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Abstract: This paper presents an experimental study on the fatigue life estimation of off-centrally
cracked aluminum plates. Typical theoretical equations for off-central, central and edge cracks were
reviewed and compared in terms of their sensitive parameters and applicability. A finite element
model has been validated in its capacity in modelling the influences of eccentricity and crack size on
the boundary correction coefficients. The Forman equation has been employed along with numerical
results for the prediction of fatigue lives. Based on the test data, the fatigue life results of aluminum
plates with and without patched laminate repair have been compared with codified fatigue classes.
It is demonstrated that the repair at the crack tip close to the plate edge is effective in the fatigue life
improvement for off-centrally crackedaluminum plates.
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1. Introduction

Tension structural components, such as tension clamps made up of clevis cover plates in tension,
play an important role in many railway [1,2] or aircraft [3,4] mechanical systems. Using codified
variables, it is relatively easy to find a premade tension structural component to suit the specifications
of a specific project. Fatigue cracks in a tension structural component usually initiate at notches as a
result of stress concentration. Since the fatigue cracks can start very early within the fatigue endurance,
the fatigue life estimation becomes a major question for the fatigue crack propagation analysis. For such
a purpose, the stress intensity factors for a central crack or an edge crack as typical crack formations
have been intensively investigated by contemporary researchers and documented in design manuals,
such as Reference [5]. During services, however, mechanical failure can take place, due to the formation
of cracks at the initial imperfections or flaws away from the center or the edge. An example in Figure 1
indicates an offset imperfection-related fatigue crack initiated between the edge and the center line of
the clevis cover plate subject to tension.
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Figure 1. Off-central crack in a typical tension clamp. 

The linear elastic fracture mechanics method has gained a good application for the prediction 
of the strength and life of cracked structures, when the understanding of the crack tip stress 
intensity factor as a function of applied load and structural geometry is known. The crack tip can be 
assumed as an energy sink, around which dissipation takes place for energy propagation. The 
research work reported by Isida [6] seems to give the first theoretical equation in the prediction of 
stress intensity factors for the tension of an eccentrically cracked strip. The Airy stress function for a 
state of generalized plane stress can be formulated in terms of complex potentials, which can be 
expanded in Laurent’s series, convergent in a region bounded by two certain concentric circles. The 
resultant stress intensity factors are given in power series, and their related coefficients are 
tabulated. Further understanding of the stress intensity factor of eccentrically cracked plateshas 
deepened in theory in the past two decades. For example, Wang [7] proposed a quite useful, simple 
theoretical expression with the balance of force and moment for the above-mentioned stress 
intensity factor, which results in a good correlation with Isida’s report [6] with less than 6% error. 
Following Isida’s report [4], Wang et al. [8] recently developed means based on the Westergaard 
stress function, which is simplified to provide solutions for the crack opening displacement and 
stress-strain field ahead of an eccentric crack. The length from the maximum crack opening site to 
the crack tip was suggested as the length of the crack when the Westergaard stress distribution is 
concerned. To validate the theoretical findings, numerical modelling has also been performed by 
researchers in the study of stress intensity factors of eccentrically cracked plates. For example, 
Wang et al. [9] adopted a macro element method in the calculation of stress intensity factors and 
analysis of cracked plate. It was shown that the crack propagation may become stable when the 
eccentricity is considered. Later, the detrimental effect of the presence of offset cracks on the tension 
plate with eccentric cracks embedded in bi-materials was observed by Ismail [10], since the 
formation of mixed mode stress intensity factors at the crack tip lead to premature failure. 
Subsequently, Han et al. [11] compared and discussed the efficiencies of the displacement 
extrapolation method, stress extrapolation method, node displacement method, and J-integral 
method based on finite element analyses of stress intensity factors of eccentrically cracked plates. 
Triangular singular elements, and an element size of 1/10 of the crack length, are suggested for 
increased accuracy in the prediction of stress intensity factors. Recently, an equivalent model was 
developed by He et al. [12] for an eccentrically cracked plate with clamped ends. Experimental data 
waste was avoided using approximate solutions, since invalid crack growth data, failing to meet the 
crack symmetry condition, could be utilized in the data processing. 

