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Abstract: In this work, which is part of a larger research program, a framework called “virtual data 

fusion” was developed to provide an automated and consistent crack detection method that allows 

for the cross-comparison of results from large quantities of X-ray computed tomography (CT) data. 

A partial implementation of this method in a custom program was developed for use in research 

focused on crack quantification in alkali-silica reaction (ASR)-sensitive concrete aggregates. During 

the CT image processing, a series of image analyses tailored for detecting specific, individual crack-

like characteristics were completed. The results of these analyses were then “fused” in order to 

identify crack-like objects within the images with much higher accuracy than that yielded by any 

individual image analysis procedure. The results of this strategy demonstrated the success of the 

program in effectively identifying crack-like structures and quantifying characteristics, such as 

surface area and volume. The results demonstrated that the source of aggregate has a very 

significant impact on the amount of internal cracking, even when the mineralogical characteristics 

remain very similar. River gravels, for instance, were found to contain significantly higher levels of 

internal cracking than quarried stone aggregates of the same mineralogical type. 

Keywords: X-ray computed tomography (CT); concrete; alkali-silica reaction (ASR), ASR-sensitive 

aggregate; solubility test; specific surface area; crack detection; automated image processing; 

damage quantification 

 

1. Introduction 

1.1. Alkali-Silica Reaction (ASR) 

Despite decades of research, the problem of harmful alkali-silica reaction (ASR) in the field of 

concrete construction has not yet been satisfactorily solved. For the first time in 1940, Stanton [1] 

reported damaging strains within concrete due to chemical reactions of cement and aggregate. In the 

1950s, Powers and Steinour [2,3] developed initial models of ASR’s damage mechanism. In the 1970s, 

Locher and Sprung [4] identified opal and porous flint as alkali-sensitive aggregates and developed 

theories on their reaction mechanisms. In the 1980s, various researchers conducted in-depth studies 

on the influence of alkali metal salts on the swelling pressures of the ASR gel [5,6]. The current state 

of knowledge in the field of ASR has also been extensively described in number of recent publications 

[7,8]. 

During the ASR process, the reactive SiO2 within aggregates reacts with alkalis (supplied from 

the cement paste or from an external source) in the presence of water to form expansive alkali silicate 

hydrates (ASR gels). Because the tensile strength of road surface concrete is often significantly lower 
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than the swelling pressures caused by ASR gels, cracking can be induced [9]. The progression and 

the extent of the resulting cracking processes are determined to a large extent by the type of 

aggregate. For example, fast-reacting aggregates (among others, flint, opaline sandstone and 

mudstone) are characterized by gel and crack formation emanating from the transition zone between 

the grain and the mortar matrix [7]. On the other hand, in the case of the slow-reacting aggregates 

(for instance greywacke or quartz porphyry), which were of primary of interest in this project, the gel 

formation takes place above all inside the aggregate itself, which results in the formation of internal 

aggregate cracks [7]. 

The severity of the ASR degradation process is thought to be partially dependent on the amount 

of porosity within a given aggregate that is accessible to liquid penetrating from the sample surface. 

Against this background and to evaluate the alkali sensitivity of the aggregate, the influence of the 

specific surface area on the solubility behaviour of four different aggregates in 0.1 M potassium 

hydroxide solution without and with defined addition of NaCl at a temperature of 80 °C was 

thoroughly investigated in a joint project [10]. To quantify this relationship, a non-destructive method 

is needed for measuring both the external surface area of aggregates and the internal surface area of 

aggregate cracks and pores, including a differentiation of internal voids connected to the sample 

surface from those isolated from the surface. The primary focus of this publication is devoted to the 

crack detection method. A detailed analysis of the implications for ASR damage, including a 

comparison of the CT results with those from other porosity measurement methods, such as mercury 

porosimetry and the Brunauer–Emmett–Teller (BET) method, can be found in Oesch et al. 2020 [11] 

and in Weise et al. 2019 [10]. 

1.2. X-ray Computed Tomography (CT) 

The development of X-ray computed tomography (CT) began in the 1960s and clinical X-ray CT 

investigations have been widely conducted since the 1970s [12,13]. Since that time, many different 

reconstruction algorithms have been developed for clinical use, including algorithms based on the 

algebraic reconstruction technique (ART), filtered back projection (FBP), and iterative reconstruction 

(IR) [14]. Medical X-ray CT scanning systems are, however, unsuitable for many applications in 

materials science given their lower X-ray energy characteristics and coarser resolution compared to 

specialized laboratory-based X-ray CT systems used for materials research [15]. These differences 

occur both because the size of the intended scanning objects tends to significantly differ between 

clinical and materials science applications and because the X-ray absorption characteristics of live 

tissues are much lower than those of materials such as concrete and steel. 

X-ray CT has been used in non-destructive concrete research applications for more than 30 years 

[16,17]. In this scanning method, a sample is placed on a rotating table between an X-ray source and 

an X-ray detector [18]. By adjusting the distances between the X-ray source, the sample and the X-ray 

detector, it is possible to vary the voxel (i.e., 3D pixel) resolution in the resulting images. The 

penetration of the sample by the X-ray beam causes an X-ray attenuation image of the sample to be 

projected upon the detector. By recording these projected images during the 360˚ rotation of the 

sample, the projections can be inverted using volume reconstruction algorithms, which produce a 3D 

representation of X-ray attenuation within the sample [19]. X-ray attenuation is approximately 

proportional to local material density and can be used to identify single objects within a material (or 

structure) and to individually separate and analyze those objects. 

Previous research has shown that X-ray CT scans can be taken during incremental testing. This 

includes mechanical testing (such as unconfined compression, split cylinder, triaxial, and reinforcing 

bar pull-out testing [20–24]), chemical testing (such as the measurement of progressive corrosion in 

reinforced concrete during repeated exposure to chloride [25] and the transport of water [26–28]) and 

thermal testing (such as water migration in heated concrete [29]). 

