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Abstract: The photoinduced polymerization of monomers is currently an essential tool in various
industries. The photopolymerization process plays an increasingly important role in biomedical
applications. It is especially used in the production of dental composites. It also exhibits unique
properties, such as a short time of polymerization of composites (up to a few seconds), low energy
consumption, and spatial resolution (polymerization only in irradiated areas). This paper describes a
short overview of the history and classification of different typical monomers and photoinitiating
systems such as bimolecular photoinitiator system containing camphorquinone and aromatic amine,
1-phenyl-1,2-propanedione, phosphine derivatives, germanium derivatives, hexaarylbiimidazole
derivatives, silane-based derivatives and thioxanthone derivatives used in the production of dental
composites with their limitations and disadvantages. Moreover, this article represents the challenges
faced when using the latest inventions in the field of dental materials, with a particular focus on
photoinitiating systems based on iodonium salts. The beneficial properties of dental composites
cured using initiation systems based on iodonium salts have been demonstrated.

Keywords: photopolymerization; light-cured composites; cationic photoinitiator; free radical photoinitiator;
iodonium salt; polymerization shrinkage

1. Introduction

Nowadays, the most modern technologies for the production of polymeric materials are
based on photochemically initiated processes. The synthesis of polymeric materials carried out
by photopolymerization is one of the most efficient methods, thanks to which it is currently
a very widespread and dynamically developing technique [1–5]. Compared to other methods,
photopolymerization is considered environmentally friendly due to its low energy consumption, no use
of solvents, and high speed at ambient temperature. In industrial practice, two types of photochemically
initiated polymerization are most commonly used, namely radical and cationic polymerization [6–9].
Due to the presence of oxygen inhibition in the case of free radical photopolymerization, much attention
is currently paid to the cationic, thiol-ene, and hybrid photopolymerization processes [10,11].

Polymerization using light, mainly ultraviolet (UV) light, was initially used in the coating
industry, especially in varnishing for solvent-free paints and varnishes for the furniture and automotive
industries [11]. Achieving high polymerization rates in fractions of seconds, resulting from the rapid
formation of radicals or initiating ions, allows for high throughput of the production line [12]. Besides,
the possibility of conducting photopolymerization processes at ambient temperature prepares polymeric
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materials carried out by photoinduced polymerization process one of the most efficient photochemical
technologies. Currently, this type of polymerization is also used in many other industries, namely
in photolithography for the production of printed circuits, in micro-replication for the production
of spherical lenses, for photo curing polymeric adhesives, and in microelectronics for encapsulating
integrated circuits [13]. The dynamically developing printing industry is a different direction of
the application of photopolymerization, which enables printing on plastic or metal materials. Moreover,
in recent years, a particular emphasis has been put on the use of photopolymerization processes
for 3D-printing technology [14–33], including stereolithography in the design and formation of
three-dimensional models [34].

All this means that not only has recently been an astonishingly rapid growth in the applications
of technologies based on photopolymerization processes, but also the development of new materials
determining the pace of this development [35]. Dynamic progress in the field of chemistry
and technology of photoinitiated processes leads to the emergence of more and more sophisticated
solutions in this field, an example of which may be successively developed new generation
monomers [36,37], new, more effective photoinitiation systems [38–40] or new light sources [1,29]
and methods of monitoring the online polymerization processes [41–44].

Photopolymerization processes play an increasingly important role in biomedical applications,
for instance, in obtaining hydrogel polymer materials [45–54] or in vivo photocurable dental
composites [55–73]. Applying photochemically initiated polymerization for obtaining dental polymer
composites enables the use of unique and innovative features. The most important are:

• Short time of monomer/filler compositions curing (up to a few seconds);
• Conducting the reaction at room temperature;
• Low energy consumption;
• Spatial resolution (polymerization only in irradiated areas).

Nevertheless, obtaining polymer composites of the demanded properties, that is, above all,
of favorable mechanical properties and reduction polymerization shrinkage, is still a significant
challenge for the researchers. This is because many different factors, such as the selection of appropriate
monomers, initiators, inorganic fillers, photopolymerization process time range, or the source and power
of a light source, influence the quality of the composite obtained (Figure 1) [74].Materials 2020, 13, x FOR PEER REVIEW 3 of 45 
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Figure 1. Illustrative diagram showing the influence of factors on the quality of obtained dental composites.

Recently, iodonium salts have become of particular interest and are used as a component of
initiating systems for the preparation of dental composites. This is directly due to the relatively good
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solubility of these salts in non-polar monomers. In addition, this group of compounds photodissociate
with high initiation efficiency are thermally stable and show long-term stability under storage
conditions [75,76].

In this paper, we aim to present commonly used monomers and photoinitiating systems for
the photocurable dental composites and indicated their main disadvantages. Recent developments
and progress in the future of photocurable resins have also been shown. A particular emphasis was
placed on novel photoinitiating systems containing iodonium salts applied in dental adhesive resin.

2. Monomers Used for the Production of Dental Composites

The mechanism of photopolymerization depends on using monomers. There are two main types
of photopolymerization: radical polymerization and cationic polymerization (Figure 2). The type of
organic matrix has a considerable impact on the properties of dental composites. It primarily affects
mechanical strength, sorption, solubility, polymerization shrinkage, abrasion resistance, color stability,
and biocompatibility [74,77]. Generally, the organic components of a typical photocuring composition
constitute about 10–30% wt. [78]. The remainder is inorganic filling in the form of microparticles
(≥0.4 µm) or a mixture of micro and nanoparticles (50 nm > 400 nm) [78]. In addition to photoinitiators,
adhesion promoters and possibly antibacterial compounds are also added to dental composites [79–81].
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Figure 2. Mechanism of free radical polymerization and cationic ring-opening polymerization with
their corresponding photoinitiation systems.

2.1. Monomers for Free Radical Photopolymerization Processes in Dental Adhesive Resin Application

The most popular materials for obtaining dental composites through photopolymerization
are (meth)acrylate monomers (RCB—resin-based composites) characterized by high reactivity,
which form an organic matrix [82–84]. They guarantee obtaining networks with a high degree
of crosslinking [84,85]. By free radical polymerization of the matrix monomers, a three-dimensional
network is formed. Among the currently available dental composites, the most common are
2,2-bis[4-2-hydroxy-3-methacryloyloxypropyl)phenyl]propane (BisGMA) and triethylene glycol
dimethacrylate (TEGDMA) [86].

The use of BisGMA in dental materials, due to the presence of the aromatic structure of Bisphenol A
in the core of the molecule, ensures low volatility of the composition and high modulus of the light-cured
composite [87–89]. In turn, the use of the low-viscousity TEGDMA monomer, which is the so-called active
diluent, allows the introduction of an appropriate amount of inorganic filler [90]. The weight proportions
of both monomers are usually 7/3 or 8/2, where BisGMA is the main component. Another commonly
used acrylate monomer is 1,6-bis-[2-methacryloyloxyethoxycarbonylamino]-2,4,4-trimethylhexane
(UDMA) [91]. The content of rigid urethane groups guarantees dental composites with favorable
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strength properties [92–94]. In addition to the aforementioned BisGMA, TEGDMA, and UDMA,
other common dental monomers polymerized via the free radical process are also ethoxylated
BisGMA (BisEMA). This monomer is used for reducing water absorption by the organic matrix. In
addition, the lack of -OH also causes this monomer to be less viscous than BisGMA. An array of
monomer structures for the base dimethacrylate materials, as well as new monomers, are given in
Figure 3 [95–101].
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Figure 3. Examples of methacrylate monomers used in commercial and conventional dental composites
based on free radical photopolymerization mechanism.

All dental composites based on crosslinking dimethacrylates exhibit an inherent problem of 2–14%
volumetric shrinkage during the photopolymerization process [102]. These stresses may produce
defects in the composite–tooth bond, leading to bond failure, microleakage, postoperative sensitivity,
and recurrent caries. Such shrinkage stresses could also cause deformation of the surrounding
tooth structure when the composite–tooth bond is strong, predisposing the tooth to fracture [103].
The polymerization shrinkage of low molecular monomers is more pronounced when compared to
that of high molecular monomers; however, high molecular monomers are very viscous (Table 1).
For these reasons, polymerization shrinkage is dictated by a complex interplay among resin viscosity,
polymerization rate, degree of conversion, and network structural evolution, where each of these
properties cannot be individually manipulated and studied without having a significant impact on
other properties.

Table 1. Properties of the popular free radical monomers to obtained dental composites [84].

Monomer Molecular Weight [g/mol] ρmon
a [g/cm3] ρpol

b [g/cm3] ∆Vp [%] Viscosity [mPa·s]

TEGDMA 286 1.072 1.250 −14.3 100
UDMA 470 1.110 1.190 −6.7 5000–10,000

Bis-GMA 512 1.151 1.226 −6.1 500,000–800,000

ρmon
a—density of monomer, ρpol

b—density of polymer.