Where cracking occurs in aluminum plates, a satisfactory repair may be made by composite 
patches and adhesive bonding in the reinforcement. Their attractive merits are good flexibility, high 
strength-to-weight ratio, and good capacity in resisting environment deterioration or corrosion. 
Ayatollahi and Hashemi [13] conducted finite element modelling in the study of the effect of 
composite patching, such as composite laminate configuration, and adhesive properties on the 
crack tip parameters. Related stress intensity factors along with the fracture strength of the repaired 
specimens under mixed mode loading conditions were analyzed. Khan et al. [14] performed fatigue 
tests on V-notched repaired and unrepaired pre-cracked specimens under fatigue loading. It was 
found that very high fatigue life extension can be achieved when the patch precedes the overload, 
which can be owed to a cumulative retardation effect of patching and overload. Recently, the 
authors have investigated the effect of CFRP (carbon fiber reinforced polymer) reinforcement on the 
fatigue strength of corrugated plates [15,16], steel plates [17,18], and aluminum alloy plates [19–25] 
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Figure 1. Off-central crack in a typical tension clamp.

The linear elastic fracture mechanics method has gained a good application for the prediction of
the strength and life of cracked structures, when the understanding of the crack tip stress intensity
factor as a function of applied load and structural geometry is known. The crack tip can be assumed
as an energy sink, around which dissipation takes place for energy propagation. The research work
reported by Isida [6] seems to give the first theoretical equation in the prediction of stress intensity
factors for the tension of an eccentrically cracked strip. The Airy stress function for a state of generalized
plane stress can be formulated in terms of complex potentials, which can be expanded in Laurent’s
series, convergent in a region bounded by two certain concentric circles. The resultant stress intensity
factors are given in power series, and their related coefficients are tabulated. Further understanding of
the stress intensity factor of eccentrically cracked plateshas deepened in theory in the past two decades.
For example, Wang [7] proposed a quite useful, simple theoretical expression with the balance of
force and moment for the above-mentioned stress intensity factor, which results in a good correlation
with Isida’s report [6] with less than 6% error. Following Isida’s report [4], Wang et al. [8] recently
developed means based on the Westergaard stress function, which is simplified to provide solutions
for the crack opening displacement and stress-strain field ahead of an eccentric crack. The length from
the maximum crack opening site to the crack tip was suggested as the length of the crack when the
Westergaard stress distribution is concerned. To validate the theoretical findings, numerical modelling
has also been performed by researchers in the study of stress intensity factors of eccentrically cracked
plates. For example, Wang et al. [9] adopted a macro element method in the calculation of stress
intensity factors and analysis of cracked plate. It was shown that the crack propagation may become
stable when the eccentricity is considered. Later, the detrimental effect of the presence of offset cracks
on the tension plate with eccentric cracks embedded in bi-materials was observed by Ismail [10],
since the formation of mixed mode stress intensity factors at the crack tip lead to premature failure.
Subsequently, Han et al. [11] compared and discussed the efficiencies of the displacement extrapolation
method, stress extrapolation method, node displacement method, and J-integral method based on
finite element analyses of stress intensity factors of eccentrically cracked plates. Triangular singular
elements, and an element size of 1/10 of the crack length, are suggested for increased accuracy in the
prediction of stress intensity factors. Recently, an equivalent model was developed by He et al. [12]
for an eccentrically cracked plate with clamped ends. Experimental data waste was avoided using
approximate solutions, since invalid crack growth data, failing to meet the crack symmetry condition,
could be utilized in the data processing.