1.3. Crack Detection and Quantification 

Crack detection and quantification is important for understanding and modelling a series of 

material behaviours. Precise measurement of crack surface area is needed, for instance, in order to 
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calculate the fracture energy expended during damage processes using basic fracture mechanics 

relationships [30]. The crack orientations have also been observed to exhibit a behaviour that is highly 

dependent on the anisotropy of the material structure, such as fibre orientation within fibre-

reinforced concretes [31]. 

Crack detection and quantification within X-ray CT images have been the subject of extensive 

past research. Most of these crack detection methods have leveraged one or more unique 

characteristics of cracks, which differentiate them from the surrounding material. Possibly the most 

popular research approaches have focused on the use of template-matching methods in order to 

separate cracks from the surrounding materials [32,33]. This method of crack detection relies on the 

similarity of cracking structures to certain template shapes, such as small planes or discs. Although 

impressive results have been demonstrated using the template-matching method, the template 

parameters are not universal and must generally be tailored for each material and each imaging 

scenario. 

Research was recently carried out by Paetsch (2019) [34] with the goal of partially overcoming 

these challenges related to using template matching approaches. This research indicated that the 

results of a series of analyses carried out using different template shapes can be combined in order to 

obtain a greater accuracy of the detected cracks. However, Paetsch (2019) [34] has underlined that 

further problems remain to be solved that are common to most template-matching methods, such as 

difficulties detecting cracks in areas where significant crack branching or widening occurs. 

Another method that takes advantage of the narrow shape characteristics of cracks is a Hessian-

based approach [35,36], which identifies regions that exhibit sharp changes in image intensity. 

Percolation methods have also shown significant promise in detecting cracks across a range of 

materials [37]. These methods leverage the fact that most cracks are continuous, narrow objects with 

relatively consistent (low) density. Percolation methods have proven insufficient, however, to 

accurately detect complex cracks of varying size in most materials. Impressive results have also been 

obtained through a combination of the Hessian and percolation-based methods into the Hessian-

driven percolation approach, although the processing time required for such an analysis remains 

prohibitive for most high-resolution CT images [32]. 

Many methods have also been employed that leverage the unique characteristics of a specific 

material or damage scenario. One excellent example of this approach is the use of digital volume 

correlation (DVC) to detect cracks in samples subjected to in-situ loading [38–40]. DVC is used to 

measure strains within samples by calculating voxel movements between subsequent CT images 

(such as images calculated before and after a loading increment). Cracks can, thus, be identified as 

areas of either high strain or poor correlation within DVC images or through more complex analysis 

methods, such as phase-congruency analysis. Although these methods appear to exhibit a relatively 

high accuracy (even sub-pixel, see [41]), they are only useful for detecting cracks caused by 

progressive in-situ testing with simultaneous CT. They do not provide any benefit for detecting 

cracks that are already present in specimens prior to testing. Phase congruency can, however, also be 

used to detect edge features (including cracks) within the greyscale images without direct reference 

to DVC [42]. 

Another example of a material-specific crack detection approach is the leveraging of typical 

wood structure within logs to identify cracks. These cracks typically run perpendicular to the growth 

rings of the logs and can, thus, be easily identified by their orientation characteristics [43]. 

Despite the many promising crack detection methods outlined here, a series of obstacles remain 

that have prevented the implementation of consistent, accurate, and quantitative crack analyses as 

part of CT scanning. First, most of these methods require some amount of tailoring for specific 

material properties (as in the case of template matching and percolation) or specific crack conditions 

(such as measuring only those arising from in-situ testing using DVC methods). Second, none of these 

methods has been successfully validated for the quantitative determination of crack properties (such 

as surface area) based on other standard measurement techniques. 

In this study, we will show, on the example of different aggregate types, how the obstacles 

mentioned above can be circumvented by a novel data fusion strategy. 
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2. Materials and Methods 

2.1. Sample Selection 

For this testing series, a group of aggregates from four different categories were selected and 

analysed. These categories were selected in order to include stones with a variety of different 

mineralogical compositions, deterioration conditions, and alkali-sensitivity characteristics (Table 1 

and Figure 1) [44]. All stones included in this analysis were in the 8 mm to 16 mm size range: During 

the sieving process, the individual stones passed successfully through a sieve with a 16 mm mesh but 

were unable to pass through a sieve with an 8 mm mesh [45]. 

    

GK1 GK2 GK3 GK4 

Figure 1. Photographs of typical individual grains from each of the stone categories. 

Table 1. Categories of stone selected for cracking analysis. 

Category Stone Type Alkali Sensitivity [40 °C-BV] 

GK1 River Gravel EIII-S 

GK2 Quarried Stone (Greywacke) EIII-S 

GK3 Quarried Stone (Rhyolite) EI-S 

GK4 River Gravel EI-S 

For the categories GK1 and GK4, the selected stones were sieved from a natural river gravel. 

Such river gravels are typically characterized by significant mineralogical deterioration due to 

naturally occurring weathering processes. In order to characterize these river gravels, which have a 

heterogeneous mineralogical composition, the primary types of rock (7 types in total) occurring in 

GK1 and GK4 were determined and 10 individual grains of each type were selected for CT analysis. 

For the categories GK2 and GK3, the selected stones were sieved from crushed stone chips that 

were quarried from solid rock deposits. Such quarried stones are typically characterized by greater 

mineralogical integrity than river gravels because they have not been exposed to significant 

weathering. Due to the homogeneity of the quarried stone, the selection of individual grains was 

limited to 10 each for GK2 and GK3. Thus, combining all the individual grains from each of the four 

stone categories included in this research study, a total of 90 different individual grains were 

investigated. 

2.2. CT Scanning 

During this research program, an acceleration voltage of 130 kV and current of 180 µA were 

used for the X-ray source. The X-ray beam was also filtered using a 0.5 mm thick Copper plate 

immediately upon leaving the source in order to remove (unwanted) photons of small energies from 

the X-ray beam, thereby increasing the contrast of the resulting images. The flat panel detector used 

for this scanning contained a 2048 × 2048 pixel field. 