Moreover, due to the inhomogeneous network architecture, which is obtained during a free
radical photopolymerization process, the final materials tend to show a somewhat brittle behavior,
and the occurring shrinkage stress could lead to delamination, deformation or mechanical failure of
the final composites materials. The observed shrinkage stress evolves during polymerization reaction
upon transitioning of the applied formulation from the liquid to solid-state (i.e., gel point) and is built
up upon vitrification until the final conversion is reached. Before free radical photopolymerization,
the monomers are situated at van der Waal’s distance towards each other (approximately 3.4 Å) [104].
The occurring shrinkage stress upon gelation is partially due to the formation of covalent bonds between
the respective monomers, where the revealing distance is only 1.5 Å [105]. Incomplete free radical
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photopolymerization, volumetric shrinkage, and stress are some of the primary disadvantages of
current methacrylates resin-based dental composites. Generally, attempts to increase the double-bond
conversion and reduce polymerization shrinkage and stress have been conducted [105].

2.2. Monomers for Cationic Photopolymerization.

In recent years, the application of ring-opening cationic photopolymerizable epoxy–monomer-based
compositions for dental fillings have found increasing attention in different articles and patent
applications [84,106,107].

Thus, based on the cationic photopolymerization process, new-generation photocuring dental
materials, including oxiranes [84], siloranes [108], oxetanes, and spiro-orthocarbonate [109],
were developed (Figure 4). Dental materials based on these monomers have achieved clinical success
because they have significantly reduced polymerization shrinkage to below 1% and minimized
polymerization stress compared to traditional methacrylate materials [106]. The mechanism of
compensation for systolic stress in this system was achieved by the phenomenon of opening the oxirane
rings during the cationic photopolymerization process, which proceeds with a small change in the volume
of the system [110].
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Crosslinking cycloaliphatic epoxy compounds were particularly of interest because they
demonstrate significantly lower shrinkage than dental methacrylate resins (e.g., cycloaliphatic epoxide
3,4-epoxycyclohexyl-methyl-3,4-epoxycyclohexane carboxylate and the diglycidyl ether of bisphenol
A, which improved the mechanical properties of the cured composite). Moreover, these epoxy resins
were reactive enough to be cured by cationic photopolymerization in an acceptable time frame and to
an adequate depth using a dental Vis-LED light source. In addition to epoxy resins, oxetanes were
evaluated for dental applications [111]. The reactivity of oxetanes is mainly controlled by the ring stress
and the basicity of the ring oxygen. However, oxetanes demonstrate higher basicity. The ring-opening
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cationic photopolymerization of oxetanes was also characterized by a significantly lower shrinkage in
comparison to methacrylates. From the investigated oxetanes, the hydroxy group containing monomer
possessed the highest polymerization rate [112].

In turn, spiroorthoesters (SOEs) and spiroorthocarbonates (SOCs) (Figure 4) are other monomers
that are polymerized via to the cationic mechanism and are increasingly used in dental applications.
Spiroorthoesters (SOEs) and spiroorthocarbonates (SOCs) are the most widely studied expanding
monomers. SOCs are double-cyclic acetals that polymerize under acidic catalysis but are stable under
basic conditions. When these compounds polymerize by double ring-opening photopolymerization
(ROP), poly(ether-carbonates) are produced. In general, bi-cyclic compounds cured by ROP shrink less
as they harden because of an increase in the excluded free volume associated with the ring-opening
process. Bailey [113] investigated bi-cyclic compounds, such as spiro-orthocarbonates (SOCs), that can
be used as an expanding co-monomer in RBC formulations. Ring-opening reactions with SOCs produce
expansion (3.5%), which could counteract normal shrinkage [114]. However, SOCs exhibit incomplete
ring-opening, as well as limited solubility and minimal copolymerization in dimethacrylate resins,
resulting in minimal shrinkage reduction.

Nevertheless, compared to traditional composite materials, spiroorthocarbonate-based composites
show less polymerization shrinkage and twice as much adhesion to enamel [109].

However, the most recent modification on the polymer matrix is based on using ring-opening
polymerization of the silorane molecules, instead of free radical polymerization of dimethacrylate
monomers [115]. They are built of a siloxane backbone, which gives them hydrophobic and cycloaliphatic
oxirane molecules responsible for low polymerization shrinkage. These monomers have provided
particularly interesting and commercially viable results. Such monomers “open” their molecular
structures with local volumetric expansion, and this may partly or totally compensate for volumetric
shrinkage from C=C or similar polymerization [116,117]. Based on the literature reports, the use of
siloranes has been shown to guarantee a reduction in the polymerization shrinkage to 0.94% [108].

Examples of monomers that polymerize thorough to the cationic mechanism and have reduced
polymerization shrinkage are shown in Figure 4.

The development of new monomers polymerizing via the cationic mechanism contributed to
a significant reduction in the polymerization shrinkage of dental composites and obtaining dental
composites with better mechanical properties. Moreover, acrylate monomers, which often cause severe
allergies, have been eliminated (Figure 5).
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Figure 5. Comparison of the properties of monomers polymerizable via free radical mechanism with
monomers polymerizable via cationic mechanism.

3. Commonly Used Photoinitiating Systems for Dental Application

Photoinitiating systems for obtaining dental composites are particularly important. They affect
such parameters as the efficiency of the photopolymerization process and the choice of a light source
(Figure 6).
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Figure 6. The range of emission spectra of UV and visible light-curing units and the range of the absorption of
standard co-initiators camphorquinone used in the dental application (UV—ultraviolet, LCU—light-curing
units, LED—light-emitting diode, PAC—plasma arc).

To date, several initiation systems for radical photopolymerization processes have been developed.
In Figure 7, the absorption spectra of standard initiators in comparison with the emission characteristics
of the commonly used light-curing units are presented.Materials 2020, 13, x FOR PEER REVIEW 8 of 45 

 

 
Figure 7. Comparison of the normalized molar extinction coefficient of standard type I initiators (top) 
and type II initiators together with amines (bottom) used in dental applications with the emission 
characteristics of standard light-curing units. 

3.1. Bimolecular Photoinitiator System Containing Camphorquinone and Aromatic Amine 

The commonly used photoinitiating system for the radical photopolymerization process for 
dental composites is the system based on camphorquinone/amine. Widely used camphorquinone 
(CQ) is a diketone that absorbs radiation in the range from 200 to 300 nm, which corresponds to the 
π-π* transition; however, this band is not useful for applications in vivo photocuring of dental 
materials. The second absorption range of camphorquinone is located in the visible light range from 
400 to 500 nm (Figure 7), where the band is responsible for the transition of the n-π* carbonyl group. 
The presence of a long-term absorption band means that this compound has been used as a 
component of initiating systems, mainly free radical photopolymerization. Nevertheless, for 
camphorquinone, the value of the molar extinction coefficient in the range of 400–500 nm is only 40 
[dm3·mol−1·cm−1] [118,119]. Therefore, in the case of initiating systems based on CQ, a significant part 
of the energy emitted by Vis-LED light sources (emission range 420–515 nm) is lost. Therefore, the 
efficiency of polymerization of standard methacrylate dental materials in the presence of the only 
camphorquinone is insufficient. 

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

200 240 280 320 360 400 440 480 520

N
or

m
al

iz
ed

  m
ol

ar
 e

xt
in

ct
io

n 
co

ef
fic

ie
nt

  
[d

m
3 ·m

ol
-1

·c
m

-1
]

Wavelength [nm]

BAPO 5.1 • 10⁻⁵M
PPD 2.6 • 10⁻⁴M
PPD 1.0 • 10⁻³M
TPO 6.6 • 10⁻⁵M
Single Peak (405nm)
Single Peak (450nm)
Dual Peak

N
orm

alized em
ission

TYPE I photoinitiators
BAPO PPD TPO

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00

0.01

0.02

0.03

0.04

0.05

360 400 440 480 520

N
or

m
al

iz
ed

  m
ol

ar
 e

xt
in

ct
io

n 
co

ef
fic

ie
nt

  
[d

m
3 ·m

ol
-1

·c
m

-1
]

Wavelength [nm]

N
orm

alized em
ission

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

200 240 280 320 360 400 440 480 520

N
or

m
al

iz
ed

  m
ol

ar
 e

xt
in

ct
io

n 
co

ef
fic

ie
nt

  
[d

m
3 ·m

ol
-1

·c
m

-1
]

Wavelength [nm]

CQ 2.6 • 10⁻³M
TX 1.0 • 10⁻⁴M
EDB 6.88 • 10⁻⁵M
NPG 1.5 • 10⁻⁴M
Single Peak (405nm)
Single Peak (450nm)
Dual Peak

N
orm

alized em
ission

N
orm

alized em
ission

N
orm

alized em
ission

N
orm

alized em
ission

TYPE II photoinitiators CQ
EDB

NPG

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

360 400 440 480 520

N
or

m
al

iz
ed

  m
ol

ar
 e

xt
in

ct
io

n 
co

ef
fic

ie
nt

  
[d

m
3 ·m

ol
-1

·c
m

-1
]

Wavelength [nm]

N
orm

alized em
ission

N
orm

alized em
ission

N
orm

alized em
ission

N
orm

alized em
ission

N
orm

alized em
ission

N
orm

alized em
ission

TX

Figure 7. Comparison of the normalized molar extinction coefficient of standard type I initiators (top)
and type II initiators together with amines (bottom) used in dental applications with the emission
characteristics of standard light-curing units.
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3.1. Bimolecular Photoinitiator System Containing Camphorquinone and Aromatic Amine

The commonly used photoinitiating system for the radical photopolymerization process for dental
composites is the system based on camphorquinone/amine. Widely used camphorquinone (CQ) is
a diketone that absorbs radiation in the range from 200 to 300 nm, which corresponds to the π-π*

transition; however, this band is not useful for applications in vivo photocuring of dental materials.
The second absorption range of camphorquinone is located in the visible light range from 400 to 500 nm
(Figure 7), where the band is responsible for the transition of the n-π* carbonyl group. The presence of
a long-term absorption band means that this compound has been used as a component of initiating
systems, mainly free radical photopolymerization. Nevertheless, for camphorquinone, the value of
the molar extinction coefficient in the range of 400–500 nm is only 40 [dm3

·mol−1
·cm−1] [118,119].

