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Abstract: We use a spectral approach to model residually stressed elastic solids that can be applied
to carbon fiber reinforced solids with a preferred direction; since the spectral formulation is more
general than the classical-invariant formulation, it facilitates the search for an adequate constitutive
equation for these solids. The constitutive equation is governed by spectral invariants, where each of
them has a direct meaning, and are functions of the preferred direction, the residual stress tensor and
the right stretch tensor. Invariants that have a transparent interpretation are useful in assisting the
construction of a stringent experiment to seek a specific form of strain energy function. A separable
nonlinear (finite strain) strain energy function containing single-variable functions is postulated and
the associated infinitesimal strain energy function is straightforwardly obtained from its finite strain
counterpart. We prove that only 11 invariants are independent. Some illustrative boundary value
calculations are given. The proposed strain energy function can be simply transformed to admit the
mechanical influence of compressed fibers to be partially or fully excluded.

Keywords: nonlinear elasticity; constitutive model; residual stress; preferred direction; spectral
formulations; physical invariants; independent invariants

1. Introduction

The presence of residual stresses in solids has been the essence of numerous publications [1–3].
There is a considerable interest in the mechanical behaviour of residually stressed materials in recent
years and attempts to comprehend the mechanical behaviour of residual stresses on solid materials
can be found in the literature [2,4–6]. A review on the presence of residual stress, for example, in fiber
reinforced composite materials can be found in [7]. In this paper, we focus on the modelling of the
mechanical anisotropic response of a residually stressed fiber material with a preferred direction
(RSPD) based on the spectral method (method that used the eigenvalues and eigenvectors of tensors)
developed recently in the literature [8–16]. Applications can be found, for example, in the mathematical
modelling of the mechanical behaviour of carbon fibre reinforced solids and other types of RSPD,
like soft biological tissue. We note that, before the recent applications of spectral formulation in
anisotropic solids, most anisotropic models used traditional classical invariants [17] (or their variants),
where majority of them do not have a direct interpretation, to describe their strain energy functions
(see, for example, [1,18]). However, the proposed strain energy function in this paper uses spectral
invariants, each has a transparent meaning that is convenient for experimental design [19]. A discussion
of the advantages of spectral invariants over classical invariants is given in [20].

In this communication, our objective is to develop a novel strain energy function using spectral
invariants that contains only single-variable functions. These strain energy types are experimentally
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attractive [19] and have been fortunate in modelling non-elastic and elastic solids [8–16,20,21].
It is important to note that knowing the number of independent invariants facilitates a stringent
development of a strain energy via an experiment [22], and in our spectral analysis, we derive
that only 11 independent spectral invariants are required in the constitutive equation. Up to our
present knowledge, we believe that, modelling RSPDs using 11 independent spectral invariants
is novel. We must emphasize that, to the best of our knowledge, since we are not able to find
an appropriate residual stress experiment data of materials with a preferred direction, this paper
focuses on the development of a rigourous theoretical spectral constitutive equation based on
a systematic and rigorous use of the restrictions imposed by thermodynamics, the derivation and use
of the representation formulae, a consequence of the rigorous definitions of the different material
behaviors and of the concept of material symmetry, and a priori restrictions that are required by well
posed mathematical models.

The basic kinematic deforming body equations and basic properties of residual stresses are given
in Section 2. We discuss spectral formulations in Section 3. In Section 4, a spectral strain energy function
in the absence of residual stress is proposed and, in Appendix C, based on the wok of Shariff [14],
its extension to fully or partially exclude the mechanical influence of compressed fibers is given.
In Section 5, a prototype strain energy function that contains single-variable functions is proposed.
This prototype function is used in Section 6 to study some boundary value problems. Conclusions are
given in Section 7.