Where cracking occurs in aluminum plates, a satisfactory repair may be made by composite
patches and adhesive bonding in the reinforcement. Their attractive merits are good flexibility,
high strength-to-weight ratio, and good capacity in resisting environment deterioration or corrosion.
Ayatollahi and Hashemi [13] conducted finite element modelling in the study of the effect of composite
patching, such as composite laminate configuration, and adhesive properties on the crack tip parameters.
Related stress intensity factors along with the fracture strength of the repaired specimens under mixed
mode loading conditions were analyzed. Khan et al. [14] performed fatigue tests on V-notched repaired
and unrepaired pre-cracked specimens under fatigue loading. It was found that very high fatigue life
extension can be achieved when the patch precedes the overload, which can be owed to a cumulative
retardation effect of patching and overload. Recently, the authors have investigated the effect of CFRP
(carbon fiber reinforced polymer) reinforcement on the fatigue strength of corrugated plates [15,16],
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steel plates [17,18], and aluminum alloy plates [19–25] with central fastener holes. Based on the test
and modelling data, a new model has been proposed for the contributions of the plate and carbon
fiber in tension, the adhesive interface in shear, and additional secondary bending effect when the
improvement fatigue endurance is concerned.

Despite the above-reviewed research work, there are no unanimous conclusions for the stress
intensity factors of off-centrally cracked aluminum plates, with and without patched laminate repair and
subject to fatigue loading. In this paper, the theoretical equations in the calculation of the stress intensity
factors for off-centrally cracked aluminum plates are compared. A counterpart three-dimensional
finite element model is developed for the stress intensity factor calculation and validated with the
calculation results of cracked aluminum plates without strengthening. Based on the fatigue test results,
the improvement of fatigue life of the patched, laminate-repaired, off-centrally cracked aluminum
plate is discussed with codified curves.

2. Experimental Procedure and Results

Test specimens were machined from aluminum sheet (Al 2024T3) (Alcoa Korea, Ltd., Seoul, Korea),
satisfying the American specification AMS-QQ-A-250/5A. The specimen plates were 300 mm long
by b = 30 mm wide by t = 2 mm thick. The off-central crack was considered between the centerline
and the tip of the plate, which can be regarded at an intermediate location between the central crack
and edge crack, as shown in Figure 2. Before patched laminate repair, the specimen plates were
notched through the thickness of the crack started on both sides (tip A and tip B), for which the total
initial crack length and the eccentricity are denoted as c and s, respectively, as shown in Figure 3.
The patched laminates were made using unidirectional CFRP (carbon fiber reinforced polymer) (Toray
Group Co., Ltd., Tokyo, Japan) applied at one side of test aluminum alloy plate in alignment with
the longitudinal direction (x direction) of the test specimen. The CFRP was cured and bonded to
the pre-cracked specimen using epoxy resin matrix Sikadur 330CN (Sika Corporation, Lyndhurst,
NJ, USA). As listed in Table 1, the mechanical property of the aluminum sheet was obtained from
monotonic tensile tests of six coupons(Toray Group Co., Ltd., Tokyo, Japan) under the loading rate of
0.02 mm per second, while that of the carbon fiber and epoxy resin matrix were obtained according
to GB50367 and DIN 53,455,respectively, referring to the testing reports from the manufacturers.
In total, 21 specimens grouped in the four series (“centrally cracked + unrepaired”, “centrally cracked
+ repaired”, “off-centrally cracked + unrepaired” and “off-centrally cracked + repaired”) were tested
with a varying eccentricity ratio of 2s/b and the crack size ratio of c/b as listed in Table 2. Fatigue
tests were conducted using a servo-hydraulic testing machine (Shimadzu, Kyoto, Japan), as shown
in Figure 4, with the test frequency of 8 Hz until the fracture of the test specimen. As tress ratio of
R = 0.1 and maximum stress range of 170 MPa sinusoidal waveform was used to fatigue specimens.
Repetitive load signals were measured using a PC-based automatic data acquisition system.
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Figure 3. Analytical illustration of an off-centrally cracked strip.