Therefore, in the case of initiating systems based on CQ, a significant part of the energy emitted by
Vis-LED light sources (emission range 420–515 nm) is lost. Therefore, the efficiency of polymerization
of standard methacrylate dental materials in the presence of the only camphorquinone is insufficient.

Moreover, the addition of primary amines to the polymerization system does not significantly
accelerate the radical photopolymerization process. However, the polymerization rate significantly
increases when tertiary amines as co-initiators of radical photopolymerization are used. Amines such as
ethyl-4-dimethylaminobenzoate (EDAB/EDMAB), 2-(dimethylamino)ethyl methacrylate (DMAEMA),
N,N-dimethylptoluidine, N-phenylglycine (NPG), dimethylbenzoate are used as photosensitizers for
CQ [120–127]. However, among these compounds, ethyl-4-dimethylaminobenzoate (EDB) is the most
popular co-initiator in dental materials due to its high efficiency and low basicity.

In the step of generating radicals in the photolysis process, amine interacted with the excited
camphorquinone molecule. This process involves the transfer of the electron from the amine to
the ketone, followed by the proton’s abstraction [128]. The radicals initiating the polymerization
process are mainly radicals formed from amines. Another mechanism that affects the amine’s efficiency
as a co-initiator is the formation of free radicals during the oxygen scavenging reaction. Oxygen present
in the monomer can react with amines to form a peroxide radical. This, in turn, can react with
another amine to release a new free radical. In this way, the inhibitory effect of oxygen is weakened.
The mechanism amine, with CQ and oxygen, is presented in Figure 8 [129,130].
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Nerveless, the underlying problem of this system is the fact that a too high concentration
of camphorquinone in dental composites may generate a yellow (Figure 9) or even brown color
(Figure 10). Thomas Brömme et al. presented the initiating system in the form of iodonium
salt bis(4-t-butylphenyl)iodonium bis(trifluoromethylsulfonyl)imide (I1), cyanines derivatives (1),
camphorquinone (CQ) and dimethylamino ethylbenzoate (EMBO), which showed a brown color after
light curing [131].
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and (1) = 0.01 wt.%, (I1) = 4 wt.% or (1) = 0.02 wt.%, (I1) = 4 wt.%, which generates the brown
color after photopolymerization.

Such discoloration can influence the aesthetics and quality of the final product. A completely
different problem of initiating systems based on camphorquinone and amine in composites
(e.g., enamel–dentin adhesives or self-adhesive cement) containing monomers with carboxylic groups
having acidic properties is because of the reaction of amines with these monomers. That, in turn,
can contribute to amine consumption and decrease the efficiency of the initiating system. The limitations
of amines, especially EDAB, include not only unstable in acidic conditions [132], unstable in acidic
dental resin formulations [133,134], but also sensitivity to oxygen inhibition [135]. In addition, amines
are a cytotoxic and genotoxic factor [101].

3.2. 1-Phenyl-1,2-propanedione as an Effective Alternative Photoinitiator

1-phenyl-1,2-propanedione (PPD) [136,137] as a Norrish type I photoinitiator, reacts by photolysis,
where the cleavage of the C–C bond between the carbonyls functional groups of its molecule leads to
the formation of free radicals starting the polymerization. However, PPD can also react via a co-initiator,
since it bears the same diketone group as camphorquinone. Then, radicals derived from the amine-based
co-initiator H-transfer are responsible for starting the polymerization. Therefore, PPD is an alternative
to camphorquinone/amine systems initiating radical photopolymerization processes. The research
proved that the higher mechanical properties of the model resin composite containing PPD compared
with that containing CQ are obtained [138,139]. Moreover, the study shows that PPD is useful not only
for photosensitizers but also for photocrosslinking agents for dental composite resins with similar
efficiency to CQ [140].

Besides, PPD has reduced properties associated with the yellowing effect, which results directly
from its absorption characteristics, which is mainly in the UV-A range and goes to the visible range
with the slope of the absorption band. For dental composites containing a PPD initiator, in order to
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achieve conversion rates compared to those of the camphorquinone/amine system, it is necessary to
use LED light sources with two violet emission bands (380–420 nm and blue 420–520 nm) (Figure 7,
Table 2). However, not all dental photocuring lamps guarantee such emission characteristics; therefore,
the use of PPD initiator composites requires the use of dual-peak LEDs.

3.3. Phosphine Derivatives as Free radical Photoinitiators for in Visible Light Cure Polymerization

Mono-acylphosphine oxides (MAPO) and bis-acylphosphine oxide oxides (BAPO) are mainly
photoinitiators used in a dental application that absorb in the 380–450 nm range. One of the first
commercially available mono-acylphosphine initiators is diphenyl (2,4,6-trimethylbenzoyl)phosphine
oxide (TPO). This initiator is known on the market as Lucirin® TPO. The conduct of its
photopolymerization follows anα-cleavage mechanism, in which TPO undergoes hemolyticα-cleavage
of the carbon–phosphorus bond and generates two free radicals, (Table 2) both capable of initiating
polymerization [141–144].

These initiators show the high efficiency of generating radicals; however, their disadvantage is
the absorption characteristics, which is mainly located in the UV-A range, and the effective use of
their absorption characteristics occurs when dual peaks LED lamps are used. This initiator absorbs in
the range of only 350–380 nm. Nevertheless, Pedro Paulo A.C. Albuquerque et al. [145] showed that
using a photoinitiator system containing TPO might improve the color stability of resin composites
compared with the traditional CQ/amine system while attaining similar physicochemical properties
for the composite. In particular, unlike the Q-based systems, TPO does not require the use of an
amine co-initiator [141–143,146] so that the polymerization is not negatively affected by the acidic
environment like itself-etch adhesives.

The other phosphine derivative is bis(2,4,6-trimethylbenzoyl)phosphine oxide (BAPO).
This photoinitiator is a promising alternative to initiating free radical photopolymerization upon halogen
light to obtain dental resin. Remarkably, the efficiency of photoinitiating is similar to the conventionally
used initiating system (CQ + EDAB). Additionally, the supplement of iodonium salt or amine can
improve the effectiveness of these systems [147].

Moreover, the BAPO and TPO revealed concentration-dependent cytotoxic effects in human
oral keratinocytes and V79 cells. However, in contrast to CQ, no generation of intracellular reactive
oxygen/nitrogen species (ROS/RNS) was found. Only BAPO induced genotoxicity in V79 cells [148].

3.4. Germanium Derivatives—Extending the Scope of Visible Light Photoinitiators

Much progress was noted when Liska et al. developed visible light photoinitiators based
on germanium compounds. For the first time, they showed that germanium compounds such as
benzoyltrimethylgermane (Ge-1) or dibenzoyldiethylgermane (Ge-2) (Figure 11) represent efficient
visible light photoinitiators for methacrylate monomers [149–151]. In contrast to Lucirin® TPO
(λmax = 385 nm), Ge-1 (λmax = 411 nm) and Ge-2 (λmax = 418 nm) show a pronounced redshift in their
absorption. It means that they absorb light more strongly within the visible region.

Based on the results of these mechanistic investigations and the evaluation of different synthesis
methods and structural variations of germanium compounds, bis-(4-methoxybenzoyl) diethyl-germane
(Ge-3) was selected as the appropriate photoinitiator and protected by a patent under the name of
Ivocerin®. Furthermore, this initiator showed no cytotoxicity. The synthesis of this compound is
shown in Figure 12.

In addition, germanium derivatives exhibit quick curing and excellent bleaching behavior.
The proposed reaction scheme of germanium derivatives as a photoinitiator in the presence of
monomers is presented in Figure 13 [151]. They require a much lower concentration of photoinitiator
to achieve comparable mechanical properties than commonly used photoinitiators. However, the main
limitation of these systems is that they are active initiators for free radical polymerization [152], but they
do not guarantee cationic polymerization initiation.
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3.5. Hexaarylbiimidazole Derivatives

Hexaarylbiimidazoles (HABIs) were synthesized for the first time in 1960 by Hayashi and Maeda [153].
Figure 14 shows the structures of exemplary compounds, HABI derivatives [154].Materials 2020, 13, x FOR PEER REVIEW 13 of 45 
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HABI derivatives are usually used for thiol-en systems. In turn, thiols are commonly used as
co-initiators in combination with hexaarylbiimidazoles [155]. After irradiation, the binding between
imidazole HABI undergoes homolytic cleavage, generating two relatively stable, long-lived lophyl
radicals that are unreactive with oxygen and show slow recombination rates [156], attributable to steric
hindrance as well as electron delocalization [157,158]. Then, HABI-derived lophyl radicals abstract
hydrogen from the thiol to generate initiating thiyl radicals (Figure 15).
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Other mechanisms of photoinduced cleavage of photoinitiator, derivatives HABI have also been
proposed. Their schemes with an explanation are presented in Figures 16 and 17 [154,159].Materials 2020, 13, x FOR PEER REVIEW 14 of 45 
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Unfortunately, commercially available HABI derivatives have several significant disadvantages:
poor absorption in the visible spectrum, sometimes requiring a photosensitizer; low solubility
in standard resins used in a dental application; and low solubility in organic solvents [160,161].
Nevertheless, despite the relatively low absorption of visible light, HABI photoinitiators are useful in
initiating thiol-ene photopolymerization processes.