2. Main Equations

2.1. Basic Concepts

Unless stated otherwise, all subscripts i, j and k take the values 1–3 and the summation convention
is not used. We only discuss quasi-static deformations of incompressible solids with negligible body

forces. The right Cauchy-Green tensor is C = FT F = U2, where F =
∂x
∂X

is the deformation tensor, U is
the right stretch tensor, and X and x denote the position vectors of a solid body particle, respectively,
in the reference and current configurations. Since the material is incompressible, det (F) = 1, where det
denotes the determinant of a tensor. More details about the kinematics of deforming bodies and the
equation of motion can be found, for example, in Ref. [23].

2.2. Residual Stress

Details on the definition of a residual stress can be found in Merodio et al. [6]. Briefly, we postulate
the existence of an equilibrium stress field with zero traction on the surface of a body in a reference
configuration Br; the term residual stress SR is often used for this equilibrium stress. Hence,

DivSR = 0 in Br (1)

with the condition on the boundary

SRN = 0 on ∂Br , (2)

where N is unit outward normal to ∂Br, the boundary of Br and Div is the divergence operator with
respect to X. In account of (1) and (2), the residual stress has the mean value∫

Br
SR dV = 0 , (3)

and it is non-homogeneous.
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3. Spectral Representation

Following the work of Shariff and Merodio [20], the strain energy Ω is postulated as follows:

Ω = W(a)(U, SR, A) , A = a⊗ a , (4)

where ⊗ denotes the dyadic product. For an incompressible material, the Cauchy stress S for
an incompressible solid is given by

S = 2F
∂Ω
∂C

FT − pI , (5)

where the Lagrange multiplier p is associated with the constraint detF = 1 and I is the identity
tensor. In view of the description of SR in Section 2.2, the constitutive Equation (5) at the reference
configuration (F = I) must satisfy the relation

SR = 2
∂W(a)

∂C
(I, SR, A)− p0 I , (6)

where the Lagrange multiplier p0 is the value of p at the reference configuration.
We note that the right stretch tensor

U =
3

∑
i=1

λiui ⊗ ui , (7)

where λi (principal stretches) and ui are eigenvalues and eigenvectors and of U, respectively.
With respect to the basis {u1, u2, u3}, we express Ω in terms of the 12 components

λi , sij = ui · SRuj , ai = a · ui , (8)

where · is the dot product between two vectors. The unit vector a implies

a2
3 = 1− a2

1 − a2
2 (9)

which proves that only 11 of the 12 components are independent. Since, for all rotation tensor Q,

sij = ui · SRuj = Qui ·QSRQTQuj , ai = a · ui = Qa ·Qui , (10)

it is clear that, with respect to Q, sij and ai are invariants. We emphasize that although ai are invariants,
they are not invariants for the tensor set ST = {U, SR, A}. The invariants λi, sij and a2

i , for example,
are invariants for the tensor set ST.

In Appendix A, relations between classical invariants [17] are given, which strengthen our claim
that at most 11 invariants are independent. We emphasize that, unlike the spectral invariants given
in (8), most of 18 classical invariants in the minimal integrity basis do not have a clear physical meaning.

According to Shariff [13], the strain energy function must satisfy the P-property [13]. To facilitate
the construction of the P-property, the following six independent spectral invariants

ζi = sii = ui · SRui , ζ̄i = ui · S2
Rui (11)

are used rather than the invariants sij. Hence, the strain energy Ω can be expressed as

Ω = W(b)(λi, ai, ζi, ζ̄i) . (12)
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The Lagrangean components [24] of
∂Ω
∂C

with respect to the basis {u1, u2, u3} are required in our
analysis and they are [19]: (

∂Ω
∂C

)
ii
=

1
2λi

∂W(b)

∂λi
(i not summed) (13)

with shear components

(
∂Ω
∂C

)
ij

=

∂W(b)

∂ui
· uj −

∂W(b)

∂uj
· ui

2(λ2
i − λ2

j )
, i 6= j . (14)

The Eulerian components [24] of Cauchy stress S with respect to the basis {v1, v2, v3},
where vi = FU−1ui are

τii = λi
∂W(b)

∂λi
− p ,

τij = 2λiλj

(
∂Ω
∂C

)
ij

, i 6= j . (15)