Individual aggregates were sorted based on mineralogical characteristics and placed within 

corresponding plastic tubes with small pieces of foam separating the aggregates from one another. 

As a result of heating and deterioration of the target material within the X-ray tube as well as changes 

in detector sensitivity over time, significant variations in the measured X-ray beam intensity and 

distribution can occur. To compensate for these variations, “dark-field” and “bright-field” images, 

which correspond to blank images (i.e., containing no sample) acquired with no illumination and full 
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illumination, respectively, were acquired prior to the scanning of each plastic tube of samples. These 

images were then used to calibrate the X-ray images of the samples. 

The CT machine was pre-programmed to collect a complete scan of each aggregate before 

repositioning the plastic tube using a manipulator and beginning the scan of the next aggregate. Thus, 

the scanning conditions for all stones within any given plastic tube were identical. All scanning 

conditions other than resolution were also held constant for all plastic tubes. 

It was important to maintain scanning conditions that were as consistent as possible to ensure 

that the results of the crack analysis would be comparable. In spite of this, the resolution was 

maximised for each stone type, if they significantly varied in size and shape. This was done by 

adjusting the distance between the plastic tube and the X-ray source. The corresponding voxel sizes 

were then calculated directly from the measured distances between the X-ray source, the sample 

holder and the X-ray detector for each individual set of scans. 

Although these variations in image resolution are known to directly affect measurements of 

crack properties, such as surface area (increased surface area is generally detected with decreasing 

voxel sizes), some estimation of the magnitude of this effect can already be accounted for based on a 

recent study [46]. The results of this study indicate that even a doubling of voxel size does not appear 

to generally change the measured crack surface area by more than a factor around two. We will see 

below that the small voxel size variations had little influence on the much larger variations in 

measured crack surface area among the different aggregate types, so that comparisons could be 

made, and conclusions drawn. 

2.3. Image Analysis 

2.3.1. Data Fusion Approach 

In such an environment, where many analysis methods are readily available, but no individual 

method is sufficiently accurate to provide the needed measurements, the use of a data-fusion inspired 

approach becomes very promising and attractive. Data fusion enables researchers to combine data 

from multiple sources in order to produce more consistent and accurate results than those provided 

by any single source [47]. In non-destructive testing, the different sources used in data fusion 

typically result from differing non-destructive measurement approaches. Such data-fusion based 

approaches have even been successfully applied to the application of crack detection [48]. 

It is, however, often the case that researchers only possess meaningful data from a single 

measurement technique, such as CT (often indeed used as a reference), or do not have access to 

further non-destructive testing equipment. Even in this case, it should be possible to use the theory 

behind the data fusion approach to improve the overall quality of the quantitative determinations 

resulting from image analysis. Rather than relying on a wide variety of physical measurement 

techniques, data fusion in this approach would be carried out by using the output from an array of 

different image analysis techniques. Since such an approach relies on the fusion of different 

computationally generated data sources resulting from the same original CT image rather than on a 

variety of different physical measurement techniques, it can be more appropriately described as 

virtual data fusion. This is similar to the process that is thought to occur when an expert identifies 

cracks using the human eye. The expert has only one measurement technique (a visual image), but 

by considering its many different aspects (such as coloration, shape, and relationship to surrounding 

objects or planes of stress), the expert is able to quite easily and accurately detect a crack on the surface 

of a specimen. 

Figure 2 shows a diagram of this virtual data fusion approach. In the diagram, the characteristics 

of a crack are displayed in dark grey boxes and the image processing steps for identifying objects 

with those characteristics are depicted in light grey boxes. The list provided here is only meant to 

serve as an example and is by no means exhaustive. It is clear, however, that results obtained through 

a fusion of the results from twelve such independent analyses will be much more accurate and 

resilient to varying material conditions than the results from any single analysis technique. An 
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example of how such a step-by-step approach can identify individual cracks within a generic concrete 

sample is shown in Figure 3. 

 

Figure 2. Virtual data fusion web linking cracks (black) with their characteristics (dark grey) and 

image analysis techniques for identifying objects with those characteristics (light grey). 
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(a) (b) (c) (d) (e) 

Figure 3. Step-by-step isolation of cracking by means of virtual data fusion. CT image of a concrete 

sample (a), voids identified using a greyscale threshold (b), voids identified in (b) added to interfacial 

zones identified using a gradient-based analysis (c), removal of small connected components (noise 

and isolated pores) from image (d), and elimination of components with small specific surface areas 

from image (e) . 

2.3.2. Implementation 

Although, in theory, twelve or more different analysis methods could be used in the virtual data 

fusion implementation for analysing the ASR-sensitive aggregate dataset, in practice such a full 

implementation was impractical. We selected a partial implementation of the scheme including only 

three analysis approaches. The choice included the approaches that would produce cracking data 

with sufficient accuracy for this specific application while simultaneously testing the effectiveness of 

the virtual data fusion concept for obtaining accurate and consistent results. A successful 

demonstration of the virtual data fusion method with only three analysis components would then 

give justification for the further development of the algorithm to gradually include additional 

analysis modules, simultaneously growing in accuracy and resiliency. Moreover, the modular 

architecture of the strategy could more easily be adapted to different problems than a full but rigid 

analysis. 

In fact, for the specific ASR-sensitive aggregate analysis described in this paper, it was not 

important to separate internal pores from internal cracks since the surface area of both pores and 

cracks was vulnerable to ASR degradation. Thus, modules related to this differentiation could be left 

out of the analysis. Furthermore, since scans were not available at varying levels of degradation, all 

methods relying on changes in sample state relative to time (such as DVC-based methods) were also 

left out of this analysis. All image analysis described in this paper was completed using custom 

algorithms developed and implemented in MATLAB [49]. 

