannon’s entropy of diagonal line segment distribution:

Lent = −
N∑

l=lmin

P(l) lnP(l). (13)

• The trapping time (TT) is the average length of the vertical lines:
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TT =

∑N
v=vmin

vP(v)∑N
v=vmin

P(v)
, (14)

where P(l) is the histogram of the lengths l of the diagonal lines. P(v) is the histogram of the vertical
lines lengths v, and N denotes the quantity of points on the phase space trajectory.

To calculate RQA indicators, the Tisean software was engaged [64]. These methods are commonly
applied in the literature to analyze different signals from cutting processes [19,35,36,42,65] and to
medical problems [66]. However, in the milling process, the conventional RQA indicators are not
precise enough to recognize chatter, therefore, the improved chatter indicators (ICI) are proposed,
defined as follows:

• Lyap chatter index (LyapCI)

LyapCI =
Lyap

ADHHT
(15)

• Lmax chatter index (LmaxCI)

LmaxCI =
Lmax

ADHHT
(16)

• Lent chatter index (LentCI)

LentCI =
Lent

ADHHT
(17)

• L chatter index (LCI)

LCI =
L

ADHHT
(18)

• TT chatter index (TTCI)

TTCI =
TT

ADHHT
, (19)

where ADHHT means the amplitude of the chatter force component calculated by means of the DHHT.
Moreover, to unify chatter indexes for different cutting depths of cut ap, the ICI are divided by ap.

4. Nonlinear Time Series Analysis

In the next two subsections, the analytical stability lobe diagram is verified by the use of
methods presented in Section 3. For this purpose, the resultant force Fxy is taken into consideration,
as a representative of milling dynamics.

4.1. Improved Hilbert–Huang Transform

The DHHT method was used to extract frequency components from the resultant Fxy force
signal. Based on a preliminary experiment, the amount of desired components, related to chatter
vibrations, were isolated. Next, the instantaneous amplitudes, frequencies and amplitude spectra were
calculated. In Figures 6 and 7, the first three components are shown for stable and unstable conditions
respectively (according to SLD presented in Figure 3). The first IMF component was connected with
the higher frequency vibrations of the milling machine as well as with measurement disturbances. The
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frequency of this component was spread in a wide range of frequencies from about 800 to 2000 Hz.
The second component was connected with the tool-holder system, which has a natural frequency of
about 500–700 Hz. The third component was probably connected with lower frequency vibrations
of the workpiece. Its frequency was about 300 Hz. As may be seen from amplitude spectra, all the
three components were separated quite well, although slight energy leaks between components are
still visible. For each IMF component statistical features of instantaneous amplitudes and frequencies,
as well as maximum amplitudes of component spectra, were calculated. It was found that qualitative
changes in these quantities may be found, especially for the second and third IMF components. From
Figures 6 and 7, qualitative changes in amplitude and amplitude variance of the second IMF component
may be observed.
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In Figure 8, time–frequency spectrograms of resultant force Fxy for a constant depth of cut ap

equal to 0.5 mm and two rotational speeds n equal to 6000 and 7000 rpm (corresponding to stable
and unstable machining) are shown. As can be seen, the energy of the second and third component
is spread in a quite wide range of frequencies, which indicate an irregular and chaotic course of the
milling process. Additionally, at lower frequencies, below 200 Hz, the IMF components resulting
from the cutting tool rotation during material removal are visible. Moreover, a large increase in the
energy contained in the second and third components can be seen over time, which may be due to the
discontinuous and non-uniform structure of the CFRP. Therefore, a relatively long time series of force
signals should be processed to obtain repeatable analysis results. In this work, 2 s segments in length
are taken for analysis.
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In order to show the averaged frequency content of the decomposed force components, the DHHT
analysis was performed on relatively short data segments, with a width of 1000 sampling points,
which corresponds to 0.25 s of milling. These segments were taken sequentially from a 10 s time series
of resultant cutting force. Then, the average instantaneous amplitude and frequency for each IMF
component were determined for each segment. The results of this analysis for stable and unstable
conditions are presented in Figures 9 and 10. In Figure 9, diagrams for two rotational speeds are shown
for stable and unstable machining.
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As may be seen, the individual IMF components can be more easily recognized and analyzed.
Especially for the second IMF component, a significant increase in amplitude is seen, being a symptom
of chatter vibrations. In Figure 10, two spectrograms are shown for constant rotational speed and
two depths of cut equal to 0.5 and 1.5 mm. Again, a big increase in the amplitude of the second
IMF component was observed. Moreover, a mean frequency of the second IMF component slightly
decreases for unstable machining conditions from about 650 Hz to about 550 Hz. This may be due to
the increase in damping in the cutting zone caused by the increase of the contact area on the flank
surface of the cutter [67].