4. Transversely Isotropic Elastic Solid without Residual Stress

Prior to constructing a prototype strain energy function for RSPDs, we initially discuss the spectral
constitutive equation for transversely isotropic elastic solids in the absence of residual stress, see for
example the work of Shariff [14]. In this section, we construct a general nonlinear (finite strain) spectral
strain energy function for solids with a preferred direction. We must emphasize that a finite-strain
energy function should be consistent with its infinitesimal-strain counterpart (see Ref. [20] for details).
The “infinitesimal strain” approach has two advantages: (a) the nonlinear strain energy function
contains separable single-variable functions [14], which are easier to analyse than multivariable
functions and (b) the strain energy function can be easily amended to fully or partially exclude the
mechanical influence of compressed fibers (see Appendix C).

4.1. Infinitesimal Strain

In infinitesimal deformations, the most general quadratic form strain energy function for
an incompressible transversely isotropic material has the expression [14]

W(T) = µTK1 + 2µ1K2 +
β

2
K2

3 , (16)

where

K1 =
3

∑
i=1

ν2
i = tr E2 , K2 =

3

∑
i=1

ā2
i ν2

i = a · E2a, K3 =
3

∑
i=1

ā2
i νi = a · Ea , (17)

µ1 = µL − µT , (18)

µL and µT are shear moduli, β is a ground-state constant that is related to other elastic constants,
which have more direct physical interpretations, āi = ei · a, ei is an eigenvector of the infinitesimal
strain E and νi is an eigenvalue of E.
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4.2. Finite Strain

With the aid of the infinitesimal form (16), we postulate a finite-strain energy function

W(T) =
3

∑
i=1

[µTq1(λi) + µ1αiq2(λi)] +
β

2
(

3

∑
i=1

αiq3(λi))
2 , (19)

where αi = a2
i . The restrictions [14]

qs(1) = 0 , s = 1, 2, 3 , q′1(1) = q′2(1) = 0 , q′′1 (1) = q′′2 (1) = 2 , q′3(1) = 1 (20)

are required so that the finite-strain energy function is consistent with infinitesimal strain theory.
In view of det F = 1, we could also impose q′1(1) = q′′1 (1) = 1.

For | λi − 1 |<< 1, the value of the nonlinear strain energy function is close to the value of the
corresponding infinitesimal strain energy function, and for this range of strains the strain energy
function can be approximated by letting

q1(λi) = q2(λi) = (λi − 1)2 , q3 = λi − 1 . (21)

It is clear that q1, q2 and q3 satisfy the properties in (20) and the property

q′′1 > 0 , q′′2 > 0 . (22)

In view of (21), q′1, q′2 and q3 are monotonically increasing functions with q′1, q′2 and q3 negative and
positive for λi < 1 and λi > 1, respectively. From a continuity point of view, we shall assume that the
functions q1, q2 and q3 have the above properties for all ranges of λi. The connection of q1, q2 and q3 to
the generalized Lagrangean strain tensor is given in Appendix B. The concepts of polyconvexity, strong
ellipticity condition at the current configuration, convexity and stability can be used to put restrictions
on the functions q1, q2 and q3. However, the application of these concepts to our constitutive equation
is beyond the scope of this paper. The amended strain energy function proposed in this Section to
model the ramification of compressed fibers is given in Appendix C.

The general single-variable functions that depend on a principal stretch λi, appearing in W(T),
facilitate the construction of a specific form of strain energy function from experimental data. We note
that, recently, separable single-variable strain energy functions have been used to model both elastic
and non-elastic solids [8–14]. We note in passing that, it is shown in Shariff [14], the constitutive
Equation (19) has successfully predicted the mechanical behaviour of soft tissues. Below, we give
an example, where our theory is compared with the experimental data of [25]. We strongly emphasize
that the following specific forms given below to fit the experimental data of [25] is just a preliminary
exercise; better functional forms could be obtained for q1, q2 and q3 but it is not the intention of this
paper to do so.