3.6. Silane-Based Derivatives

Formable, soluble, and high molecular weight polysilanes are widely used as photoconductors,
photoresist materials, and photoinitiators for free radical polymerization. These compounds have
strong absorption in the 300–350 nm range [162]. Upon irradiation at this band, polysilane undergoes
fast photodegradation yielding silylenes and silyl radicals. Research on polysilanes has been carried
out in the last century. For example, West et al. [163] proved that these compounds are highly effective
in free radical photopolymerization. West et al. also assumed that the phoinitiating process consists of
a reaction of silyl radicals with vinyl monomers. It has also been proven that polysilanes of which
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iodonium salts [164] or pyridinium can be used for cationic photopolymerization of cyclic ethers
(e.g., cyclohexene oxide) and vinyl ethers, (e.g., n-butyl vinyl ether).

Currently, a particular studied compound based on a silane derivative is tris (trimethylsilyl)
silane (TTMSS). TTMMS was synthesized by Gilmanand et al. in 1965 [165]. Nearly 20 years later,
Chatgilialoglu et al. proved that TMMS could be used as a radical reducing agent [166,167]. The TTMS
radical is commonly used as a component in photoinitiating system [168–174] by Lalavée et al.
They also reported that tris (trimethylsilyl) silane had the following attributes: a high inherent
reactivity for the addition to double bonds, and also a low ionization potential (which is associated
with an oxidation process and/or the formation of silylium cations). Currently, the photoinitiating
system consisting of TTMS is reactive in free radical polymerization (FRP) [175] as well as in free
radical-promoted cationic polymerization (FRPCP) [176]. Systems based on TTMSS have the ability for
effective oxygen consumption. Therefore, it can overcome the classic and well-known inhibition of FRP
or FRPCR by oxygen [169]. Moreover, TTMSS indicated no toxic reaction when tested in biological
research [177]. Photoinitiating system based on TTMSS and other co-initiator such as benzophenone
(BP), isopropylthioxanthone (ITX), camphorquinone (CQ) is highly reactive and even better than EDB
using in dental composities [169]. Moreover, Song et al. in 2016 proved that TTMSS could be used as a
substitute for amine-type co-initiator for free radical photopolymerization of methacrylate monomers
used to obtain a dental composite.
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Table 2. Summary of the photoinitiators used in dental application, their basic properties, and photoinduced cleavage of photoinitiators.

Acronym of
Photoinitiator

Structure, Together with a Scheme
of Photoinduced Cleavage of Photoinitiator

Maximum
Absorbance/Characteristic

of Absorbance
Advantages Disadvantages Ref.

CQ
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Table 2. Cont.

Acronym of
Photoinitiator

Structure, Together with a Scheme
of Photoinduced Cleavage of Photoinitiator

Maximum
Absorbance/Characteristic

of Absorbance
Advantages Disadvantages Ref.

Silane
derivatives
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In 2016, Mariem Bouzrati-Zerelli et al. developed an entirely new class of initiators, silyl glyoxylates
(DKSi, Et-DKSi, Bn-DKSi), to free radical photopolymerization for obtained dental composites.
Silyl glyoxylates are high-performance type I photoinitiators in the visible range. In combination with
an appropriate amine, iodonium salt, or a phosphine, photopolymerization efficiency is improved.
DKSi-based PIs outperformed the performance of the CQ to induce FRP under blue LED at 477 nm for
thin (20 µm) and thick (1.4 and 6 mm) films. Excellent bleaching properties for this initiator were also
observed [178].

Other articles have proven that the same silyl glyoxylate, combined with an iodonium salt,
can be useful for initiating cationic photopolymerization and, thus, hybrid polymerization [179].
The proposed mechanism of formation cations from a two-component photoinitiation system based on
DKSi and iodonium salt (Ar2I+) under irradiation is presented in Figure 18.
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Additionally, just like DKSi, show photobleaching properties [180]. The same team modified the 
structure of DKSi, replacing the ester function of the DKSi with a carboxylic acid function to form 2-
oxo-2 (tert-butyldimethylsilyl) acetic acid (DKSi-COOH). This way, DKSi-COOH, with its excellent 
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Kirscher et al. continued research on new silane derivatives, where the alkoxy group of the ester
function of the previously developed silane derivatives was replaced, alkyl(trialkylsilyl)glyoxylate,
by an aryl group to form 1-aryl-2-(triisopropylsilyl) ethane-1,2-diones (SEDs). Compared to CQ
and DKSi, these compounds present shifted absorption spectra to longer wavelengths (λmax = 486 nm for
SED1 and 468 nm for SED2 in toluene). Therefore, they are suitable for free radical photopolymerization
under air upon exposure to blue (@ 455 nm) and even green (@ 520 nm) LEDs. Additionally, just like
DKSi, show photobleaching properties [180]. The same team modified the structure of DKSi, replacing
the ester function of the DKSi with a carboxylic acid function to form 2-oxo-2 (tert-butyldimethylsilyl)
acetic acid (DKSi-COOH). This way, DKSi-COOH, with its excellent bleaching properties, high water
solubility, and excellent stability in acidic conditions, were obtained. Moreover, it is a photoinitiator
that is useful for the free radical photopolymerization processes of BisGMA/TEGDMA monomers
composition and leads to remarkably high polymerization performances in monomer under exposure
to the LED at 477 nm [181]. The structures of the silane derivatives are presented in Figure 19.
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DKSi—tert-butyl (tert-butyldimethylsilyl) glyoxylate; Et-DKSi—ethyl (tert-butyldimethyl)silyl
glyoxylate; Bn-DKSi—benzyl (tert-butyldimethyl)silyl glyoxylate; SED1—1-phenyl-2-
(triisopropylsilyl)ethane-1,2-dione;SED2—1-(3,4,5-trimethoxyphenyl)-2-(triisopropylsilyl)ethane-
1,2-dione; DKSi-COOH—2-oxo-2(tert-butyldimethylsilyl) acetic acid.

3.7. Thioxanthone Derivatives (TX)

Some ionic derivatives of thioxanthone dyes are miscible with water and may constitute an
attractive alternative to the photopolymerization of dental adhesive [182]. Derivatives of thioxanthone
are type II bimolecular photoinitiators used for free radical and cationic photopolymerization [183].
Photoinitiation by thioxanthone derivatives is based on the reaction of their triplet excited states with
the hydrogen donor, resulting in the formation of the initiating radical (Table 2). In turn, they suffer
from a diffusion-controlled reduction of reactivity and deactivation by back electron transfer.

Several articles on the use of thioxanthone as components of initiation systems for a
dental application have been reported [184]. They are usually in two or three-component
systems with co-initiators, e.g., an amine or an iodonium salt. The use of such a system
leads to comparable conversion rates to the use of the CQ/aromatic amine system; however,
the thioxanthone system is generally less reactive [184]. Ely et al. proved that the combination
of an elastomeric methacrylic monomer used in a dental application and a water-soluble photoinitiator
(2-hydroxy-3-(3,4-dimethyl-9-oxo-9H-thioxanthen-2-yloxy)-N,N,N-trimethyl-1-propanium chloride
(QXT) (Figure 20) in a self-etching adhesive showed promising instant bond strength to dentin.
Moreover, this composition can minimize the effects of concentration stress and phase separation in
aquatic environments [151].
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4. Onium Salts as an Innovative Component of Photoinitiating Systems for Photopolymerization
Processes in Dental Applications

In recent times, onium salts, i.e., sulfonium and iodonium salts, particularly in the form
of diaryliodonium salts, have been playing an increasingly important role in initiating
photopolymerization processes [185–192].
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All the properties of ionic compounds supporting their commercial use as photoinitiators
depend only on their structure. It has been shown that the cation of iodonium salt, absorbing
electromagnetic radiation, is responsible for the photochemical properties of these compounds
as photoinitiators. Thus, the structure of the cation determines the initiator’s properties, such as
the location of the maximum absorption (λmax), molar absorption coefficient (ε), the quantum efficiency
of the initiator, and even thermal stability. On the other hand, the nature of anion has a decisive
influence on the suitability of the initiating system as a photoinitiator. The type of anion determines
the power of protic acid generated during photolysis, directly affecting the efficiency of initiation
and the kinetics of the polymerization process. However, the essential properties of iodonium salts,
from their applications in cationic polymerization processes (in addition to solubility in monomers)
are their optical properties, i.e., the location of the maximum absorption (λmax) and molar extinction
coefficient (ε) [75,76].