Table 1. Mechanical properties of test materials.

Material Yield Strength
(MPa)

Ultimate Strength
(MPa)

Elastic Modulus
(MPa) Elongation (%)

Critical Stress
Intensity Factor

(MPa·mm0.5)

Aluminum 307 445 7.2 × 105 15 1181
Carbon Fiber - 4216 2.52 × 105 1.76 -

Adhesive - 30 4.5 × 103 0.9 -

Table 2. List of test specimens.

Specimen Series Test Number Crack Mode Repair 2s/b c/b

T1 9 Centrally × 0 0.15–0.45
T2 4 Centrally

√
0 0.3

T3 4 Off-Centrally × 0.5 0.3
T4 4 Off-Centrally

√
0.5 0.3
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Figure 4. Test set-up and fracture mode.

3. Finite Element Analysis

The commercial finite element modelling package ANSYS software (ANSYS Inc., Canonsburg,
PA, USA) was employed to numerically simulate the stress distribution in front of both crack tips, and
the stress intensity factors for the off-central cracks. The modelling results were adopted to validate
the results calculated from referred theoretical equations, which will be presented in the following
section. The material mechanical properties in the finite element models are the same as those in the
experimental tests, as listed in Table 1.

Since the test specimens are shown in Figure 4 to rupture perpendicular to the longitudinal
direction of the test plate with slight necking on the plate fringe, only the upper half of the test specimen
was modelled due to the symmetry condition before and after the rupture of the test specimen, as
shown in Figure 5. As such, the bottom two edges except the crack line between two crack tips are
symmetrically restrained, while the longitudinal tensile stresses were applied at the tip edge.
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which is determined by the nominal tension stress, σ, and the boundary correction coefficient, Fw. 
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Figure 5. Typical FE model.

This failure is expected, as the maximum tensile stress in the vicinity of the crack tip B is close to
the edge of the plate, which agrees well with the modelling results as shown in Figure 6. The J-integral
calculation technique with a square root singularity at the crack tip was applied for the analysis of the
stress intensity factor at the crack tip. The quadratic solid elements SOLID95 were used in the mesh
construction of the crack tip zone with a swept meshing method. Only the meshes near the crack tip
zone were intensified with the element size of 0.5 mm due to the consideration of computational costs.
For the geometry of the finite element model, the eccentricity ratio of 2s/b and the crack size ratio of c/b
are varied as 0.17~0.7 and 0.05~0.5, respectively, so as not to surpass the plate width and contradict the
cases related to central or edge cracks.
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4. Results and Discussion

4.1. Summary of KI and Fw Theoretical Equations for Off-Central, Central and Edge Cracks

Based on the theory of fracture mechanics, the mode I elastic stress intensity factor can be assessed
by the following criteria:

KI = FWσ
√

0.5πc (1)

which is determined by the nominal tension stress, σ, and the boundary correction coefficient, Fw. For
the surface crack scenario studied herein, suitable parameters are needed for the rational assessment of
Fw. On this basis, two analytical equations are compared as below.

4.1.1. Crack Line Stress Field Method for Off-Centrally Cracked Case

Based on the model proposed by Wang [5], a crack extended line subject to uniaxial tensile stress
σ consists of KI dominated plastic segments at the crack tips (A and B) and outside plastic segments.
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Based on the basic theory for a crack opening symmetrically with respect to the undeformed crack
plane, the corresponding normal stress σx along the x axis is written as:

σx =


FWAσ

√
0.5πc

√
2π0.5d

=
FWAσ

√
c

√
2d

(0 < 0.5d ≤ 0.5d0A)

=
FWBσ

√
c

√
2d

(0 < 0.5d ≤ 0.5d0B)
(2)

where, FWA and FWB are the correction factors, d is the diameter of pseudo plastic zone at the crack
front. When the distances from the centers of the pseudoplastic zone are greater than 0.5d0A or 0.5d0B,
the square FWA or FWB is chosen due to an allowance of finite width and the corresponding normal
stress σx is expressed as:

σx =

{
F2

WAσ (0.5d0A ≤ 0.5d ≤ 0.5b + s− 0.5c)
F2

WBσ (0.5d0B ≤ 0.5d ≤ 0.5b− s− 0.5c)
(3)

Given the stress continuity at the boundary of the plastic zone around the crack origin, i.e.,
Equation (2) equal to Equation (3) when d = d0A and d = d02B, it can be obtained as d0A = 0.5c/FWA

2

and d0B = 0.5c/FWB
2. Equating the tensile stress along the crack extended line to the remote tension

stress, σ, along the y axis yields:∫ 0.5d0A
0

FWAσ
√

c
√

2d
∂d +

∫ 0.5d0B
0

FWBσ
√

c
√

2d
∂d + F2

WAσ(0.5b + s− 0.5d0A − 0.5c) + F2
WBσ(0.5b + s− 0.5d0B − 0.5c) = bσ (4)

In equilibrium along the crack extended line, the sum of bending moments about the centerline of
the tubular flange is zero, and thus:∫ 0.5d0A

0
FWAσ

√
c

√
2d

∂d(0 .5d0A + 0.5c− s) + 0.5F2
WAσ

[
0.25b2

− (0.5d0A + 0.5c− s) 2
]

=
∫ 0.5d0B

0
FWBσ

√
c

√
2d

∂d(0 .5d0B + 0.5c + s) + 0.5F2
WBσ

[
0.25b2

− (0 .5d0B + 0.5c + s)2
] (5)

Given the (1/FWA
2-1/FWB

2) approaching zero when s = 0 (no eccentricity), solving Equations (4)
and (5) gives:

FWA =

√
2b + 4s− c
2b + 4s− 2c

(6)

FWB =

√
2b− 4s− c
2b− 4s− 2c

(7)

4.1.2. The Westergaard Function Based Method for Off-Centrally Cracked Case

The stress distribution in front of the crack tip along crack line can be expressed using the
Westergaard function as:

σx =
FW√

1−
(

0.5c
x

)2
(8)

where, x is the distance from the crack center in the crack line. At two sides of the crack (close to
crack tip A and B), the corresponding loads carried by the stress distributions at uncracked parts are
given by:

PA =

∫ 0.5b0+s−0.5c

0.5c
σxt∂y (9)

PB =

∫ 0.5b0−s

0.5c
σxt∂y (10)
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The stress distributions far away from the cracked section are given by:

PA = σt(0.5b0 + s− 0.5c) (11)

PB = σt(0.5b0 − s) (12)

Implementing the load equilibrium Equation (9) = Equation (11), and Equation (10) = Equation
(12) at the cracked section, the boundary correction coefficient developed by Wang et al. [6] is written as:

FWA =
1√

1−
(

c
b+2s−c

)2
(13)

FWB =
1√

1−
(

c
b−2s

)2
(14)

4.1.3. Comparison of Referred Calculations]

In Figure 7, the boundary correction coefficients at the crack tips for off-centrally cracked plates
calculated using referred methods are compared against the crack size ratio of c/b. The results obtained
from the crack line stress field method are slightly higher than the Westergaard function-based method,
especially when c/b is ranging between 0.2 and 0.35. However, such a difference is gradually reduced
as c/b is greater than 0.4. With the increasein the eccentricity, calculated Fw is increased which indicates
a much higher stress concentration of the stress field at the crack tip. Calculated Fw for crack tip A is
consistently lower than that for crack tipB and seemingly less influenced by the eccentricity of the crack.
Such an underestimation can be owed to the different plastic zones at the crack fronts of tip A and B,
which was simplified as the same in referred methods. For design purpose, however, only the larger
Fw, i.e., for crack tip B, related to greater stress concentration is considered in the following analysis.
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4.2. Finite Element Analysis Based Evaluation of Fw for Off-Centrally Cracked Plates