For rubberlike materials, the specific forms are used in Shariff [9]:

q(x) = q1(x) = q2(x) = 2(xln(x)− x + 1) + d0(−e1−x +
x2 − 4x + 5

2
) + d1(ex−1 − x2 + 1

2
) (23)

and

q3(x) = ln(x) . (24)

We compare our theory with the uniaxial experiment of Ciarletta et al. [25] on fiber reinforced
rubber, where the experimental characterization is performed using a uniaxial testing device with
optical measures of the deformation, using two different reinforcing materials on a ground rubber
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matrix. In The uniaxial stretch is in the u1 direction. The non-zero axial First Piola–Kirchhoff stress
component is

P11 = (µT + 2µ1)q′(λ1) + βq3(λ1)q′3(λ1)− µT
λ3q′(λ3)

λ1
(25)

for the case when a = u1 and in this case λ3 =
1√
λ1

. In Figure 1 we curve fit the a = u1 data (visually)

since we know that λ3 =
1√
λ1

.

However, we cannot curve fit for the case a = u2, since the values of λ3 are unknown. In view of
this, we have no choice but to predict the experimental data using the relation

P11 = µT(q′(λ1)−
λ3q′(λ3)

λ1
) , (26)

where the dependence of λ3 on λ1 is obtained from solving the First Piola–Kirchhoff component
equations P22 = P33 = 0 and λ1λ3λ3 = 1. It is clear from Figure 1, that we are able to predict and fit
using the above specific forms.

Figure 1. First Piola–Kirchhoff stress vs stretch. Ciarletta et al. [25] fiber reinforced simple tension
experiment. µT = 120kPa, µL = 160kPa, β = 0, d0 = −3, d1 = 2. The experiment data is adapted
from [25].

5. Strain Energy for RSPD

Due to the lack of experimental data in the literature, we are impelled to postulate
a simple prototype

Ω = W(T) +
3

∑
i=1

ζir(λi) = Ω̃(λi, αi, ζi) (27)

based on the work of Shariff et al. [26,27], where

r(1) = 0 , r′(1) = 1 . (28)

An example of r(λi) are r(λi) = λi − 1 and r(λi) = ln λi. In this paper, we use r(λi) = λi − 1 for
the results given in Section 6.



Materials 2020, 13, 4076 7 of 17

We could, of course, propose a more complex specific form (see, for example, Shariff et al. [26]),
but in this paper, for simplicity, we only consider the specific form given in (27).

We note that for the case of q′1(1) = q′′1 (1) = 1 Equation (6) becomes

SR = (µT − p0)I + SR , (29)

which implies

µT = p0 , (30)

and for q′1(1) = 0 , q′′1 (1) = 2, Equation (6) takes the form

SR = −p0 I + SR , (31)

and it follows that p0 = 0.
The values of the residual stress and the ground state constants are restricted via the condition of

strong ellipticity at the reference configuration (see Appendix D).

The spectral components of
∂Ω
∂C

for the strain energy function (27) takes the form

(
∂Ω
∂C

)
ii
=

1
2λi

∂Ω̃
∂λi

(i not summed) (32)

with shear components(
∂Ω
∂C

)
ij

=
1

(λ2
i − λ2

j )

{(
∂Ω̃
∂ζi
− ∂Ω̃

∂ζ j

)
ui · SRuj +

(
∂Ω̃
∂αi
− ∂Ω̃

∂αj

)
ui · Auj

}
. (33)

6. Boundary Value Problems

In this section we give results for a simple tension deformation of a cylinder and, expansion and
contraction of a hollow sphere, which could be useful from the numerical and/or experimental point
of view. The boundary value problems discussed below are for any types of RSPD and, since we are
not able to find an appropriate residual stress experiment data of materials with a preferred direction,
only theoretical residual stress fields are discussed in this section, which may (or may not) represent
“real” residual stress fields found in RSPDs.