Diaryliodonium salts, with a weakly nucleophilic counter ion, are efficient photoinitiators
for cationic photopolymerization. Due to the low C-I binding energy, which is 26–27 kcal/mol,
after irradiation, diaryliodonium salts are broken down to a radical-cation, and reactive aryl radical
and an anion [193–195] (Figure 21).
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However, commercial iodonium salts currently used in the industry have light absorption
characteristics in the UV-C range, i.e., λmax = 220–280 nm, and that have very low or zero light
absorption in the long-term UV-A range (λ > 300 nm). Table 3 shows the names and formulas of
the commercially available iodonium salts along with their positions of the maximum absorbance.
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Table 3. Commercial iodonium photoinitiators used in industrial practice [196].

Photoinitiator Structure Wavelength of Maximum
Absorbance (λmax) [nm]

Iodonium Photoinitiators Generating Benzene

Hycure-810 (ChemFine)
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Therefore, the light sensitivity of commercial cationic photoinitiators is in the short wavelength
range of UV light, which is a significant technological problem in their different applications, as well as
dental materials applications.

This is because the light sources used in dentistry usually have emission in the range from
420 to 515 nm (Single peak LCUs) (in modern lamps 380–440 nm) or possibly from 380 to 520 nm
(Dual peak LCUs). The result is that commercially available cationic photoinitiators have mismatching
of the absorption characteristics with the emission characteristics of these light sources (Figure 22).
This makes them unsuitable for initiating photopolymerization processes in the UV-A range and in
the visible area, which is a significant technological problem due to the low efficiency of the obtained
polymer materials. Although this activation strategy is satisfactory in some applications, such as
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coating materials, the use of UV light is not recommended in the biological field. However, the use of
absorbing dyes in the visible light area as sensitizers may allow the reaction with onium salts [197–199].Materials 2020, 13, x FOR PEER REVIEW 21 of 45 
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Figure 22. Comparison of the absorption characteristics of commercial iodonium photoinitiators with
the emission characteristics of a commercially available dental lamp D -LIGHT® PR and photograph of
the lamp.

Two- or Three-Component Photoinitiating Systems Containing Iodonium Salt for Initiating Free Radical
Photopolymerization Processes for an Obtained Dental Composites

The hydrophobicity of commonly used photoinitiating systems based on camphorquinone
(CQ) and ethyl 4-(dimethylamino)benzoate (EDMAB) has limited their performance in the wet, oral
environment. Therefore, to eliminate this limitation, a water-soluble iodonium salt is added mainly
diphenyliodonium hexafluorophosphate (DPIHP) [129]. Iodonium salt as an accelerator in dental
applications is usually found in a ternary initiating system containing CQ and a tertiary aromatic
amine. However, it is also possible to use a two-component initiating system based on CQ and an
iodonium salt (without a tertiary aromatic amine), except that, compared to the three-component
system, slightly lower conversion rates are usually obtained.

In a two-component initiating system based on CQ/onium salt, after being irradiated with blue
light, the exciplex state is formed; next, the onium salt is reduced by electron transfer. The resulting
diphenyliodine free radical is unstable and quickly degrades to phenyliodine and phenyl free radical,
which causes the reaction to be irreversible. These reactive phenyl forms are useful in initiating
the photopolymerization. Radicals generated during polymerization propagation effectively cleave
the C–I bond, releasing another radical and allowing the photopolymerization [200].

The three-component initiating system is usually based on CQ/aromatic amine/iodonium salt,
and this system is characterized that the additional amine radicals are produced. In addition, CQ is
regenerated through substitution of inactive and also termination radicals to active radicals in the form
of phenyl radicals and the generation of positive active phenyl radicals [193].

This makes the photopolymerization process initiated by the ternary initiation system extremely
efficient and fast. A similar degree of conversion and rate of polymerization compared to acylphosphine
oxide (MAPO) or bis-acylphosphine oxide (BAPO) photoinitiators is even obtained [201–203].

The photoinitiating system based on CQ/iodonium salt or CQ/iodonium salt/amine have mainly
found application in initiating traditional methacrylate monomers used in the production of dental
composites [201,202,204–207]. The addition of iodonium salt to the photoinitiating systems used to
prepare dental composites brings many benefits. The most important are the
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• Increase conversion in short photo-activation time;
• Reduced inhibitory polymerization effect from an organic solvent;
• Improved dentin bonding performance;
• Improved reactivity and mechanical properties;
• Decreased sorption and water solubility;
• Reduced initial color and improved color stability.

Many publications have been reported about the beneficial effect of onium salts on the properties of the final
dental product obtained by free radical photopolymerization [79,130,138,147,184,205,206,208–216]. Researchers
from Brazil in 2007 showed that the addition of onium salt improves the polymerization kinetics
in dental adhesive resin. The three-component photoinitiating system based on camphorquinone
(CQ), ethyl 4-dimethylaminobenzoate (EDAB) and diphenyliodonium hexafluorophosphate (DPIHFP)
showed an improvement on the polymerization rate of standard methacrylate monomers (bisphenol A
glycidyl dimethacrylate (Bis-GMA), triethylene glycol dimethacrylate (TEGDMA) and 2-hydroxyethyl
methacrylate (HEMA)), leading to high conversion of monomers in short photo-activation time [130].
In another study, the same science team demonstrated that onium salt reduces the inhibitors
polymerization effect from ethanol in a model dental adhesive resin [214]. Four years later (in 2012),
they proved that the same three-component photoinitiating system using iodonium salt showed
similar microtensile bond strength to dentin when compared to the commercial light-cured binding
system—Clearfil SE Bond (CSEB). Moreover, after one year of storage, dentin’s bond strength
was higher for three-component initiating systems [205]. That the addition of iodonium salt in
a photoinitiating ternary system combined with witch CQ and EDB increases the conversion of
standard methacrylate monomers used in the production of dental composites and do not affect
the dentin bond strength has also been confirmed in the work of Borges et al. [215]. They proved
that iodonium salt increased conversion for the CQ-based system but had no significant influence
on 1-phenyl-1,2-propanedione (PPD) or phenylbis (2,4,6-trimethylbenzoyl)-phosphine oxide (BAPO)
systems. The fact that the addition of iodonium salt significantly improves the conversion rates
for the CQ /EDAB/iodonium salt system and does not significantly increase the conversion rate for
the PPD/EDAB/iodonium salt or BAPO/EDAB/iodonium salt systems results directly from the molar
extinction coefficient values of photoinitiators. High extinction coefficients indicate a high probability
of light absorption at a specific wavelength, leading to high quantum yields and overall conversion
improvement [217]. As CQ has the lowest ελmax (~28 dm3/mol cm) compared to PPD (~150 dm3/mol cm)
and BAPO (~300 dm3/mol cm) [119] additional improvement the degree of the conversion provided
by iodonium salt is more effective for CQ-system. The ternary system (BAPO + EDAB + iodonium
salt) showed a slight increase degree of conversion in short photo-activation time compared to
the binary BAPO/EDAB system. Nevertheless, it is extremely interesting that this ternary system
showed significantly higher conversion rates (~7%) than the ternary photoinitiating system based on
camphorquinone [147].

Iodonium salt can also be used as a component of photoinitiating systems containing
thioxanthone. For example, the initiating systems in the form of 2-hydroxy-3-(3,4 dimethyl-9-
oxo-9H-thioxanthen-2-yloxy)-N,N,N-trimethyl-1-propanaminium chloride (QTX), ethyl 4-
dimethylaminobenzoate (EDAB), diphenyliodonium hexafluorophosphate (DPIHFP) and 2-hydroxy-3-
(3,4 dimethyl-9-oxo-9H-thioxanthen-2-yloxy)-N,N,N-trimethyl-1-propanaminium chloride (QTX),
diphenyliodonium hexafluorophosphate (DPIHFP) and p-toluenesulfonic acid sodium salt hydrate
(SULF) are effective in initiating the process of radical photopolymerization of acrylate monomers
used in dentistry. The use of these initiation systems leads to similar conversion rates as in the case
of the standard two-component system (CQ + EDAB). Nevertheless, these systems showed lower
reactivity [184].

The addition of iodonium salt to conventional initiating systems also improves the physical
and mechanical properties of dental composites. Gonçalves et al. have reported that, with diligent use,
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a ternary photoinitiator system including camphorquinone (CQ), 2-dimethylamino)ethyl methacrylate
(DMAEMA) and diphenyliodonium hexafluorophosphate (DPI) in BisGMA/TEGDMA in 1:1 mass ratio
may improve not only reactivity but also the mechanical properties of dental resin without significantly
increasing the polymerization stress [216]. This work demonstrates that the use of 0.5 mol% DPI
showed the best balance between increasing photopolymerization kinetics and producing a polymer
with appropriate physical properties. Moreover, C.R. Augusto et al. demonstrated that the addition
of 0.5 mol% iodonium salt for commercially available dual-polymerizing self-adhesive resin types
of cement-based on RelyX U100 (3M ESPE) and BisCem improved the physical properties of these
materials, increasing the degree of conversion, microhardness and push-out bond strength [206].
In turn, Dressano et al. proved that methacrylate resin containing PPD + CQ with iodonium
salt improved not only the conversion of the materials but also influenced their physicochemical
properties positively. These systems had higher flexural strength and modulus of elasticity, cohesive
strength, and lower sorption and water solubility [138]. Sauro et al. noticed that the inclusion of
the hydrophilic ionic salt such as DPIHP increased the affinity between amphiphilic monomers
(ethoxylated-Bisphenol-A-dimethacrylates and 2-hydroxyethyl methacrylate) and two-component
photoinitiating system, enhanced the degree of conversion, glass transition temperature (Tg) and also
resin permeability (rP) [208]. The research confirms that the introduction of an iodonium salt to
the three-component initiator system based on CQ and aromatic amine or the two-component initiator
system containing only CQ improves the aesthetic properties of the dental composite. Shin et al. proved
that the introduction of iodonium salt affects to reduce initial color and improve color stability [79].