Given that the aforementioned theoretical methods are limited by simplified assumptions, Fw for
off-centrally cracked plates is evaluated based on a finite element parametric study. One hundred and
twelve finite element models—which are permutations and combinations of seven sets of 2s/b ranging
from 0.17 to 0.7, and fourteen sets of c/b ranging from 0.1 to 0.5—are built for the stress intensity factor
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analysis. Based on the finite element parametric study, the calculation for Fw can be developed as the
following poly-fit equation, including the ratios of 2s/b and c/b.

FWB =

[
212

(2s
b

)3
−173

(2s
b

)2
+53

(2s
b

)
−3.7

]( c
b

)2
− 0.05e5.5( 2s

b )
( c

b

)
+ e0.12( 2s

b ) (15)

As a validation example for the cases of 2s/b = 0.3 and 0.5 shown in Figure 8, Fw predicted from
modelling agrees well with those from referred calculation. The cases with central cracks and edge
cracks are also referred to further the comparison with analytical results. For the centrically cracked
plate of finite width, the stress intensity factor at the crack tip was originally modified from that for an
infinite sheet with a periodic array of through-thickness cracks under uniformly distributed stress.
The formation is deemed accurate for up to c/b = 0.5, and the tangent correction as documented in
Reference [3] is given by:

FW =

√
2b
πc

tan
πc
2b

(16)
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An alternative solution was later presented by Feddersen [26], and known as the secant
correction, as:

FW =

√
sec

πc
2b

(17)

The stress intensity factor at the crack tip for the edge cracked plate was originally modified
from the long surface crack solution when in-plane bending was not accounted. The corresponding
boundary correction coefficient documented in BS 7910 [27] is:

FW = 1.12− 0.23
( c

b

)
+ 10.6

( c
b

)2
− 21.7

( c
b

)3
+ 30.4

( c
b

)4
(18)

As observed from Figure 9, the curves predicted from the above poly-fit equation are governed
by off-central cracks (i.e., within the range between those for the edge crack and those for the central
crack) when 2s/b is increased from 0.17 to 0.55. Conversely, Fw is more or less involved with the edge
cracks or the central cracks when the 2s/b is greater than 0.55 or less than 0.17.
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4.3. Fatigue Life Evaluation

Using the above-discussed boundary correction coefficient, FW, and the mode I elastic stress
intensity factor, the fatigue life of the test specimens can be evaluated. As per the suggestion by
Su et al. [28], the aluminum material was defined following a rate-independent isotropic elastic-plastic
relation using the classical J2-flow theory of the plasticity. It fits the experimentally measured
stress-strain curve with the extraction of strain-hardening features. When above discussed boundary
correction coefficient, FW, is determined, the mode I elastic stress intensity factor can be calculated using
Equation (1), and then the fatigue life of test specimens can be evaluated. It is generally recognized
that three regions exist for the relationship between the fatigue crack growth rate and the stress
intensity factor; threshold, linear growth, and accelerated growth. To calculate the fatigue life, the crack
propagation during the latter two regions can be analyzed using the concept of fracture mechanics [29]
and the well-known Forman equation [3], including the stress ratio effect and FW aforementioned in
the Section 4.2, as:

dc
dN

=
CF(∆KI)

m

(1−R)KC − ∆KI
=

CF(FW∆σ)m(0.5πc)0.5m

(1−R)KC − FW∆σ
√

0.5πc
(19)

where, Kc is the fracture toughness of the test material, which is equal to 1.181 × 103 MPa·mm0.5. CF is
the material constant converted from its counterpart in Paris equation as 0.174 × 10−10. Assuming
m = 3, the integration of Equation (19) results in the fatigue life, N, of the cracked aluminum plate as:

N =
2(1−R)KC(

√
c0 −

√
c1)