6.1. Residual Stress: Cylinder

The study of non-residually stressed fibre reinforced solids on a cylindrical configuration is
a subject of numerous publications, see for example, Ref. [28]. The cylindrical residual stress results
obtained in this paper may be used to study the mechanical influence of residual stress on cylindrical
problems. To facilitate our study, we need to assume a residual stress field in the reference configuration,
which is described by

Ra ≤ R ≤ Rb, 0 ≤ Θ ≤ 2π, 0 ≤ Z ≤ L, (34)

where R, Θ and Z are reference cylindrical polar coordinates.
We consider a residual stress [6] of the form

SR = s1(R)ER ⊗ ER + s2(R)EΘ ⊗ EΘ, , (35)

where ER and EΘ are cylindrical polar coordinate vectors in the reference configuration.
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Satisfaction of the equilibrium equation and boundary conditions, require

R
ds1

dR
= s2 − s1, (36)

and
s1(Ra) = 0, s1(Rb) = 0 . (37)

A simple example of s1 is
s1 = ᾱ(R− Ra)(R− Rb) , (38)

where ᾱ is a constant. We use (38) in the following section.

6.2. Uniform Extension of a Cylinder

In this Section, all tensor and vector components are cylindrical polar components.
We consider a uniform extension of a cylinder with Ra = 0 described by

r =
1√
λz

R , θ = Θ , z = λzZ , (39)

where (r, θ, z) is the polar coordinate in the deformed configuration. It follows that

F ≡ diag(
1√
λz

,
1√
λz

, λz) . (40)

Therefore, λ1 = λr =
1√
λz

, λ2 = λr =
1√
λz

, λ3 = λz, u1 = ER, u2 = EΘ and u3 = EZ.

Here, for simplicity, we let a = ER and hence α1 = 1, α2 = α3 = 0.
The non-zero Cauchy stress components are σrr (radial stress), σθθ (hoop stress) and σzz (axial

stress), where

σrr = λr
∂Ω̃
∂λ1
− p , σθθ = λr

∂Ω̃
∂λ2
− p , σzz = λz

∂Ω̃
∂λ3
− p . (41)

Ω̃ depends on r (or in view of (39), equivalently on R) and the Cauchy stress is inhomogeneous. It is
clear that we have zero shear stresses and the equilibrium equation reduces to

r
dσrr

dr
= σθθ − σrr , (42)

which can be integrated to give

σrr =
∫ r

b

(
λr

∂Ω̃
∂λ2
− λr

∂Ω̃
∂λ1

)
dr
r

, (43)

where b =
Rb√
λz

. The axial stress is given by

σzz = λz
∂Ω̃
∂λ3
− λr

∂Ω̃
∂λ1

+ σrr . (44)

For illustration we use the (23), (24) and (A17) for Ω̃ and we simply have

σzz = µT [λzq′(λz)−
1√
λz

q′(
1√
λz

)] , (45)
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σrr =
1√
λz

s1(R) (46)

and

σθθ =
1√
λz

s2(R) , (47)

where, since I4 ≤ 1, we have considered µ1 = β = 0. The above indicates that σzz is constant and
does not depend on the residual stress. On the other hand, σrr and σθθ are functions of the residual
stress only; their absolute values decrease as λz increases. The axial Cauchy stress σzz vs λz is shown

in Figure 2 and, in Figure 3, we plot the curves of σrr and σθθ for ᾱ = 10
kPa
m2 .

Figure 2. Axial stress σzz vs axial stretch λz. µT = 120 kPa, β = 0, d0 = −3, d1 = 2.
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Figure 3. σrr and σθθ stress fields along the radius R. ᾱ = 10
kPa
m2 .