Module 1: Identification of Objects with Low Density 

When cracks or pores have widths exceeding two voxels, the voxels in their centres are 

completely filled with air. Thus, these central voxels are characterized by a particularly low greyscale 

value. In order to separate these voxels, a threshold has to be selected and subsequently used for 

image binarization. All voxels darker than the threshold would then be transformed to white and all 

voxels lighter than the threshold transformed to black. Given that this threshold must be consistently 

applied for a large range of datasets, an automated selection method was implemented. 

Using the triangle selection algorithm [50,51], a virtual line is drawn from the origin of the image 

histogram to the top of the largest histogram peak (excluding the initial peak at zero, which 

represents voxels from the air around the specimen) (Figure 4). A calculation is then conducted to 

determine which point on the histogram is furthest from the virtual line along an intersecting, 
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perpendicular line. The location of that point is identified as a potential threshold. It was found, 

however, that such a threshold is rather over-encompassing, leading to the introduction of 

considerable noise into the resulting binarized images. Thus, a slightly more conservative threshold 

value was also implemented for this module that is 25% lower than the original threshold. An 

example of the results from this analysis can be observed in Figure 5. 

 

Figure 4. Automated threshold selection using the triangle approach (based on figure in [10]). 

 

Figure 5. Binarization of greyscale image using the conservative and over-encompassing thresholds 

identified using the automated selection method (based on figure in [10]). 
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Module 2: Identification of Objects with High Gradient 

When an object in a CT-image has either a much higher or a much lower greyscale value 

compared to the surrounding material, its edges can be identified as regions of high gradient. For this 

purpose, a gradient-magnitude image is calculated from the original CT-image through the use of 

the Sobel operator (Figure 6) [52]. Since the resulting gradient image consists of a wide range of grey 

values, it must also be binarized. For this purpose, a histogram of the gradient image grey values is 

computed and another automated triangular threshold selection is completed, this time from the 

right edge of the histogram (Figure 7). The resulting binary image contains the edges of both bright 

and dark objects in the original CT image (Figure 8). In order to remove the edges associated with the 

bright (high-density) objects in the CT-image as well as some of the noise, the binarized gradient 

image can be multiplied by a binarized CT-image (this time using the “over-encompassing void-solid 

threshold” identified in Figure 4) (Figure 9). 

 

Figure 6. Generation of the gradient-magnitude image (based on figure in [10]). 

 

Figure 7. Automated gradient threshold selection using the triangle approach (based on figure in 

[10]). 
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Figure 8. Binarization of the gradient image (based on figure in [10]). 

 

Figure 9. Generation of an image containing the outer edges of only low-density objects (based on 

figure in [10]). 

Module 3: Identification of Objects above a Given Size 

Prior to noise identification and removal, the results from Modules 1 and 2 were combined into 

a single image (Figure 10). This ensured that the centres and edges of the cracks/pores would both be 

present and accounted for during object size analysis. The object size analysis was completed using 

a connected components algorithm. During this analysis, individual voxels are assessed to determine 

whether they are part of a larger object in the binary image by analysing whether they adjoin other 

voxels of the same color. For this analysis, white voxels with touching faces, edges or corners (also 

known as “26-connected”) were identified as connected. Objects with voxel volumes smaller than 125 

voxels were subsequently identified and eliminated (Figure 11). 



Materials 2020, 13, 3921 11 of 27 

 

 

Figure 10. Fusion of images resulting from Modules 1 and 2 (based on figure in [10]). 

 

Figure 11. Removal of noise from binary crack and void image (based on figure in [10]). 

It was found that the use of smaller cubes than 125 voxels (with five voxel long sides) tended to 

leave considerable noise within the image while the use of larger cubes resulted in the loss of a 

considerable number of voxels along the path of the cracks. Given that the full CT images each 

contained over seven billion voxels, such an object with a volume of 125 voxels represented less than 

one ten-millionth of the total image volume. A flowchart of the entire crack-detection process is 

provided in Figure 12. 
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Figure 12. Flowchart of crack-detection process (based on figure in [10]). 

3. Results 

After the cracks and internal voids were identified within each of the aggregates, their 

characteristics could be quantified and compared. Of primary interest for this analysis was the 

determination of volume and surface area characteristics. In particular, in order to compare the 

results of the CT-analysis with those of other non-destructive measurement techniques, it was 

important to separate surface-connected cracks and voids (referred here to as “open voids”) from 

internally isolated cracks and voids (referred to here as “closed voids”). This is because 

measurements of internal surface area using the Brunauer–Emmett–Teller (BET) method [53,54] only 

account for internal voids accessible from outside of the sample. Similarly, the measurement of void 

volume through mercury porosimetry is thought to depend primarily on the saturation of internal 

voids that are connected to the stone surface. Such a separation of surface-connected cracks could be 
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completed using a connected components analysis in which only cracks and voids containing voxels 

that touched the stone surface were retained. 

The crack/pore surface area measurements obtained using this approach are provided for all of 

the river-gravel type aggregates in Figure 13 and for both river-gravel and quarried-stone aggregates 

of the minerals rhyolite and greywacke in Figure 14. Note that the measurements for the greywacke 

(GK4) and rhyolite (GK1) river gravels appear in both figures for comparison purposes. Figure 15 

also provides 3D images of cracking distributions for two selected individual grains of the same 

mineral (greywacke), where one grain has been extracted from a quarry and the other has been taken 

from river gravel. For images of all analysed aggregate types, see Appendix A. Tabulated values of 

the surface area measurements are also provided for each individual sample in Appendix B. 

 

Figure 13. Measured surface area for river-gravel type aggregates (based on figure in [10]). 

 

Figure 14. Surface area measurement comparison between quarried-stone (GK2 and GK3) and river-

gravel (GK1 and GK4) aggregates of the same mineral types (based on figures in [10,11]). 
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(a) (b) 

Figure 15. Example images of cracking within a quarried greywacke aggregate (a) and a river-gravel 

type greywacke aggregate (b). Red pixels denote externally accessible cracks/pores and yellow pixels 

denote externally inaccessible (closed) cracks/pores (reproduction of figures from [10,11]). 

