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Abstract: In this study, a Rh(I)/Ru(III) catalyst with a bimetallic space structure was designed and
synthesized. The interaction between the metals of the bimetallic catalyst and the structure of the
bridged dimer can effectively reduce the steric hindrance effect and help speed up the reaction rate
while ensuring the stability of the catalyst. X-ray photoelectron spectroscopy (XPS) results show
that rhodium accepts electrons from chlorine, thereby increasing the electron-rich nature of rhodium
and improving the catalytic activity. This promotes the nucleophilic reaction of the catalyst with
methyl iodide and reduces the reaction energy barrier. The methanol carbonylation performance of
the Rh/Ru catalyst was evaluated, and the results show that the conversion rate of methyl acetate
and the yield of acetic acid are 96.0% under certain conditions. Furthermore, during the catalysis,
no precipitate is formed and the amount of water is greatly reduced. It can be seen that the catalyst
has good stability and activity.
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1. Introduction

As an important organic raw material, acetic acid is widely used in chemical, pharmaceutical,
pesticidal, and food industries, among others. During the early 1990s, BP Chemicals developed
an iridium complex catalyst that was in competition with the rhodium complex catalyst, and the
new technology was commercialized as the Cativa process in 1995. The Monsanto process was
commercialized in 1966 using an improved Rh-based homogeneous catalyst for a liquid-phase methanol
carbonylation with a methyl iodide promoted rhodium catalyst [1–3]. It is an important raw material
for the synthesis of a vinyl acetate monomer and acetic anhydride. At present, Monsanto’s methanol
carbonylation to acetic acid process with (Rh(CO)2I2)− as the catalytic active center has become the
mainstream process for global acetic acid production due to mild reaction conditions and sufficient
raw material sources [4–7]. In the Monsanto rhodium/iodine catalyst catalyzed carbonylation to acetic
acid reaction, Forster [8] proposed that the reaction mainly undergoes four elementary reactions:
CH3I oxidative addition, ligand migration, CO coordination, and CH3COI reduction. Among them,
the first step in the CH3I oxidation addition reaction is the rate-determining step in the entire catalytic
process [9]; therefore, to improve the activity of the catalyst, it is necessary to reduce the reaction barrier
of the CH3I oxidation addition.

However, Rh(I) is unstable during the reaction of the Monsanto rhodium/iodine catalyst. When the
CO partial pressure is low, (Rh(CO)2I2)− interacts with hydroiodic acid to form dimers to form Rh(III)
precipitates [10–13], causing the deactivation of the precious metal catalyst. Therefore, a large number
of polar solvents such as H2O and acetic acid are added to the system to increase the solubility of the
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catalyst, thereby improving the stability of the catalyst. In the industrial processing of methanol to
acetic acid, water and acetic acid are added to the system to prevent the catalyst from deactivating.
Therefore, under the premise of ensuring the activity of the catalyst, selecting a highly stable catalyst will
effectively increase the production efficiency of acetic acid and reduce the production cost, which has
also become a research hotspot in the field of carbonylation to acetic acid.

Bimetallic complex catalysts with heteronuclear structures are often used to show better
performance than single-metal catalysts through metal–metal interactions and their ligand
effects [14–16]. As a result, the catalyst has become a research hotspot [17–22]. The bridged ligand
and Rh coordinate to form a bidentate coordination structure, and after the ligand is coordinated with
Rh, it can firmly grasp Rh. The bimetallic complex with a stable structure can use the steric effect to
prevent catalyst deactivation.

A catalyst with a bimetallic structure (Rh(I)/Ru(III)) was designed and synthesized. The catalytic
evaluation of catalysts using methanol and CO as raw materials for carbonylation to produce acetic
acid was compared with the (Rh(CO)2I2)− catalyst in the Monsanto process. Through theoretical
calculations, the structural characteristics and the catalytic reaction mechanism of Rh(I)/Ru(III) were
studied at the molecular level, and the internal relationship between the catalyst structure and catalytic
performance was discussed [23,24]. The Rh(I)/Ru(III) catalyst was synthesized under theoretical
guidance, and its structure was confirmed through characterization. The performance of the catalyst
for the preparation of acetic acid by methanol carbonylation was evaluated. This provides new ideas
for the design of carbonylation catalysts.