6.3. Spherically Symmetric Deformation of a Spherical Shell

The study of spherical shell in this section could be useful, for example, to enhance the study
of cavity formation in a sphere under uniform radial tensile dead-load with the fiber in the radial
direction [29]. Here, we consider a spherical shell with thick-walled having the reference geometry

Ra ≤ R ≤ Rb , 0 ≤ Θ ≤ π , 0 ≤ Φ ≤ 2π , (48)

where (R, Θ, Φ) is the spherical polar coordinate for the undeformed configuration. The geometry of
the current deformation is described by

a ≤ r ≤ b , θ = Θ , φ = Φ , (49)

where (r, θ, φ) is the spherical polar coordinate for the current configuration.
We consider a deformation defined by

r = R f (R) . (50)

In the spherical polar coordinate system, the deformation gradient is

F ≡

 1 + R f ′(R) 0 0
0 f (R)
0 0 f (R)

 . (51)
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Due to the incompressibility condition we have

f (R) =
(

1 +
a3 − R3

a
R3

) 1
3

=
r
R

. (52)

The principal stretches are

λ1 =
1

λ2 , λ2 = λ3 = λ =
r
R

(53)

and, we have, u1 = ER, u2 = EΘ and u3 = EΦ, where {ER, EΘ, EΦ} is the spherical polar coordinate
basis for the reference configuration.

Here, we use the residual stress

SR = s1(R)ER ⊗ ER + s2(R)EΘ ⊗ EΘ + s2(R)EΦ ⊗ EΦ , (54)

where

s1(R) = κ(R− Ra)(R− Rb) (55)

and κ has the dimension kPa/m2. The equilibrium equation requires

s2(R) =
1

2R
d(R2s1(R))

dR
. (56)

The free stress surface (2) is clearly satisfied.
We only discuss, for simplicity, the case when a = ER and, we simply have, for the

non-stretch invariants

α1 = 1 , α2 = α3 = 0 , ζ1 = s1 , ζ2 = ζ3 = s2 . (57)

The non-zero Cauchy stress components (with respect to the spherical coordinate system) are τrr,
τθθ and τφφ.

Since ζ2 = ζ3, from (15), we have,

τθθ = τφφ . (58)

Hence, the equilibrium equation reduces to

dτrr

dr
+

2
r
(τrr − τθθ) = 0 . (59)

Integrating (59) and taking account that if we assume that radial stress vanishes at r = a, we get

τrr =
∫ r

a

2
r

(
λ

∂Ω̃
∂λ2
− 1

λ2
∂Ω̃
∂λ1

)
dr . (60)

The radial stress is depicted in Figure 4 for a/Ra = 0.95 (the sphere is moved inwards). We only

consider Rb/Ra = 1.182. While the fiber is in tension with
b− a

Rb − Ra
= 1.082, a negative radial stress

is obtained; taking note that
b

Rb
= 0.970. Figure 4 indicates that the absolute value of the radial

stress τrr increases in the present of a residual stress. However, when the sphere is moved outwards

(see Figure 5), we have, a/Ra = 1.1,
b

Rb
= 1.062787231,

b− a
Rb − Ra

= 0.8583214670 and hence the fiber
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is in compression. We note that the radial stress is negative in some segments due to the presence of
residual stress. In this section the values µ1 = β = 0 are used for the graphs.

Figure 4. Radial stress for spherically symmetric deformation of a spherical shell.
a

Ra
= 0.95,

Rb
Ra

= 1.182,
b

Rb
= 0.9703. fiber is in tension

b− a
Rb − Ra

= 1.082.

Figure 5. Radial stress for spherically symmetric deformation of a spherical shell.
a

Ra
= 1.1,

Rb
Ra

= 1.182,
b

Rb
= 0.942. fiber is in compression

b− a
Rb − Ra

= 0.858.
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7. Conclusions

In this communication, we propose a novel separable spectral strain energy function for RSPDs
which contains single-variable spectral-invariant functions. The use of spectral invariants is the
state of the art in modelling RSPDs and has the advantage that each of the spectral invariants has
a clear physical interpretation, which is useful in aiding the design of experiments. The spectral
invariants depend on the right stretch tensor, the preferred direction and the residual stress tensor.
Our approach ensures that the strain energy function for infinitesimal strain can be simply obtained
from its finite strain counterpart and vice-versa. The analysis of the boundary value problems given
in Section 6, highlights the simplicity of the spectral approach. Modelling full or partial exclusion
of compressed fibers is simply done by amending the strain energy function. In future, we require
experimental data to compare our theory with different types of RSPDs. Since classical invariants can
be explicitly expressed in terms of spectral invariants but not vice versa, spectral formulations are,
hence, more general.
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preparation and writing—review and editing, M.H.B.M.S. and J.M. All authors have read and agreed to the
published version of the manuscript.
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Appendix A