In 2016, Bouzrati-Zerelli et al. developed the new ternary system based on camphorquinone/

triphenylgermanium hydride/iodonium salt as a powerful system for initiating photopolymerization of
methacrylate monomers used in the production of dental composites in thin films or thick composites
upon exposure to a dental blue LED centered at 477 nm. Higher conversion rates were recorded for
this system than for the standard CQ/amine system. Excellent bleaching properties were also observed
under irradiation in the presence of these photoinitiating system [209].

In turn, Kirschner et al. proposed completely new iodonium salts, iodonium sulfonates, as an
amine replacement. PISs based on CQ/iodonium sulfonate presents an excellent performance in
methacrylate monomers upon blue light irradiation, similar to the CQ/amine system. Moreover,
particularly useful bleaching properties were obtained [210]. The same team in 2019 proposed
another compound, aryliodonium ylides (AY), as high-performance iodonium salts and efficient
additives to CQ/amine-based systems methacrylate polymerization under blue light. Arylyodonium
ylides (Table 4) present a broadband of absorption spectra in the 300–400 nm region. This work
demonstrates that enhanced polymerization performances were achieved for the CQ/amine/AY system
compared to the reference CQ/amine system. Besides, these PISs showed good bleaching properties
after polymerization, and interestingly, excellent initiating ability in strongly oxygen-inhibited
conditions [211].



Materials 2020, 13, 4093 24 of 45

Table 4. Summary of the photoinitating systems consisting iodonium salt for free radical photopolymerization used in dental application.
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Photoinitiating Systems Based on Iodonium Salts Reference of Photoinitiating System Monomers/Solution

Influence of Addition
Iodonium Salt/Properties of

the Dental Composition with
Iodonium Salt

Ref.

1 mol% CQ + 0.25 mol% DPIHFP
1 mol% CQ + 0.5 mol% DPIHFP
1 mol% CQ + 1 mol% DPIHFP
1 mol% CQ + 2 mol% DPIHFP
1 mol% CQ + 4 mol% DPIHFP

1 mol% CQ + 2 mol% EDAB + 0.25 mol% DPIHFP
1 mol% CQ + 2 mol% EDAB + 0.5 mol% DPIHFP
1 mol% CQ + 2 mol% EDAB + 1 mol% DPIHFP
1 mol% CQ + 2 mol% EDAB + 2 mol% DPIHFP
1 mol% CQ + 2 mol% EDAB + 4 mol% DPIHFP

1 mol% CQ
1 mol% CQ + 0.25 mol% EDAB
1 mol% CQ + 0.5 mol% EDAB
1 mol% CQ + 1 mol% EDAB
1 mol% CQ + 2 mol% EDAB
1 mol% CQ + 4 mol% EDAB

50 wt.% Bis-GMA
25 wt.% TEGDMA

25 wt.% HEMA

increase conversion in short
photo-activation time [130]
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Table 4. Cont.

Photoinitiating Systems Based on Iodonium Salts Reference of Photoinitiating System Monomers/Solution

Influence of Addition
Iodonium Salt/Properties of

the Dental Composition with
Iodonium Salt

Ref.

1 mol% CQ + 1 mol% EDAB + 1 mol% DPIHFP 1 mol% CQ + 1 mol% EDAB

50 wt.% Bis-GMA
25 wt.% TEGDMA

25 wt.% HEMA
(0, 10, 20, 30

and 40 wt.% ethanol)

reduce the inhibitory
polymerization effect from an

organic solvent
[214]

1 mol% CQ + 1 mol% DPIHFP
1 mol% CQ + 1 mol% EDAB + 1 mol% DPIHFP

1 mol% CQ
1 mol% CQ + 1 mol% EDAB

50 wt.% Bis-GMA
25 wt.% TEGDMA

25 wt.% HEMA

improve dentin
bonding performance [205]

1 mol% CQ + 1 mol% EDAB + 1 mol% DPIHFP
0.5 mol% CQ + 1 mol% EDAB + 0.5 mol% BAPO +

1 mol% DPIHFP
0.5 mol% CQ + 1 mol% EDAB + 0.5 mol% PPD +

1 mol% DPIHFP
1 mol% BAPO + 1 mol% EDAB + 1 mol% DPIHFP
1 mol% PPD + 1 mol% EDAB + 1 mol% DPIHFP

1 mol% CQ + 1 mol% EDAB
0.5 mol% CQ + 1 mol% EDAB +

0.5 mol% BAPO
0.5 mol% CQ + 1 mol% EDAB +

0.5 mol% PPD
1 mol% BAPO + 1 mol% EDAB
1 mol% PPD + 1 mol% EDAB

BisGMA:HEMA (60:40 wt.%)
20 wt.% ethanol

increase conversion,
does not affect the dentin

bond strength
[215]

1 mol% BAPO + 1 mol% DPIHFP
1 mol% BAPO + 2 mol% EDAB + 1 mol% DPIHFP

1 mol% CQ + 2 mol% EDAB + 1 mol% DPIHFP
1 mol% BAPO + 1 mol% CQ + 2 mol% EDAB +

1 mol% DPIHFP

1 mol% BAPO
1 mol% CQ

1 mol% BAPO + 2 mol% EDAB
1 mol% CQ + 2 mol% EDAB

1 mol% BAPO + 1 mol% CQ +
1 mol% EDAB

50 wt.% Bis-GMA
50 wt.% TEGDMA

highest polymerization
and conversion rate for 1 mol%
BAPO/1 mol% EDAB/1 mol%

DPIHFP in short
photo-activation time

[147]

QTX + DPIHFP
QTX + EDAB + DPIHFP
QTX + DPIHFP + BARB
QTX + DPIHFP + SULF

QTX
CQ + EDAB

QTX + EDAB
QTX + BARB
QTX + SULF

CQ + QTX + EDAB
QTX + EDAB + BARB
OTX + EDAB + SULF

50 wt.% Bis-GMA, 25 wt.%
TEGDMA

25 wt.% HEMA

similar conversion rates as in
the case of the standard

two-component system (CQ +
EDAB); lower reactivity

[184]

1 mol% CQ + 2 mol% DMAEMA/
0.25, 0.5, 1, 2 or 4 mol% DPI 1 mol% CQ/2 mol% DMAEMA

20 wt.% Bis-GMA
20 wt.% TEGDMA

60 wt.% of silanated barium
borosilicate glass fillers

improve the reactivity
and mechanical properties [216]
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Table 4. Cont.

Photoinitiating Systems Based on Iodonium Salts Reference of Photoinitiating System Monomers/Solution

Influence of Addition
Iodonium Salt/Properties of

the Dental Composition with
Iodonium Salt

Ref.

0.5, 1 or 2 mol% DPIHFP
commercially available dual-polymerizing self-adhesive resin cements:

RelyX U100 (3M ESPE) and BisCem
(Bisco Inc.)

increase the degree of
conversion, microhardness

and push-out bond strength
[206]

0.5 mol% CQ + 0.5 mol% DPI
1.0 mol% CQ + 0.5 mol% DPI
0.5 mol% PPD + 0.5 mol% DPI
1.0 mol% PPD + 0.5 mol% DPI

0.5 mol% CQ + 1 mol% DPI
1.0 mol% CQ + 1 mol% DPI
0.5 mol% PPD + 1 mol% DPI
1.0 mol% PPD + 1 mol% DPI

0.5 mol% CQ + 0.5 mol% PPD + 0.5 mol% DPI
0.5 mol% CQ + 1.0 mol% PPD + 0.5 mol% DPI
1.0 mol% CQ + 0.5 mol% PPD + 0.5 mol% DPI
1.0 mol% CQ + 1.0 mol% PPD + 0.5 mol% DPI
0.5 mol% CQ + 0.5 mol% PPD + 1 mol% DPI
0.5 mol% CQ + 1.0 mol% PPD + 1 mol% DPI
1.0 mol% CQ + 0.5 mol% PPD + 1 mol% DPI
1.0 mol% CQ + 1.0 mol% PPD + 1 mol% DPI

0.5 mol% CQ
1.0 mol% CQ
0.5 mol% PPD
1.0 mol% PPD

0.5 mol% CQ + 0.5 mol% PPD
0.5 mol% CQ + 1.0 mol% PPD
1.0 mol% CQ + 0.5 mol% PPD
1.0 mol% CQ + 1.0 mol% PPD

25 wt.% BisGMA
20 wt.% TEGDMA 10 wt.%

GDMA
25 wt.% HEMA

improve flexural strength
and modulus of elasticity,

cohesive strength, as well as
lower sorption

and water solubility

[138]

0.25 wt.% CQ + 1 wt.% ETDA + 1 wt.% DPIHP 0.25 wt.% CQ + 1 wt.% ETDA

37 wt.% E-BisADM
25 wt.% TEGDMA

28% HEMA
10 wt.% ethanol

65 wt.% E-BisADM
25% TEGDMA

10 wt.% ethanol

enhance the degree of
conversion, glass transition
temperature (Tg) as well as

resin permeability (rP).