2. Materials and Methods

2.1. Raw Materials and Reagents

Methanol (CH3OH), acetic acid (CH3COOH), and sodium carbonate (Na2CO3) were
analytical-grade products from Shanghai Aladdin Reagent Co. Ltd. (Shanghai, China). Lithium iodide
(LiI) and potassium iodide (KI) were analytical grade products from Shanghai Macklin Biochemical
Technology Co. Ltd. (Shanghai, China). Methyl iodide (CH3I) was an analytical-grade product from
Shandong West Asia Chemical Co. Ltd. (Linyi, China). Rhodium chloride hydrate (RhCl3·3H2O) and
ruthenium chloride hydrate (RuCl3·3H2O) were both analytical grade products from Shanxi Dongwal
Chemical Co. Ltd. (Taiyuan, China). Carbon monoxide (CO) and nitrogen (N2), with a volume fraction
of 99.999%, were both from the Ningxia Guangli Gas Plant (Yinchuan, China).

2.2. Theoretical Calculation Method

Based on Lanl2dz, the mechanism of methanol carbonylation of the catalyst was studied
theoretically using density functional theory (DFT) and the B3LYP method. At the molecular level,
the catalytic reaction mechanism was studied and the structure and energy of intermediates and
transition states were obtained [25]. All energies were corrected at zero, while the reaction energy
was compared with the catalytic performance of the Monsanto iodine catalyst. All calculations were
performed using the Gaussian 09 quantum chemistry program.

2.3. Catalyst Preparation

2.3.1. Synthesis of Precursor Rh2(CO)4Cl2

To begin, 0.2 g of rhodium chloride hydrate (RhCl3·3H2O) was weighed, and the particles were
ground into to a powder state. The powder was transferred to a U-shaped glass tube with a sand
core device at the bottom, in which the air had been removed. Then, 0.5 MPa of CO passed, and the
tube was allowed to react in an oil bath at a constant temperature of 80–90 ◦C for 6 h. As the reaction
progressed, orange-red crystals appeared in the glass tube. After the reaction was over, the orange-red
crystals were collected into a brown reagent bottle where they were weighed and stored to dry.
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2.3.2. Synthesis of Rh(I)/Ru(III) Bimetallic Catalyst

Rh2(CO)4Cl2 and RuCl3·3H2O were weighed at a molar ratio of 1:2 and dissolved in 10 mL
of distilled water. This solution was mixed by stirring at room temperature for 30 min, and the
mixture was then slowly added dropwise to 50 mL of 0.1 mol/L Na2CO3 solution. The resulting
mixture was placed in a water bath at a constant temperature of 50 ◦C and reacted for 10 h until black
precipitate appeared. After cooling, centrifuging, and drying the mixture at 50 ◦C, black solid particles
were obtained.

2.3.3. Evaluation of Catalyst Performance

The total mass of reactants was 25 g. According to the H2O:CH3OH:LiI:CH3COOH:CH3I mass
ratio of 6:24:4:54:12, H2O, CH3OH, LiI, CH3COOH, and CH3I were added to a 100 mL autoclave. Then,
0.03 g of the Rh(I)/Ru(III) bimetallic catalyst was added. The initial CO pressure was 3.5 MPa, and the
reaction temperature was 190 ◦C. The stirring rate was 500 r/min, and the reaction time was 60 min.
After the reaction was completed, a sample was taken for product analysis.

2.4. Characterization of the Catalyst

X-ray photoelectron spectroscopy (XPS) measurements were performed using a Thermo Fisher
ESCALAB 250 Xi (Symerfish Technologies, New York, NY, USA) equipped with an Al Ka radiation
X-ray source. FTIR measurements were carried out by an Alpha FTIR spectrometer (Brucker Optics,
Ettlingen, Germany) equipped with exchangeable sampling modules. The spectra were collected as
the average of at least 200 scans at a resolution of 4 cm−1 in the frequency range of 2500–400 cm−1.
Inductively coupled plasma optical emission spectroscopy (ICP-OES) experiments were performed on
an Agilent 725 optical emission spectrometer (Agilent Technology Limited, Santa Clara, CA, USA).
Quantification was performed by an external standard method.