Error bars in Figures 13 and 14 could not be calculated. This is because there is still no universally 

accepted method for estimating the combined error introduced by CT measurement systems and 

image processing algorithms. Although numerous approaches for estimating such error bars have 

been proposed [55,56], these tend to be rather computationally intensive and time consuming and 

remain an active area of research. For pure dimensional measurements, it is common to use either 

the voxel size or the focal spot size of the X-ray tube as an estimation of error. Given that the focal 

spot size of this scanning system was significantly smaller than the voxel sizes obtained during these 

investigations, the voxel sizes for each scan (also listed in Figures 13 and 14) can be taken as an 

estimation of possible error in the dimensional measurements. 

From Figure 14 it is clear that the amount of internal cracking (including both surface-connected 

cracking and non-surface-connected cracking) in the river gravel aggregates was much higher than 

that in the quarried aggregates, even when their mineralogical characteristics were similar. The 

magnitude of this effect is also much too large to be attributed to variations in CT resolution. The 

underlying basis for these differences in quantitative crack measurements can also be estimated 

through visual observation of CT images, such as those displayed in Figure 15. Clear, layered 

cracking is visible within river gravel greywacke stones; this is not present within the greywacke 

stones extracted from quarries. This is thought to result from the aggressive weathering process that 

river gravel is subjected to during its lifecycle prior to construction use. This indicates that the 

selection of high-quality aggregate based on mineralogical characteristics alone may be insufficient. 

It is also clear from Figure 13 that even for stones from a single source and with a single mineral 

composition, a significant amount of variability in internal porosity and cracking is present. The 

variation between individual stones of a single type (such as rhyolite (GK1)) is often much larger than 

the average difference between two entirely different stone types (such as between rhyolite (GK1) 

and granite (GK4)). Thus, we recommend the use of large statistical samples to properly characterize 

each stone type for ASR sensitivity. 
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4. Discussion and Conclusions 

This research clearly demonstrates the need for universal, automated, and consistent crack 

detection methods that allow the cross comparison of results from large quantities of CT-scan data 

from different sample types. A framework, called “virtual data fusion“, was developed that has the 

potential to successfully provide such a method. A partial implementation of this method in a custom 

program was developed for use in research focused on crack measurement in ASR-sensitive 

aggregates. Our results demonstrated the success of the program in effectively identifying crack-like 

structures and measuring their characteristics such as crack extension (relative surface area) and 

surface connectivity. 

These results demonstrate the significant impact that the source of extraction can have on the 

characteristics of aggregates. Even for aggregates of the same mineral type, river gravels contain 

significantly higher levels of internal porosity and cracking than quarried stone. This is thought to 

result from the aggressive weathering process that river gravel is subjected to prior to its selection 

and use for construction. This indicates that the selection of high-quality aggregate based on 

mineralogical characteristics alone may be insufficient. It is also clear from these results that there is 

a significant amount of variability in internal porosity and cracking even for stones with the same 

mineralogical characteristics and extraction source. Thus, large statistical samples will be necessary 

to properly characterize each stone type for ASR sensitivity. 
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Appendix A. Visualization of Individual Grains 

A visual impression of the internal microstructure of the individual grains is provided by 

selected CT-based visualizations (Figures A1–A4). In these images, the solid material of the 

individual grains is shown semi-transparently. This allows a better spatial visualization of the cracks 

and pores emanating from the outer surface (i.e., open voids—colored red) and the cracks and pores 

not accessible from the outside (i.e., closed voids—colored yellow). 
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Figure A1. CT-visualizations for individual river gravel aggregate of type GK1 (the left and right 

images for each aggregate show views from the 0 and 90 degrees, respectively) (based on figures in 

[10,11]). 
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Figure A2. CT-visualizations for individual river gravel aggregate of type GK4 (the left and right 

images for each aggregate show views from the 0 and 90 degrees, respectively) (based on figures in 

[10,11]). 

 

Figure A3. CT-visualizations for individual greywacke aggregate from quarried stone (GK2) and river 

gravel (GK4) (based on figures in [10,11]). 
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Figure A4. CT-visualizations for individual rhyolite aggregate from quarried stone (GK3) and river 

gravel (GK1) (based on figures in [10,11]). 

The strong fluctuation in the amount of open and closed voids in the individual quartz/quartzite 

grains of aggregate type GK1 is clearly visible in Figure A1. For the rhyolite of aggregate type GK1, 

Figure A1 includes a CT-based visualization of the single grain with the highest surface areas of open 

and closed voids. The broad spectrum of open and closed void surface characteristics for plutonite is 

demonstrated by the CT-based visualizations of the two individual grains shown in Figure A1. 

In contrast to the GK1 aggregate, the surface characteristics of the individual grains of aggregate 

type GK4 tend to vary much less. In Figure A2, a CT-based visualization of the individual sandstone 

grain with the highest surface area of open voids of all examined sandstone grains is provided. As 

expected, this image shows a relatively high content of open voids and a low content of closed voids. 

The spatial arrangement of the open voids suggests a layered structure. The examined single grains 

of mudstone and greywacke also show a stratification due to the similar formation history. In the 

latter case, however, the closed voids predominate over open voids. The final CT-based visualization 

in Figure A2 is a single grain of granite and demonstrates that this type of rock can also have high 

contents of open voids. 

As mentioned in the paper, the individual grains of the quarried stone have very small open and 

closed void surface areas compared to the river gravel grains. This is impressively documented by 

the CT-based visualizations for greywacke and rhyolite, which are shown in Figures A3 and A4 and 

which compare individual grains originating from quarried stone and river gravel. Aside from those 

shown in Figures A3 and A4, further visualizations of the quarried stone aggregate (GK2 and GK3) 

have not been included in the appendix. This is because these stone types have little to no visible 

porosity in the CT-based visualizations. 
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Appendix B. Tabulated Results of Cracking Analysis 

Table A1. Individual grain results from the cracking analysis of stone category GK1 (river gravel; alkali sensitivity EIII-S). 