Summing up, the application of the improved HHT transform applied for the resultant force
signals (Fxy) is useful for detecting chatter in the cutting process. The second component of the
DHHT seems to be responsible for chatter vibrations because its frequency is between 400 and 700 Hz.
The maximum amplitude of the second component spectrum is presented in Figure 11 together with
the theoretical SLD (obtained by CutPro9, thin blue line), stable (green) and unstable (red) points,
proposed here and defined by means of the second component amplitude. A critical value of ADHHT
is marked as a green broken line. The milling process is stable, without chatter vibrations when the
amplitude of the second component is smaller than ADHHTcr. On the base of ADHHT, a new hypothetical
SLD (bold blue line) was proposed. The critical depth of cut (dashed red line) was not horizontal like
in a linear approach, but reveals nonlinear properties as shown in [39,68]. This is probably due to the
nonlinear damping in the cutting zone, which increases with the decrease of tool rotational speed,
as reported in [67].
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4.2. Recurrence Quantification Analysis and Chatter Indexes

The largest Lyapunov exponent (Figure 12) is not good enough for any components of DHHT,
although the second component seems to be the best. Stable and unstable milling points cannot be
recognized properly. Therefore, the newly introduced chatter indexes, defined in Equations (14–18),
are proposed. They identify chatter much better as shown in Figures 13–17.
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In Figure 13 the Lyapunov chatter index (LyapCI) with proposed critical limit value (LyapCIcr, green
dashed line) is presented. The second component of the DHHT identified chatter the best, while
the first one was the least accurate. The LmaxCI, shown in Figure 14, also indicates instability on the
basis of the second component. The critical index LmaxCIcr equals about 7.5. Below the green dashed
line cutting process is unstable. The LentCI (Figure 15), the LCI (Figure 16) and the TTCI (Figure 17)
had significantly smaller values in case of chatter than for stable milling. Thus, the proposed chatter
indexes were precise and much better than typical RQA measures. Moreover, they were consistent
with the hypothetical SLD presented by the blue line.

In the case of cutting with different depths of cut, the ICIs are related to cutting depth ap as
mentioned in Section 3.2. Then, the ICIs were much better than pure RQA. For instance, the Lyapunov
exponent shown in Figure 18a increases with the cutting depth, but in the last case of ap = 2 mm,
it decreases (the first and second component). Only the third component could be taken as a stability
index. However, all the ICIs presented in Figures 18b, 19 and 20 diminish with the depth of cut,
showing a transition from stable to unstable cutting. The LyapCI is much higher when the process is
stable and less regular than in case of chatter vibrations. The second component is as good as the
third one in the analysis of chatter at growing cutting depth. The proposed critical values of ICIs
(dashed green lines) were as follows: LyapCIcr = 1 (Figure 18b), LmaxCIcr = 10 (Figure 19a), LentCIcr = 1
(Figure 19b), LCIcr = 1 (Figure 20a) and TTCIcr = 1 (Figure 20b). Thus, the improved chatter indexes
work very well and can be used in practice with success.
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The paper is focused on the assessment of the stability of the CFRP milling process by newly
proposed, improved chatter indexes that have not been used before in the literature. The improved
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Hilbert–Huang transform is the first step in the process stability analysis. The resultant cutting force
is decomposed into three components, where the second one is responsible for chatter vibrations in
the milling process. The amplitude of the second component indicates some symptoms of instability.
However, calculation of the improved chatter indexes as the recurrence quantification measures related
to the amplitude of chatter component are much better at recognizing CFRP cutting instability.

The theoretical stability lobe diagram, created with the help of the commercial software CutPro9,
is not good enough for chatter detection of milling of carbon fiber reinforced plastics. This is because
CFRP is a strongly nonlinear material having different properties from classical constructional materials
defined in a model used in CutPro9. The here-proposed hypothetical SLD with non-constant critical
depth of cut is proven by experiment and consistent with the improved chatter indexes.

Summing up, the identification of chatter vibrations with the help of joined and improved HHT
and RQA is much better than classical linear analysis. Finally, three new chatter indexes are selected,
which identify cutting instability as the best. They are LyapCL, LCI and TTCI. Each of them is appropriate
both for speed and cutting depth-induced instability.

To create a process supervision (control) system, the machine tool should be equipped with force
or alternatively acceleration sensor and data acquisition system to collect the time-series on-line during
the process. Next, a computer could do the analysis of the signal according to the procedure presented
in Section 3. Finally, software should compare the chosen chatter indexes (CI) to the reference (critical)
values and send information to the controller to change rotational speed if the process is unstable.
Chatter appears when the critical CI is exceeded. It is important at the beginning to estimate the
critical CIs for the specific material, machine and cutting tool. It is important, also, that the control
system is universal and can be applied for different materials, not only for composites. Additionally,
some feature-fusion techniques, e.g., principal component analysis, could be helpful in creating a more
reliable model for chatter prediction.
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