[208]

1 part of CQ and 2 parts of OPPI
Equally proportioned CQ, OPPI, and DMAEMA

Total concentrations of 1 wt.% and 3 wt.%

CQ only
1 part of CQ and 2 parts of DMAEMA

Total concentrations of 1 wt.%
and 3wt.%

37.5 wt.% BisGMA
37.5 wt.% BisEMA
25 wt.% TEGDMA

reduce initial color and improve
color stability [79]

CQ + Ph3GeH + DPI
in diffrent mass ratio

CQ + EDB + DPI
CQ + EDB

70 wt.% Bis-GMA
30 wt.% TEGDMA
100 wt.% UDMA

excellent bleaching properties, [209]
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Table 4. Cont.

Photoinitiating Systems Based on Iodonium Salts Reference of Photoinitiating System Monomers/Solution

Influence of Addition
Iodonium Salt/Properties of

the Dental Composition with
Iodonium Salt

Ref.

0.5 wt.% CQ + 1 wt.% IS1
0.5 wt.% CQ + 1 wt.% IS2
0.5 wt.% CQ + 1 wt.% IS3
0.5 wt.% CQ + 1 wt.% IS4
0.5 wt.% CQ + 1 wt.% IS5

0.2 wt.% CQ + 0.2 wt.% EDB +1 wt.% IS3

0.5 wt.% CQ + 1 wt.% EDB
0.2 wt.% CQ + 0.2 wt.% EDB

0.2 wt.% CQ + 0.2 wt.% EDB + 1 wt.%
SC938

30 wt.% BisGMA
70 wt.% TEGDMA

10 wt.% MA
63 wt.% BisGMA

27 wt.% TEGDMA
10 wt.% HEMA

63 wt.% BisGMA
27 wt.% TEGDMA

excellent bleaching properties,
very good performance, [210]

0.2 wt.% CQ + 0.5 wt.% EDB + 1 wt.% S5
0.2 wt.% CQ + 0.5 wt.% EDB + 1 wt.% S6

1 wt.% CQ + 1 wt.% EDB + 1 wt.% S5
1.5 wt.% CQ + 0.6 wt.% DMABN + 0.75 wt.% S5
1.5 wt.% CQ + 0.6 wt.% DMABN + 0.75 wt.% S6

0.2 wt.% CQ + 0.5 wt.% EDB
0.2 wt.% CQ + 0.5 wt.% EDB + 1 wt.%

SC938
1 wt.% CQ + 1 wt.% EDB

1.5 wt.% CQ + 0.6 wt.% DMABN

Spectrum® TPH®3 resin
received from Dentsply Sirona

consisting of a mixture of
modified BisGMA, TEGDMA

and other methacrylate
monomers

30 wt.% BisGMA
70 wt.% TEGDMA

Prime&Bond Active® resin

strongly oxygen-inhibited
conditions,

excellent bleaching properties
[211]

0.5 wt.% CQ + 1 wt.% NaMeSP + 1 wt.% SC938
0.5 wt.% CQ + 1 wt.% ZnBuS + 1 wt.% SC938

0.5 wt.% CQ + 1 wt.% NaAcABS + 1 wt.% SC938
0.5 wt.% CQ + 1 wt.% ZniPrS + 1 wt.% SC938

0.5 wt.% CQ + 1 wt.% NaBuNS + 1 wt.% SC938
0.5 wt.% CQ + 1 wt.% NapTSo + 1 wt.% SC938

0.5 wt.% CQ + 1 wt.% DPIpTS
0.2 wt.% CQ + 0.5 wt.% EDB + 1 wt.% NaMeSP+

1 wt.% SC938
0.2 wt.% CQ + 0.5 wt.% EDB + 1 wt.% NapTSo+

1 wt.% SC938
0.2 wt.% CQ + 0.5 wt.% EDB + 1 wt.% SC938

0.5 wt.% CQ + 1 wt.% NaMeSP
0.5 wt.% CQ + 1 wt.% ZnBuS

0.5 wt.% CQ + 1 wt.% NaAcABS
0.5 wt.% CQ + 1 wt.% ZniPrS

0.5 wt.% CQ + 1 wt.% NaBuNS
0.5 wt.% CQ + 1 wt.% NapTSo

0.5 wt.% CQ + 1 wt.% EDB
0.2 wt.% CQ + 0.5 wt.% EDB

30 wt.% BisGMA
70 wt.% TEGDMA

10 wt.% MA
63 wt.% BisGMA

27 wt.% TEGDMA
10 wt.% HEMA

63 wt.% BisGMA
27 wt.% TEGDMA

excellent bleaching properties,
color stability,

excellent mechanical properties
[212]
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Table 4. Cont.

Photoinitiating Systems Based on Iodonium Salts Reference of Photoinitiating System Monomers/Solution

Influence of Addition
Iodonium Salt/Properties of

the Dental Composition with
Iodonium Salt

Ref.

0.5 wt.% CQ + 1 wt.% DPPBS + 1 wt.% Iod
0.5 wt.% CQ + 1 wt.% Iod-DPPBS

0.4 wt.% CQ + 0.1 wt.% Iod-DPPBS
0.4 wt.% CQ + 0.4 wt.% Iod-DPPBS
0.4 wt.% CQ + 0.6 wt.% Iod-DPPBS
0.4 wt.% CQ + 1 wt.% Iod-DPPBS

0.5 wt.% CQ + 0.2 wt.% EDB + 1 wt.% DPPBS
0.5 wt.% CQ + 0.2 wt.% EDB + 1 wt.% DPPBS +

1 wt.% Iod
0.5 wt.% CQ + 0.1 wt.% EDB + 1 wt.% DPPBS +

1 wt.% Iod
0.5 wt.% CQ + 1 wt.% DPPBS + 1 wt.% Iod

0.5 wt.% CQ + 1 wt.% EDB
0.5 wt.% CQ + 0.2 wt.% EDB

0.4 wt.% CQ + 1 wt.% Iod
0.5 wt.% CQ + 0.2 wt.% EDB +

1 wt.% Iod

30 wt.% BisGMA
70 wt.% TEGDMA oxygen inhibition [213]

BisGMA—bisphenol glycidyl methacrylate; BisEMA/E-BisADM—ethoxylated Bisphenol A dimethacrylate; HEMA—2-hydroxyethyl methacrylate; TEGDMA—triethyleneglycol
dimethacrylate; UDMA—urethane dimethacrylate; GDMA—1,3-glycerol dimethacrylate; DPIHFP/DPI/SC938—diphenyliodonium hexafluorophosphate; OPPI—p-octyloxy-phenyl-phenyl
iodonium hexafluoroantimonate; DPIpTS—diphenyliodonium p-toluenesulfinate; S5—aryliodonium ylides; S6—aryliodonium ylides; IS1—phenyl(2,4,6-trimethoxyphenyl)iodonium
p-toluenesulfonate; IS2—(4-methylphenyl)(2,4,6-trimethylphenyl)iodonium trifluoromethanesulfonate; IS3—bis(4-tert-butylphenyl) iodonium p-toluenesulfonate;
IS4—3,5-dichlorophenyl)(2,4,6-trimethoxyphenyl)iodonium p-toluenesulfonate; IS5- bis(4-fluorophenyl)iodonium trifluoromethanesulfonate (IS5); CQ—camphorochinone;
EDAB/ETDA—dimethylaminoethyl amine benzoate; PPD—1-phenyl-1,2-propanedione; BAPO—phenylbis (2,4,6-trimethylbenzoyl)-phosphine oxide; Ph3GeH—triphenylgermanium
hydride; BARB—1,3-diethyl-2-thio-barbituric acid; QTX—2-hydroxy-3-(3,4dimethyl-9-oxo-9H-thioxanthen-2-yloxy)-N,N,N-trimethyl-1-propanaminium chloride; SULF—p-toluenesulfinic
acid sodium salt hydrate; DMAEMA—2-dimethylaminoethyl methacrylate; NapTS—sodium p-toluenesulfinate; NaMeSP—sodium 1-methyl 3- sulfinopropanoate; ZnBnS zinc
benzylsulfinate; NaAcABS—sodium 4-(acetylamino)benzenesulfinat; ZniPrS—zinc isopropylsulfinate; NaBuNS—sodium butylnaphtalenesulfinate; NapTSo—sodium p-toluenesulfonate;
DPPBS—sodium 3-(diphenylphophino)benzenesulfonate.
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PISs based on camphorquinone (CQ)/sulfinate and CQ/sulfonate, with iodonium salt, are also
proposed by Kirchner et al. [212]. These photoinitiating systems were compared to the traditionally
CQ/amine system. They proved that sulfinates and sulfonates combination with CQ is a
perfect alternative to the replacement of standard amines used in methacrylate dental resin.
With the participation of these initiating systems, dental composites with excellent bleaching properties,
color stability, and excellent mechanical properties were obtained. An interesting derivative of
iodonium salt developed is also diphenyliodonium p-toluenesulfonate (DPIpTS) (Table 4). It is used
in combination with camphorquinone as an amine replacement [212]. In turn new iodonium salt
based on phosphine derivative propsed by Kirchner et al. exhibits two essential functions: phosphine
moiety to overcome oxygen inhibition and an iodonium salt moiety as counter cation to initiate
the polymerization process [213].