Stone Type 
Mass of the Individual 

Grain [g] 

CT Scan 

Number 

Voxel Size 

[µm] 

Surface Areas Measured Using CT [m2] 

Closed 

Porosity 

Outer 

Surface 

Open 

Porosity 

Outer Surface + Open 

Porosity 

Absolute 

[m2] 

Relative 

[m2/g] 

Quartz/Quartzite 

3.37 7030 

16.5 

5.69 × 10−4 2.17 × 10−3 2.20 × 10−5 2.18 × 10−3 6.47 × 10−4 

4.49 7031 1.42 × 10−4 1.10 × 10−3 6.20 × 10−5 1.12 × 10−3 2.49 × 10−4 

2.89 7032 3.85 × 10−5 1.44 × 10−3 9.65 × 10−5 1.47 × 10−3 5.09 × 10−4 

5.63 7033 3.94 × 10−6 9.50 × 10−4 1.43 × 10−6 9.50 × 10−4 1.69 × 10−4 

6.26 7034 1.10 × 10−3 1.55 × 10−3 1.46 × 10−4 1.57 × 10−3 2.51 × 10−4 

8.04 7035 9.13 × 10−4 2.39 × 10−3 3.24 × 10−3 2.79 × 10−3 3.47 × 10−4 

7.33 7036 2.62 × 10−4 1.95 × 10−3 1.88 × 10−4 1.97 × 10−3 2.69 × 10−4 

8.32 7037 2.33 × 10−3 2.38 × 10−3 8.53 × 10−4 2.48 × 10−3 2.98 × 10−4 

6.50 7038 3.64 × 10−5 1.84 × 10−3 2.89 × 10−6 1.84 × 10−3 2.83 × 10−4 

11.17 7039 3.10 × 10−4 2.09 × 10−3 3.71 × 10−4 2.13 × 10−3 1.91 × 10−4 

Mean 5.71 × 10−4 1.79 × 10−3 4.98 × 10−4 1.85 × 10−3 3.21 × 10−4 

Standard Deviation 6.88 × 10−4 4.82 × 10−4 9.46 × 10−4 5.52 × 10−4 1.40 × 10−4 

Rhyolite 

0.77 6880 

11.2 

0.00 5.18 × 10−4 0.00 5.18 × 10−4 6.73 × 10−4 

0.74 6881 8.60 × 10−6 4.87 × 10−4 1.71 × 10−6 4.88 × 10−4 6.60 × 10−4 

1.27 6882 1.59 × 10−4 7.50 × 10−4 7.07 × 10−5 8.21 × 10−4 6.47 × 10−4 

1.24 6883 6.55 × 10−4 9.78 × 10−4 4.87 × 10−4 1.46 × 10−3 1.18 × 10−3 

1.96 6884 9.57 × 10−6 8.32 × 10−4 1.49 × 10−5 8.47 × 10−4 4.32 × 10−4 

1.16 6885 1.30 × 10−6 5.65 × 10−4 1.33 × 10−6 5.67 × 10−4 4.89 × 10−4 

2.90 6886 8.63 × 10−5 1.21 × 10−3 3.28 × 10−5 1.25 × 10−3 4.30 × 10−4 

2.74 6887 1.79 × 10−4 1.20 × 10−3 3.35 × 10−5 1.24 × 10−3 4.52 × 10−4 

2.85 6888 3.67 × 10−5 1.03 × 10−3 1.80 × 10−5 1.05 × 10−3 3.68 × 10−4 

5.70 6889 6.38 × 10−5 1.62 × 10−3 3.81 × 10−6 1.62 × 10−3 2.85 × 10−4 
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Mean 1.20 × 10−4 9.20 × 10−4 6.64 × 10−5 9.86 × 10−4 5.62 × 10−4 

Standard Deviation 1.89 × 10−4 3.44 × 10−4 1.42 × 10−4 3.82 × 10−4 2.41 × 10−4 

Plutonite 

2.43 6970 

11.2 

1.21 × 10−4 9.24 × 10−4 1.17 × 10−5 9.35 × 10−4 3.85 × 10−4 

1.50 6971 1.57 × 10−4 9.03 × 10−4 3.64 × 10−4 1.27 × 10−3 8.44 × 10−4 

1.62 6972 4.53 × 10−5 6.74 × 10−4 9.49 × 10−6 6.84 × 10−4 4.22 × 10−4 

2.09 6973 2.12 × 10−4 4.72 × 10−3 9.71 × 10−4 5.69 × 10−3 2.72 × 10−3 

2.67 6974 1.23 × 10−3 1.07 × 10−3 2.26 × 10−4 1.30 × 10−3 4.87 × 10−4 

1.96 6975 3.46 × 10−4 8.53 × 10−4 1.02 × 10−4 9.54 × 10−4 4.87 × 10−4 

5.58 6976 1.66 × 10−3 3.43 × 10−3 2.35 × 10−3 5.79 × 10−3 1.04 × 10−3 

2.47 6977 3.58 × 10−4 1.00 × 10−3 7.83 × 10−5 1.08 × 10−3 4.38 × 10−4 

4.08 6978 7.40 × 10−4 1.65 × 10−3 2.67 × 10−4 1.91 × 10−3 4.69 × 10−4 

4.44 6979 0.00 1.24 × 10−3 9.91 × 10−8 1.24 × 10−3 2.79 × 10−4 

Mean 4.86 × 10−4 1.65 × 10−3 4.38 × 10−4 2.08 × 10−3 7.57 × 10−4 

Standard Deviation 5.27 × 10−4 1.27 × 10−3 6.95 × 10−4 1.85 × 10−3 6.89 × 10−4 

Table A2. Individual grain results from the cracking analysis of stone category GK2 (quarried stone; alkali sensitivity EIII-S). 