It is obvious that since all the classical invariants given below can be expressed in terms of the
spectral invariants, only 11 of them are independent. To strengthen our claim, in this Appendix,
we construct relations between classical invariants to prove that only 11 of the classical invariants are
independent. The construction of relations between classical invariants requires the invariants

I1 = tr C =
3

∑
i=1

λ2
i ,

I2 =
1
2

(
(tr C)2 − tr C2

)
= λ2

1λ2
2 + λ2

1λ2
3 + λ2

2λ2
3 , (A1)

I3 = det(C) = λ2
1λ2

2λ2
3 .

It is commonly known that the above relations are independent and since the eigenvalues λi
are independent, there are no relations between the classical invariants and hence the three classical
invariants are independent. The eigenvalues λi we can be explicitly expressed in terms of the classical
invariants [30], i.e.,

λ2
i =

1
3

{
I1 + 2

√
I2
1 − 3I2 cos

1
3
[θ + 2π(i− 1)]

}
, i = 1, 2, 3 , (A2)

where

θ = arccos

[
2(I3

1 − 9I1 I2 + 27I3

2[I2
1 − 3I2]

3
2

]
, (A3)

taking note that since the eigenvalues λi are distinct, we have, I2
1 − 3I2 6= 0.

The strain energy function consists of the tensors

C , SR , a⊗ a . (A4)
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There are 18 classical invariants in the minimal integrity basis for the function (A4), i.e.,

I4 = a · Ca =
3

∑
i=1

a2
i λ2

i , I5 = a · C2a =
3

∑
i=1

a2
i λ4

i ,

(A5)

I6 = tr SR =
3

∑
i=1

sii , I7 = tr (SRC) =
3

∑
i=1

λ2
i sii ,

I8 = tr (SRC2) =
3

∑
i=1

λ4
i sii , (A6)

I9 = tr (S2
R) = s2

11 + s2
22 + s2

33 + 2(s2
12 + s2

13 + s2
23) ,

I10 = tr (S2
RC) = λ2

1(s
2
11 + s2

12 + s2
13) +

λ2
2(s

2
21 + s2

22 + s2
23) + λ2

3(s
2
31 + s2

32 + s2
33) , (A7)

I11 = tr (S2
RC2) = λ4

1(s
2
11 + s2

12 + s2
13) +

λ4
2(s

2
21 + s2

22 + s2
23) + λ4

3(s
2
31 + s2

32 + s2
33) ,

I12 = a · SRa , I13 = a · S2
Ra , I14 = tr A(2)3 ,

I15 = a · (CSRa) , I16 = a · (CS2
Ra) , (A8)

I17 = a · (SRC2a) , I18 = a · (C2S2
Ra) .

We note that the invariants Iα , α = 12, 13, . . . , 18 can be explicitly expressed in terms of λi, ai and
sij but, for brevity, we omit such explicit expressions.

From (A2) and (A5), λi is expressed in terms of Ii. From (9) and (A5), we have 3 linear equations
in a2

i . On solving these linear equations we can express a2
i explicitly in terms of Iα , α = 1, 2 . . . , 5.

The invariants sii can be expressed in terms of Iα , α = 1, 2, 3, 6, 7, 8 by solving the 3 linear equations
in (A6) for sii. In Equation (A7), the invariants s2

12, s2
13, s2

23 appear linearly. Hence we can solve the
3 linear equations so that these invariants can be expressed in terms of Iα , α = 1, 2, 3, 6, 7 . . . , 11.
Since the classical invariants Iα , α = 12, 13, . . . , 18 can be explicitly expressed in terms of λi, ai, sij,
and taking the appropriate sign for ai and sij, they can be expressed in terms of Iα , α = 1, 2, . . . , 11,
indicating that only at most 11 classical invariants are independent.