CF(FW
√
π∆σ)

3 −
1

CF(FW
√
π∆σ)

2 ln
c1

c0
(20)

where, c0 and c1 are the initial and final crack lengths, respectively. As the magnitude of ∆KI is
determined by c0 and c1, N can be obtained via the numerical analysis and corresponding data for S-N
relation can be deduced. Figure 10 shows a good correlation of fatigue lives between experimental
test results and finite element modelling based analytical results using the Forman equation when the
centrally cracked and off-centrally cracked aluminum plates are concerned. This also indicates that
Fw defined by the proposed poly-fit equation would be a good choice in representing stress intensity
factors, and thus the fatigue life.
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Figure 10. Comparison of fatigue live results between centrally and off-centrally cracked plates.

Based on the fatigue criterion recommended by the BS8118 standard for structural use of
aluminum [30], the fatigue test data and prediction results are compared against detail classes.
As shown in Figure 10, codified S-N curves are represented as the fatigue strength levels at 2 million
cycles. The data of log∆σ-logN calculated for off-centrally cracked plates with 2s/b = 0.2 are slightly
lower than those for centrally cracked plates over the classes 50 and 60. In contrast, the test data for
off-centrally cracked plates with 2s/b = 0.5 are shown to fall above the class of 35. Despite the scatter
of the predictions, a consistent trend can be observed for the off-centrally cracked plate with a listed
variation of 2s/b.

The comparison of S-N curves for test aluminum plates with and without patched laminate repair
is shown in Figure 11. The test fatigue lives under stress ranges of 100, 120, and 140 MPa are extracted
for the comparison in Figure 12. After repair, it can be seen that the fatigue lives of the test specimens
with central cracks are shown to increase by 30–60%. This can be due to the beneficial effect of the
carbon fiber and interface strengthening, and the decrease in stress concentration at thecentral crack
hole. In contrast, such a beneficial effect becomes more effective for off-centrally cracked plates with
2s/b = 0.5, for which the fatigue lives are increased by 90–120%, as a result of repair especially at the
crack tipB, close to the plate edge in Figure 3.
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Figure 11. Comparison of fatigue live results between unrepaired and repaired plates.
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5. Concluding Remarks

The stress intensity factors for off-centrally cracked aluminum plates have been presented in
this paper. Typical theoretical equations for off-central, central and edge cracks were reviewed and
compared in terms of their sensitive parameters and applicability. A finite element model has been
developed to explore a wide range of parameters related to the eccentricity and crack size influencing
the boundary correction coefficients. The Forman equation has been employed, along with numerical
results for the prediction of fatigue lives. Based on the test data, the fatigue lives result of aluminum
plates with and without patched laminate repair have been compared with codified fatigue classes.
The efficiency of repair for the improvement of fatigue lives is compared and discussed for central and
off-central cracked conditions. The following conclusions can be drawn:

• The developed finite element parametric study-based poly-fit equation for the boundary correction
coefficient incorporating the eccentricity ratio and the crack size ratio is demonstrated to agree
well with referred calculations. Moreover, it fits in well between centrally cracked cases and edge
crack casesfor the off-centrally cracked aluminum plates.

• The fatigue life prediction on the basis ofthe Forman equation accounting for the crack in linear
growth and accelerated growth is shown to correlate well with the test results of aluminum plates
with central cracks and off-central cracks. The corresponding S-N curves are also comparable to
those suggested by codified curves.

• The beneficial effect of patched laminate repair can be identified from the increase in test fatigue
lives by 30–60% and 90–120% for centrally cracked and off-centrally cracked aluminum plates,
respectively. Thus, the repair at the crack tip close to the plate edge is deemed to be effective
in the fatigue life improvement for off-centrally crack aluminum plates.The strengthening effect
of patched laminate repair, however, was not modelled in detail, and therefore requires more
experimental work in furthering the correction of defined parameters in the fatigue life prediction.
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