Stone 

Type 

Mass of the Individual Grain 

[g] 

CT Scan 

Number 

Voxel Size 

[µm] 

Surface Areas Measured Using CT [m2] 

Closed 

Porosity 

Outer 

Surface 

Open 

Porosity 

Outer Surface + Open 

Porosity 

Absolute 

[m2] 

Relative 

[m2/g] 

Greywacke 

1.03 6860 

11.2 

2.94 × 10−7 5.31 × 10−4 2.67 × 10−6 5.34 × 10−4 5.18 × 10−4 

1.12 6861 5.87 × 10−8 6.23 × 10−4 0.00 6.23 × 10−4 5.56 × 10−4 

0.66 6862 7.67 × 10−7 4.74 × 10−4 8.48 × 10−7 4.74 × 10−4 7.19 × 10−4 

2.23 6863 2.59 × 10−7 9.14 × 10−4 5.49 × 10−7 9.15 × 10−4 4.10 × 10−4 

2.04 6864 0.00 9.55 × 10−4 3.03 × 10−7 9.55 × 10−4 4.68 × 10−4 

1.9 6865 0.00 9.78 × 10−4 1.72 × 10−6 9.80 × 10−4 5.16 × 10−4 

1.39 6866 1.14 × 10−7 7.21 × 10−4 0.00 7.21 × 10−4 5.19 × 10−4 

1.08 6867 0.00 7.26 × 10−4 1.48 × 10−7 7.26 × 10−4 6.72 × 10−4 

2.11 6868 9.99 × 10−8 1.03 × 10−3 6.28 × 10−7 1.03 × 10−3 4.87 × 10−4 

3.98 6869 4.92 × 10−8 1.61 × 10−3 1.21 × 10−6 1.61 × 10−3 4.04 × 10−4 

Mean 1.64 × 10−7 8.56 × 10−4 8.07 × 10−7 8.57 × 10−4 5.27 × 10−4 

Standard Deviation 2.24 × 10−7 3.11 × 10−4 8.09 × 10−7 3.11 × 10−4 9.63 × 10−5 
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Table A3. Individual grain results from the cracking analysis of stone category GK3 (quarried stone; alkali sensitivity EI-S). 

Stone 

Type 

Mass of the Individual 

Grain [g] 

CT Scan 

Number 

Voxel Size 

[µm] 

Surface Areas Measured Using CT [m2] 

Closed 

Porosity 

Outer 

Surface 

Open 

Porosity 

Outer Surface + Open 

Porosity 

Absolute 

[m2] 

Relative 

[m2/g] 

Rhyolite 

1.53 6890 

16.5 

5.14 × 10−6 9.00 × 10−4 1.86 × 10−5 9.18 × 10−4 6.00 × 10−4 

1.66 6891 4.52 × 10−7 9.12 × 10−4 8.54 × 10−6 9.21 × 10−4 5.55 × 10−4 

2.68 6892 6.18 × 10−6 1.32 × 10−3 4.16 × 10−5 1.36 × 10−3 5.07 × 10−4 

2.56 6893 6.92 × 10−6 1.13 × 10−3 2.93 × 10−5 1.16 × 10−3 4.52 × 10−4 

2.89 6894 1.36 × 10−7 1.30 × 10−3 1.24 × 10−5 1.32 × 10−3 4.56 × 10−4 

3.08 6895 4.42 × 10−6 1.24 × 10−3 6.88 × 10−6 1.25 × 10−3 4.05 × 10−4 

5.18 6896 7.97 × 10−7 1.97 × 10−3 6.97 × 10−6 1.98 × 10−3 3.82 × 10−4 

3.44 6897 9.38 × 10−6 1.42 × 10−3 2.21 × 10−5 1.44 × 10−3 4.19 × 10−4 

5.07 6898 1.44 × 10−6 1.96 × 10−3 6.57 × 10−6 1.96 × 10−3 3.87 × 10−4 

3.47 6899 8.69 × 10−7 1.50 × 10−3 3.59 × 10−6 1.50 × 10−3 4.32 × 10−4 

Mean 3.57 × 10−6 1.36 × 10−3 1.57 × 10−5 1.38 × 10−3 4.59 × 10−4 

Standard Deviation 3.10 × 10−6 3.52 × 10−4 1.16 × 10−5 3.48 × 10−4 6.92 × 10−5 

Table A4. Individual grain results from the cracking analysis of stone category GK4 (river gravel; alkali sensitivity EI-S). 

Stone 

Type 

Mass of the Individual 

Grain [g] 

CT Scan 

Number 

Voxel Size 

[µm] 

Surface Areas Measured Using CT [m2] 

Closed 

Porosity 

Outer 

Surface 

Open 

Porosity 

Outer Surface + Open 

Porosity 

Absolute 

[m2] 

Relative 

[m2/g] 

Sandstone 

0.84 6980 

21.1 

0.00 5.67 × 10−4 0.00 5.67 × 10−4 6.75 × 10−4 

1.95 6981 0.00 7.24 × 10−4 0.00 7.24 × 10−4 3.71 × 10−4 

1.35 6982 1.06 × 10−5 6.95 × 10−4 8.69 × 10−6 7.03 × 10−4 5.21 × 10−4 

3.63 6983 5.04 × 10−6 1.07 × 10−3 2.26 × 10−7 1.07 × 10−3 2.96 × 10−4 

3.35 6984 7.44 × 10−5 1.28 × 10−3 5.34 × 10−4 1.82 × 10−3 5.42 × 10−4 

4.19 6985 7.09 × 10−5 1.56 × 10−3 1.09 × 10−4 1.67 × 10−3 4.00 × 10−4 

4.78 6986 1.01 × 10−3 1.42 × 10−3 4.23 × 10−5 1.47 × 10−3 3.07 × 10−4 
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5.28 6987 3.25 × 10−4 1.66 × 10−3 2.01 × 10−5 1.68 × 10−3 3.18 × 10−4 