Appendix B

In this Appendix we consider a generalize strain measure, where it may contain paramaters
suitable for a particular material. Consider a set of general class of Lagrangean strain tensor
{F(1), F(2), F(3)} as defined by Hill [31]

F(α)(U) =
3

∑
i=1

f(α)(λi)ui ⊗ ui , α = 1, 2, 3 , (A9)

where f(α) : (0, ∞)→ R is a monotonic increasing function such that

f(α)(1) = 0 , f ′(α)(1) = 1 . (A10)

In view of the above definition, we also consider f(α) to represent physical strain measures with
the extreme deformation values

f(α)(λi → ∞) = ∞ , f(α)(λi → 0) = −∞ . (A11)
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An example of a strain measure commonly used in the literature that satisfies the above
properties is

ln(U) =
3

∑
i=1

ln(λi)ui ⊗ ui . (A12)

Using the Lagrangean strain tensors, we construct our transversely isotropic strain energy
function, as exemplified in Shariff [11], i.e.,

W(T) =
3

∑
i=1

[µT

(
f(1)(λi)

)2
+ 2µ1αi

(
f(2)(λi)

)2
] +

β

2
(

3

∑
i=1

αi f(3)(λi))
2

= µTtr F2
(1) + 2µ1(F(2)a) · (F(2)a) +

β

2
(a · F(3)a)

2 . (A13)

The constitutive Equation (19) can be obtained from (A13), by letting

q1 = f 2
(1) , q2 = f 2

(2) , q3 = f(3) . (A14)

We note that, in this paper we only consider strain energy function of the form (19).

Appendix C

Shariff [14] has discussed and proposed a model, where the fiber compression does not fully or
partially contribute towards the strain energy function. He uses the functions

q(p)(x) =
(1 + erf(a(x− 1))

2
, q(n)(x) =

(1 + erf(a(1− x))
2

, (A15)

where erf is the error function and a is a very large positive number. He then define

µ1(I4) = lpq(p)(I4) + lnq(n)(I4) , β(I4) = mpq(p)(I4) + mnq(n)(I4) . (A16)

where lp, ln, mp and mn are constants. Since the details of the functions in (A15) and (A16) can be
found in [14], we shall not elaborate them here.

To model the fibre compression problem, the strain energy function, W(T) in (19) is now
replaced by

W(T) = µT

3

∑
i=1

q1(λi) + 2µ1(I4)
3

∑
i=1

αiq2(λi) +
β

2
(I4)(

3

∑
i=1

αiq3(λi))
2 . (A17)

Appendix D. Limitations on the Ground State Constants

Strong ellipticity condition is important in solid mechanics [32]. Restrictions on the ground state
constants appearing in the strain energy function (27) are done using strong ellipticity condition
at F = I. For an incompressible material, the strong ellipticity condition (see, for example,
Ref. [33]) requires

m · [Q(n)m] > 0, m · n = 0 , (A18)

where m and n are unit vectors,

Q(n) = Q1(n) + Q2(n) + Q3(n) + Q4(n) , (A19)
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and

Q1(n) = µT(I + n⊗ n) , Q2(n) = µ1(An⊗ n + n⊗ An + (n • An)I + A) , (A20)

Q3(n) = β(An⊗ An) , (A21)

Q4(n) =
3
4
[(SRn) · n]I − 1

4
[n⊗ (SRn) + (SRn)⊗ n + SR] . (A22)

Following the work of Shariff and Merodio [20], we have, for plane deformations,
the following inequalities:

In the case when β = 0, the necessary and sufficient condition for (A18) is

b1 > 0 and b2 > 0 , (A23)

where

b1 = µT + µ1(a2
1 + a2

2) +
1
4
(3s1 − s2) , b2 = µT + µ1(a2

1 + a2
2) +

1
4
(3s2 − s1) . (A24)

In the case when β 6= 0, (A23) and β > 0 are sufficient conditions for (A18).
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