2.5. Catalyst Performance Analysis Method

The product was quantitatively analyzed using a Shimadzu gas chromatograph (GC-2014),
an Intercap FFAP polar capillary column, and a hydrogen flame ionization detector (FID). The injection
volume was 1 µL, and the heating rate was 5 ◦C/min from 32 to 60 ◦C. This was held for 2 min,
then the temperature was increased to 150 ◦C at a 10 ◦C/min heating rate and held for 2 min. Finally,
the product was quantified by an external standard method. The qualitative analysis was performed
using a Shimadzu gas chromatograph mass spectrometer (GCMS-QP2010, Shimadzu Production
Centre, Kyoto, Japan) under the same conditions. Taking the conversion rate of methanol (x, %),
the selectivity of acetic acid (sHAc, %), the selectivity of methyl acetate (sMeOAc, %), the yield of acetic
acid (yHAc, %) and the yield of methyl acetate (yMeOAc, %) is used as the evaluation index of catalyst
catalytic performance, and the calculation formula is as follows:

x =
n2

n1
× 100%

sHAC =
n3

n2
× 100%

sMeOAc =
n4

n2
× 100%

yHAC = x× sHAc × 100%

yMeOAc = x× sMeOAc × 100%

TOF =
reaction times

(number o f active sites× reaction time)
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TON =
reaction times

number o f active sites

where n1 is the amount of methanol added, n2 is the amount of methanol consumed, n3 is the amount
of acetic acid produced, and n4 is the amount of methyl acetate produced; the unit is mol.

The product was qualitatively analyzed by GC-MS. Figure 1 shows that the peaks of the spectrum
corresponded to methyl iodide, methyl acetate, methanol, and acetic acid.
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Figure 1. GC-MS diagram of carbonylation reaction product.

3. Results

3.1. Molecular Design

It can be seen from Figure 2d that Rh(I)/Ru(III) is a four-coordinate bimetallic space structure,
and the distance between the central metal atom Rh and Ru is 3.5846 Å. The dimer usually has the
most stable planar structure and lowest energy. We assume the planar structure of the Rh/Ru catalyst.
The calculation results show that the distance between Rh and Ru in the planar structure is 3.6832 Å,
and the molecular energy of the space structure is 54.67 kJ/mol lower than that of the planar structure.
This reduced energy mainly comes from the interaction between Rh and Ru, thereby improving the
stability of the catalyst.

3.2. Catalytic Reaction Mechanism

The mechanism of Rh(I)/Ru(III) catalyzing methanol carbonylation is similar to that of the
Monsanto process (see Figure 3a). Figure 4 shows the geometric structure of reactants, transition states,
intermediates, and products in methanol carbonylation. As shown in Figures 3 and 4, during the
Rh(I)/Ru(III) catalysis process, the oxidation addition reaction of CH3I passes through the transition state
(TS1), while the Rh(I)/Ru(III) bimetallic catalyst catalytic reaction is from the original four-coordinate
structure to a stable six-coordinate four-pyramid double-cone structure (TN1). During the oxidative
addition of CH3I, as shown in Figure 2d, the Rh/Ru catalyst was obtained through structural
optimization. The bond length of Cl(1)/Rh (2.5141 Å) is longer than that of Cl(2)/Rh (2.5065 Å);
the bond energy is also lower and easier to extend. As shown in Figure 4, the Rh/Cl(1) bond was
first elongated (from 2.5141 to 3.0090 Å) and then recovered. The spatial structure of the catalyst
was slightly deformed. It can be seen that this deformation can cooperate with the addition of the
rate-determining step CH3I, effectively reducing the energy barrier of the rate determination reaction
and thereby improving the activity of the catalyst. After carbonyl migration and carbonyl coordination,
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it is finally eliminated by CH3COI reduction and hydrolysis to form acetic acid, thus completing the
entire catalytic cycle process.Materials 2020, 13, x FOR PEER REVIEW 5 of 13 
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Figure 4. Geometric structure of reactants, transition states, intermediates, and products in methanol
carbonylation (bond length in Å, bond angle in degrees): (a) CH3I addition reaction product (TN1);
(b) CH3I addition reaction state (TS1); (c) ligand migration reaction state (TS2); (d) ligand migration
reaction product (TN2); (e) CO addition reaction product (TN3); (f) CH3COI reductive elimination
reaction state (TS3); (g) CH3I; (h) CH3COI; (DFT, B3LYP/Lanl2dz).
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It can be seen from Figure 5 that compared with the Monsanto catalyst, the CH3I oxidation
reaction of methanol carbonylation catalyzed by the Rh(I)/Ru(III) bimetallic catalyst reduces the energy
barrier by 23.88 kJ/mol. At this time, the elimination reaction has become the rate-determining step.
Compared with Monsanto’s rhodium iodide catalyst, the Rh(I)/Ru(III) bimetallic catalyst has a higher
stability due to the interaction between Rh/Ru metal and its bidentate structure. In the process of
ligand migration, the Rh/Cl (1) bond is elongated, but Cl (2) and Rh are still firmly grasped to prevent
the decomposition and inactivation of the precipitate. As a result, it is advantageous to increase the
rate of the carbonylation reaction and the selectivity and activity of the catalyst.
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Figure 5. Potential energy diagram for the reaction pathway. Black line: The reaction barrier diagram
of the Monsanto catalyst catalyzing methanol carbonylation to acetic acid. Blue line: The reaction
barrier diagram of Rh(I)/Ru(III) bimetallic catalyst catalyzing methanol carbonylation to acetic acid.