6.26 6988 1.80 × 10−4 1.91 × 10−3 4.91 × 10−5 1.95 × 10−3 3.12 × 10−4 

8.3 6989 3.80 × 10−4 2.20 × 10−3 1.59 × 10−5 2.21 × 10−3 2.67 × 10−4 

Mean 2.05 × 10−4 1.31 × 10−3 7.79 × 10−5 1.39 × 10−3 4.01 × 10−4 

Standard Deviation 2.97 × 10−4 5.17 × 10−4 1.55 × 10−4 5.52 × 10−4 1.28 × 10−4 

Mudstone 

3.6 6960 

21.1 

1.72 × 10−4 1.30 × 10−3 2.56 × 10−5 1.33 × 10−3 3.68 × 10−4 

1.59 6961 4.28 × 10−7 7.14 × 10−4 9.34 × 10−7 7.15 × 10−4 4.49 × 10−4 

1.61 6962 5.36 × 10−5 9.01 × 10−4 5.17 × 10−4 1.42 × 10−3 8.81 × 10−4 

3.27 6963 0.00 1.15 × 10−3 1.26 × 10−6 1.15 × 10−3 3.51 × 10−4 

1.13 6964 0.00 1.45 × 10−3 0.00 1.45 × 10−3 1.28 × 10−3 

2.78 6965 7.04 × 10−4 1.02 × 10−3 4.66 × 10−4 1.49 × 10−3 5.36 × 10−4 

2.39 6966 4.35 × 10−6 8.54 × 10−4 0.00 8.54 × 10−4 3.57 × 10−4 

2.63 6967 2.16 × 10−4 1.12 × 10−3 4.55 × 10−5 1.16 × 10−3 4.42 × 10−4 

4.34 6968 0.00 1.70 × 10−3 8.01 × 10−7 1.70 × 10−3 3.93 × 10−4 

2.51 6969 1.13 × 10−5 1.06 × 10−3 1.56 × 10−6 1.06 × 10−3 4.23 × 10−4 

Mean 1.16 × 10−4 1.13 × 10−3 1.06 × 10−4 1.23 × 10−3 5.48 × 10−4 

Standard Deviation 2.10 × 10−4 2.79 × 10−4 1.94 × 10−4 2.88 × 10−4 2.86 × 10−4 

Greywacke 

8.19 6870 

16.5 

5.61 × 10−4 2.33 × 10−3 1.25 × 10−4 2.46 × 10−3 3.00 × 10−4 

5.28 6871 6.17 × 10−5 1.99 × 10−3 3.93 × 10−5 2.03 × 10−3 3.84 × 10−4 

8.67 6872 5.56 × 10−4 2.70 × 10−3 3.04 × 10−4 3.01 × 10−3 3.47 × 10−4 

5.99 6873 1.71 × 10−6 3.13 × 10−3 3.88 × 10−5 3.17 × 10−3 5.29 × 10−4 

4.89 6874 1.68 × 10−3 1.69 × 10−3 4.92 × 10−4 2.18 × 10−3 4.46 × 10−4 

2.61 6875 3.26 × 10−6 1.43 × 10−3 4.02 × 10−6 1.44 × 10−3 5.50 × 10−4 

6.3 6876 7.10 × 10−4 2.16 × 10−3 1.11 × 10−4 2.27 × 10−3 3.61 × 10−4 

3.86 6877 8.41 × 10−5 1.51 × 10−3 7.54 × 10−6 1.51 × 10−3 3.92 × 10−4 

3.09 6878 4.12 × 10−4 2.31 × 10−3 2.89 × 10−4 2.60 × 10−3 8.41 × 10−4 

2.63 6879 9.88 × 10−6 1.24 × 10−3 2.88 × 10−6 1.24 × 10−3 4.72 × 10−4 

Mean 4.08 × 10−4 2.05 × 10−3 1.41 × 10−4 2.19 × 10−3 4.62 × 10−4 

Standard Deviation 4.96 × 10−4 5.68 × 10−4 1.58 × 10−4 6.19 × 10−4 1.47 × 10−4 

Granite 

1.53 6950 

11.2 

2.14 × 10−5 8.15 × 10−4 6.23 × 10−5 8.77 × 10−4 5.74 × 10−4 

0.72 6951 1.58 × 10−6 5.08 × 10−4 1.41 × 10−5 5.22 × 10−4 7.26 × 10−4 

1.09 6952 3.63 × 10−5 6.80 × 10−4 1.84 × 10−4 8.64 × 10−4 7.93 × 10−4 
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0.98 6953 1.17 × 10−5 5.76 × 10−4 5.53 × 10−5 6.31 × 10−4 6.44 × 10−4 

1.92 6954 1.01 × 10−6 8.71 × 10−4 1.59 × 10−5 8.87 × 10−4 4.62 × 10−4 

1.76 6955 7.23 × 10−5 9.39 × 10−4 6.90 × 10−5 1.01 × 10−3 5.73 × 10−4 

3.17 6956 1.36 × 10−4 1.43 × 10−3 3.65 × 10−4 1.80 × 10−3 5.68 × 10−4 

2.77 6957 1.37 × 10−4 1.28 × 10−3 5.26 × 10−4 1.81 × 10−3 6.53 × 10−4 

2.69 6958 4.95 × 10−5 1.62 × 10−3 5.91 × 10−5 1.67 × 10−3 6.23 × 10−4 

6.15 6959 1.09 × 10−4 1.87 × 10−3 9.91 × 10−8 1.87 × 10−3 3.04 × 10−4 

Mean 5.76 × 10−5 1.06 × 10−3 1.35 × 10−4 1.19 × 10−3 5.92 × 10−4 

Standard Deviation 5.06 × 10−5 4.42 × 10−4 1.66 × 10−4 5.04 × 10−4 1.29 × 10−4 
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