The structures of the tested compounds, composition, and the influence of iodonium salt on
the properties of dental composites are presented in Table 4.

5. Iodonium Salts as Photoinitiators for Cationic and IPN Photopolymerization to Obtain a
Dental Composites

In recent years, researchers from around the world have designed new initiating systems based on
onium salts for cationic and thiol-ene photopolymerization processes for obtained dental composites.

In 2014, it was first described using composites based on cationic systems for
dental applications [106]. It has been shown that the two-component system of the CQ/

[4(1-methylethyl)phenyl][4-methylphenyl] iodonium tetrakis (pentafluorophenyl)borate, Rhodorsil
2074 is useful for initiating the cationic photopolymerization process of bis[2-(3,4-
epoxycyclohexyl)ethyl]tetramethyldisiloxane, UV30. CQ promotes the photopolymerization process
even in the absence of amines as a hydrogen donor. It can separate labile hydrogen from an epoxy
monomer; carbon-concentrated radicals are formed, which are oxidized by onium salt. The complete
conversion of the epoxy group was achieved after 50 s with blue irradiation.

Fu et al. proposed the use a three-component photoinitiation system comprising 1 wt.%
CQ (camphorquinone), 2 wt.% DMAEMA (2-(dimethylamino) ethyl meth acrylate) and 2 wt.%
diphenyliodonium hexafluorophosphate to initiate the copolymerization of the matrix resins
which combine bisphenol-S-bis(3-methacrylate-2-hydroxy propyl) ether (BisS-GMA) with
the expanding monomer unsaturated spiro orthoesters 2-methylene-1,4,6-trispiro[4,4] nonane (MTOSN),
for minimizing the volumetric shrinkage that generally occurs during polymerization. The results
supported that the dental composites based on the expanding monomer and three-component
photoinitiator system engendered a more significant decrease of volumetric shrinkage and better
mechanical properties [68].

Danso, R. et al. proposed new resins (Oxirane-Acrylate IPN System—OASys) based
on p-Cycloaliphatic diepoxide EPALLOY 5000TM (EP5000) and dipenta erythritol hexaacrylate
(DPHA). A three-component initiating system in the form of (4-octyloxyphenyl)phenyliodonium
hexafluoroantimonate (OPPI), CQ, and a co-reactant oligomeric diol 250 Mn poly(tetrahydrofuran)
was used. These results demonstrate that OASys resins cure well, are more hydrophobic, and have
lower shrinkage stress than BisGMA-based resins. However, they are mechanically weaker [218].

This new class of photoinitiators based on silyl glyoxylates to initiate cationic polymerization
combined with an iodonium salt was presented in an article by Kirschner [179]. This system
can be used to initiate free radical/cationic hybrid polymerization and for the synthesis of
interpenetrating polymer networks. The system silyl glyoxylate/iodonium exhibits excellent
polymerization performances and exceptional bleaching properties compared to other well-established
photoinitiators (e.g., camphorquinone) [179]. This system is also suitable for initiating a hybrid monomer
(2-vinyloxyethoxyethyl methacrylate [VEEM]). This monomer leads to a considerable improvement of
the mechanical properties of the final polymer through hybrid polymerization [179].
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Zang et al. proposed the use 1,2-diketone/iodonium salt (and optional NVK) systems to initiate
cationic photopolymerization of epoxides or free radical photopolymerization of methacrylates.
Most of the photoinitiating systems have exhibited higher initiation ability than the well-known
CQ-based systems. Nevertheless, the study of the biocompatibility indicates that these materials
exhibit cytotoxicity [219].

Summary of the photoinitiating systems consisting of iodonium salt for cationic and IPN
photopolymerization used in a dental application is presented in Table 5.
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Table 5. Summary of the photoinitiating systems consisting of iodonium salt for cationic and IPN photopolymerization used in a dental application.

Iodonium Salt Other Co-initiators Monomers Properties Ref.
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Table 5. Cont.

Iodonium Salt Other Co-initiators Monomers Properties Ref.
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6. Challenges of Photoinitiator Systems for Dental Applications, Future Trends
and Practical Aspects

In recent years, several new initiating systems for dental composites have been developed.
However, these are mainly photoinitiating systems used to obtain dental composites by radical
photopolymerization [220]. Most of them have several of the significant disadvantages mentioned earlier
in this article. Despite such significant progress, new initiating systems with improved properties are still
being sought, mainly to produce dental composites obtained by cationic photopolymerization, which

• Are entirely safe for humans, eliminating the cytotoxic amines and acrylate monomers that often
cause severe allergies;

• Do not generate yellow color-eliminating camphorquinone, greater aesthetics, and quality of
the final product;

• Have better and/or comparable mechanical properties and, due to the use of polymerizable
monomers via to the cationic mechanism, have reduced polymerization shrinkage;

• Is possible to be used with dental lamps emitting radiation in the visible light range for the curing
process, eliminating harmful UV radiation.

7. Conclusions

In conclusion, it can be stated that in the scope of initiating systems for photocuring dental
composites according to the radical mechanism [152], a significant milestone towards solutions
guaranteeing the active initiation of this type of process has now been realized. In addition,
in recent years, new initiating systems containing iodonium salt to initiate cationic and/or IPN
photopolymerization processes have been developed. In this way, dental composites with better
mechanical properties and reduced polymerization shrinkage were obtained. Nevertheless, in most
cases, these are camphorquinone-containing systems that generate yellow color or toxic co-initiators.
In addition, the complete elimination of acrylate monomers that often cause severe allergies is still a
significant challenge for researchers.

The literature review has presented previous achievements in the field of radical photoinitiators
dedicated to the preparation of dental composites; their advantages and disadvantages are discussed.
The advantages of iodonium salts and their potential to initiate cationic photopolymerization processes
of silorane monomers to obtain new-generation dental composites were also indicated.

Author Contributions: Conceptualization, visualization, formal analysis, data curation, writing manuscript
M.T.; Conceptualization, writing—review and editing final article, J.O. Both authors have read and agreed to
the published version of the manuscript.

Funding: This work was financed by the Polish Ministry of Science and Higher Education from budget funds for
science in the years 2018–2022 as a research project no. 0052/DIA/2018/47 under the “Diamond Grant” program.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Dietlin, C.; Schweizer, S.; Xiao, P.; Zhang, J.; Morlet-Savary, F.; Graff, B.; Fouassier, J.P.; Lalevée, J.
Photopolymerization upon LEDs: New photoinitiating systems and strategies. Polym. Chem. 2015, 6,
3895–3912. [CrossRef]

2. Funke, W. UV Curing: Science and Technology. Prog. Org. Coat. 1980, 8, 110. [CrossRef]
3. Ligon, S.C.; Husár, B.; Wutzel, H.; Holman, R.; Liska, R. Strategies to reduce oxygen inhibition in photoinduced

polymerization. Chem. Rev. 2014, 114, 577–589. [CrossRef] [PubMed]
4. Yagci, Y.; Jockusch, S.; Turro, N.J. Photoinitiated polymerization: Advances, challenges, and opportunities.

Macromolecules 2010, 43, 6245–6260. [CrossRef]
5. Sangermano, M.; Razza, N.; Crivello, J.V. Cationic UV-curing: Technology and applications. Macromol. Mater. Eng.

2014, 299, 775–793. [CrossRef]

http://dx.doi.org/10.1039/C5PY00258C
http://dx.doi.org/10.1016/0300-9440(80)80007-5
http://dx.doi.org/10.1021/cr3005197
http://www.ncbi.nlm.nih.gov/pubmed/24083614
http://dx.doi.org/10.1021/ma1007545
http://dx.doi.org/10.1002/mame.201300349


Materials 2020, 13, 4093 35 of 45

6. Ortyl, J.; Popielarz, R. The performance of 7-hydroxycoumarin-3-carbonitrile and 7-hydroxycoumarin-
3-carboxylic acid as fluorescent probes for monitoring of cationic photopolymerization processes by FPT.
J. Appl. Polym. Sci. 2013, 128, 1974–1978. [CrossRef]

7. Ortyl, J.; Galek, M.; Milart, P.; Popielarz, R. Aminophthalimide probes for monitoring of cationic
photopolymerization by fluorescence probe technology and their effect on the polymerization kinetics.
Polym. Test. 2012, 31, 466–473. [CrossRef]

8. Noè, C.; Malburet, S.; Bouvet-Marchand, A.; Graillot, A.; Loubat, C.; Sangermano, M. Cationic
photopolymerization of bio-renewable epoxidized monomers. Prog. Org. Coat. 2019, 133, 131–138. [CrossRef]

9. Ortyl, J.; Galica, M.; Popielarz, R.; Bogdał, D. Application of a carbazole derivative as a spectroscopic
fluorescent probe for real time monitoring of cationic photopolymerization. Polish J. Chem. Technol. 2014, 16,
75–80. [CrossRef]
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