Figure 6 shows a comparison of the infrared image of Rh2(CO)4Cl2 with the infrared image of
RhCl3·3H2O. At 2007 and 1900 cm−1, there are two rhodium terminal carbonyl peaks. It can be seen
that Rh2(CO)4Cl2 was successfully synthesized. In the infrared spectrum (Figure 6), the characteristic
absorption peaks of the terminal carbonyl group of the Rh(I)/Ru(III) catalyst appear at 1600 and
1700 cm−1. Comparing the infrared images of Rh2(CO)4Cl2, it can be seen that due to the influence
of the ligand, the peak of the terminal carbonyl rhodium in the Rh(I)/Ru(III) bimetallic catalyst has
a red shift. At the same time, due to the influence of the central metal Rh, its vibration frequency is
significantly reduced.
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Figure 7 shows the XPS spectrum of the Rh(I)/Ru(III) bimetallic catalyst and precursor. XPS requires
calibration since charging of the sample will influence the kinetic energies. Spectra from samples
have been charge-corrected to give the adventitious C1s spectral component (C–C, C–H) a binding
energy of 284.8 eV. This process has an associated error of ± 0.1–0.2 eV [26]. As shown in Figure 7,
compared with Rh3d5/2 (308.9 eV) in Rh2(CO)4Cl2, the binding energy (308.5 eV) of the Rh(I)/Ru(III)
bimetallic catalyst is reduced by 0.4 eV, while the binding energy of Ru3d3/2 (284.4 eV) is reduced
by 2 eV compared to RuCl3/3H2O and Ru3d3/2 (286.4 eV). The Cl2p in the Rh(I)/Ru(III) bimetallic
catalyst is 199.7 eV. After coordination with Rh and Ru, the binding energy of Cl2p in Rh2(CO)4Cl2 and
RuCl3/3H2O increased by 1.2 eV and 1.1 eV, respectively. It can be seen that during the coordination
process, a Cl/Rh coordination bond and a Cl/Ru coordination bond are formed. The binding energy of
rhodium and ruthenium is reduced, and the binding energy of chlorine is increased, indicating that the
electrons of chlorine are transferred to rhodium and ruthenium. The electron-rich nature of rhodium
increases the activity of the catalyst and increases the reaction rate.

The composition of the Rh(I)/Ru(III) bimetallic catalyst was investigated using inductively coupled
plasma optical emission spectrometry (ICP-OES, AGILENT 725). The mole ratio of Rh/Ru was 1.15.
Based on the characterization results of XPS and ICP-OES, we believe that the experimentally obtained
Rh(I)/Ru(III) bimetallic catalyst configuration conforms to the theoretical design configuration.Materials 2020, 13, x FOR PEER REVIEW 8 of 13 
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3.3. Comparison of Catalyst Performance

Table 1 shows the experimental results of methanol carbonylation catalyzed by Rh(I)/Ru(III)
catalyst and the Monsanto catalyst under the same conditions. It can be seen from Table 1 that
when Rh(I)/Ru(III) catalyzes the carbonylation reaction, its catalytic performance is significantly better
than that of the Monsanto catalyst. At the end of the reaction, some precipitation of RhI3 appeared
in the reactor in the Monsanto catalytic system, but no precipitation occurred in the Rh(I)/Ru(III)
catalytic system, indicating that Rh(I)/Ru(III) has a better stability [27–30]. As a result of the catalytic
performance of RuCl3/3H2O, it has no catalytic activity, but it stabilizes the catalyst structure and forms
a folded structure, which reduces the overall energy of the catalyst system.

Table 1. Catalytic performance of Rh(I)/Ru(III), RuCl3·3H2O, and Rh2(CO)4Cl2 for methyl
acetate carbonylation.

Catalyst x/% sHAc/% yHAc/% TOF/h−1 TON

Rh(I)/Ru(III) 94.9 85.2 80.9 3.2 × 107 3.2 × 107

Rh2(CO)4Cl2 90.3 49.6 44.8 7.6 × 106 7.6 × 106

RuCl3·3H2O 0 0 0 0 0

T = 190 ◦C; p = 3.5 MPa; t = 60 min; w(CH3COOH) = 54 wt%; w(H2O) = 6 wt%; x/%: Conversion rate of methanol;
sHAc/%: the selectivity of acetic acid; yHAc/%: the yield of acetic acid; TOF: turnover frequency, i.e., the number of
molecules formed per active site per second; TON: total number of products formed molecules per active site.

3.4. Catalyst Performance Evaluation

In the Monsanto catalyst, to avoid the deactivation of the catalyst active metal Rh when the CO
partial pressure is low, a large amount of water is usually added. We investigated the effect of water
content on the performance of the bimetallic catalyst in the methanol carbonylation reaction [31–33].
Figure 8 shows the performance of Rh(I)/Ru(III) bimetallic catalyst catalyzed carbonylation of methanol
under different H2O mass fractions. Figure 8 shows that the selectivity of acetic acid first increases
with increasing water content and then decreases. At a water content of 6 wt%, acetic acid has the
highest selectivity, 95.90%, and no other by-products.
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Figure 8. Catalytic performance of Rh(I)/Ru(III) bimetallic catalysts at different contents of water
(T = 190 ◦C; p = 3.5 MPa; t = 60 min; w(CH3COOH) = 54 wt%; x/%: conversion rate of methanol).

As can be seen from Figure 9, the selectivity of acetic acid also gradually increases with the
increase of the amount of solvent. When the solvent content is 54 wt%, the acetic acid selectivity is as
high as 95.90%. Considering the production and production costs of by-products, the optimal amount
of solvent in this experiment was 54 wt%.

It can be seen from Figure 10 that in the Rh(I)/Ru(III) bimetallic catalytic system, the methanol
conversion rate is 100.00%. With the increase of the system pressure, the selectivity of acetic acid
increases first and then decreases. The selectivity of methyl acetate gradually decreases and then
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increases. At 3.5 MPa, the acetic acid selectivity is 95.90%. When the pressure continues to increase,
by-product methyl acetate appears in the product, and the acetic acid selectivity begins to decrease.
Therefore, 3.5 MPa is the optimal reaction pressure of the system.
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t = 60 min; w(CH3COOH) = 54 wt%; w(H2O) = 6 wt%; x/%: conversion rate of methanol).

As shown in Figure 11, with the increase of reaction temperature, the selectivity of acetic acid shows
an increasing trend. At 180, 190, and 200 ◦C, the selectivity of acetic acid reached over 90%. At 190 ◦C,
the highest acetic acid selectivity is 96.32%, and no other by-products are produced. Therefore, 190 ◦C is
the optimal reaction temperature for this reaction.
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4. Discussion

Under the guidance of theory, the Rh(I)/Ru(III) catalyst with bimetallic space structure was
synthesized. Through theoretical calculations, it is found that the bimetallic catalyst with a 3D
space structure has a shorter Rh/Ru spacing, forming a folded structure, reducing the system energy,
and increasing the catalyst stability. In addition, the presence of steric hindrance can also prevent
the deactivation of the Rh center of the catalyst. XPS results show that rhodium accepts electrons
from chlorine, which promotes its electron enrichment and is beneficial to the improvement of catalyst
activity. This is conducive to the nucleophilic reaction of the catalyst with methyl iodide and reduces the
reaction energy barrier. The Rh/Ru bimetallic catalyst has a bridged dimer space structure. During the
oxidation addition of CH3I, one bridge Cl seizes Rh and the other bridge Cl/Rh is elongated. After the
addition, the bridge Cl/Rh bond-length is restored. This synergistic effect can reduce the reaction
energy barrier of CH3I addition and ensure the stability of the catalyst.

A Rh(I)/Ru(III) bimetallic catalyst was synthesized, and its performance catalyzing methanol
carbonylation to produce acetic acid was investigated. The Rh(I)/Ru(III) bimetallic catalyst optimizes
the reaction system of methanol carbonylation to acetic acid. The results show that at a reaction
temperature of 190 ◦C, the initial CO pressure is 3.5 MPa, the solvent is 54 wt% acetic acid, and the
water content is 6 wt%. The carbonylation reaction is the best, and the selectivity of acetic acid is
96.32%. No precipitation occurs in the system, and the catalyst maintains good stability. The amount
of solvent water is significantly lower than that of industrial water (~13–16 wt%), no by-products are
produced, industrial production costs are reduced, and energy consumption for subsequent separation
is saved.
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