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Abstract: In this work, which is part of a larger research program, a framework called “virtual
data fusion” was developed to provide an automated and consistent crack detection method that
allows for the cross-comparison of results from large quantities of X-ray computed tomography
(CT) data. A partial implementation of this method in a custom program was developed for use in
research focused on crack quantification in alkali-silica reaction (ASR)-sensitive concrete aggregates.
During the CT image processing, a series of image analyses tailored for detecting specific, individual
crack-like characteristics were completed. The results of these analyses were then “fused” in order to
identify crack-like objects within the images with much higher accuracy than that yielded by any
individual image analysis procedure. The results of this strategy demonstrated the success of the
program in effectively identifying crack-like structures and quantifying characteristics, such as surface
area and volume. The results demonstrated that the source of aggregate has a very significant impact
on the amount of internal cracking, even when the mineralogical characteristics remain very similar.
River gravels, for instance, were found to contain significantly higher levels of internal cracking than
quarried stone aggregates of the same mineralogical type.

Keywords: X-ray computed tomography (CT); concrete; alkali-silica reaction (ASR); ASR-sensitive
aggregate; solubility test; specific surface area; crack detection; automated image processing;
damage quantification

1. Introduction

1.1. Alkali-Silica Reaction (ASR)

Despite decades of research, the problem of harmful alkali-silica reaction (ASR) in the field of
concrete construction has not yet been satisfactorily solved. For the first time in 1940, Stanton [1] reported
damaging strains within concrete due to chemical reactions of cement and aggregate. In the 1950s,
Powers and Steinour [2,3] developed initial models of ASR’s damage mechanism. In the 1970s, Locher
and Sprung [4] identified opal and porous flint as alkali-sensitive aggregates and developed theories
on their reaction mechanisms. In the 1980s, various researchers conducted in-depth studies on the
influence of alkali metal salts on the swelling pressures of the ASR gel [5,6]. The current state of
knowledge in the field of ASR has also been extensively described in number of recent publications [7,8].

During the ASR process, the reactive SiO2 within aggregates reacts with alkalis (supplied from
the cement paste or from an external source) in the presence of water to form expansive alkali silicate
hydrates (ASR gels). Because the tensile strength of road surface concrete is often significantly lower
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than the swelling pressures caused by ASR gels, cracking can be induced [9]. The progression and the
extent of the resulting cracking processes are determined to a large extent by the type of aggregate.
For example, fast-reacting aggregates (among others, flint, opaline sandstone and mudstone) are
characterized by gel and crack formation emanating from the transition zone between the grain and
the mortar matrix [7]. On the other hand, in the case of the slow-reacting aggregates (for instance
greywacke or quartz porphyry), which were of primary of interest in this project, the gel formation
takes place above all inside the aggregate itself, which results in the formation of internal aggregate
cracks [7].

The severity of the ASR degradation process is thought to be partially dependent on the amount
of porosity within a given aggregate that is accessible to liquid penetrating from the sample surface.
Against this background and to evaluate the alkali sensitivity of the aggregate, the influence of the
specific surface area on the solubility behaviour of four different aggregates in 0.1 M potassium
hydroxide solution without and with defined addition of NaCl at a temperature of 80 ◦C was
thoroughly investigated in a joint project [10]. To quantify this relationship, a non-destructive method
is needed for measuring both the external surface area of aggregates and the internal surface area
of aggregate cracks and pores, including a differentiation of internal voids connected to the sample
surface from those isolated from the surface. The primary focus of this publication is devoted to
the crack detection method. A detailed analysis of the implications for ASR damage, including a
comparison of the CT results with those from other porosity measurement methods, such as mercury
porosimetry and the Brunauer–Emmett–Teller (BET) method, can be found in Oesch et al. 2020 [11]
and in Weise et al. 2019 [10].

1.2. X-Ray Computed Tomography (CT)

The development of X-ray computed tomography (CT) began in the 1960s and clinical X-ray CT
investigations have been widely conducted since the 1970s [12,13]. Since that time, many different
reconstruction algorithms have been developed for clinical use, including algorithms based on the
algebraic reconstruction technique (ART), filtered back projection (FBP), and iterative reconstruction
(IR) [14]. Medical X-ray CT scanning systems are, however, unsuitable for many applications in
materials science given their lower X-ray energy characteristics and coarser resolution compared to
specialized laboratory-based X-ray CT systems used for materials research [15]. These differences occur
both because the size of the intended scanning objects tends to significantly differ between clinical and
materials science applications and because the X-ray absorption characteristics of live tissues are much
lower than those of materials such as concrete and steel.

X-ray CT has been used in non-destructive concrete research applications for more than
30 years [16,17]. In this scanning method, a sample is placed on a rotating table between an X-ray
source and an X-ray detector [18]. By adjusting the distances between the X-ray source, the sample
and the X-ray detector, it is possible to vary the voxel (i.e., 3D pixel) resolution in the resulting images.
The penetration of the sample by the X-ray beam causes an X-ray attenuation image of the sample
to be projected upon the detector. By recording these projected images during the 360◦ rotation of
the sample, the projections can be inverted using volume reconstruction algorithms, which produce a
3D representation of X-ray attenuation within the sample [19]. X-ray attenuation is approximately
proportional to local material density and can be used to identify single objects within a material (or
structure) and to individually separate and analyze those objects.

Previous research has shown that X-ray CT scans can be taken during incremental testing.
This includes mechanical testing (such as unconfined compression, split cylinder, triaxial,
and reinforcing bar pull-out testing [20–24]), chemical testing (such as the measurement of progressive
corrosion in reinforced concrete during repeated exposure to chloride [25] and the transport of
water [26–28]) and thermal testing (such as water migration in heated concrete [29]).
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1.3. Crack Detection and Quantification

Crack detection and quantification is important for understanding and modelling a series of
material behaviours. Precise measurement of crack surface area is needed, for instance, in order
to calculate the fracture energy expended during damage processes using basic fracture mechanics
relationships [30]. The crack orientations have also been observed to exhibit a behaviour that is highly
dependent on the anisotropy of the material structure, such as fibre orientation within fibre-reinforced
concretes [31].

Crack detection and quantification within X-ray CT images have been the subject of extensive
past research. Most of these crack detection methods have leveraged one or more unique characteristics
of cracks, which differentiate them from the surrounding material. Possibly the most popular research
approaches have focused on the use of template-matching methods in order to separate cracks from
the surrounding materials [32,33]. This method of crack detection relies on the similarity of cracking
structures to certain template shapes, such as small planes or discs. Although impressive results have
been demonstrated using the template-matching method, the template parameters are not universal
and must generally be tailored for each material and each imaging scenario.

Research was recently carried out by Paetsch (2019) [34] with the goal of partially overcoming
these challenges related to using template matching approaches. This research indicated that the
results of a series of analyses carried out using different template shapes can be combined in order to
obtain a greater accuracy of the detected cracks. However, Paetsch (2019) [34] has underlined that
further problems remain to be solved that are common to most template-matching methods, such as
difficulties detecting cracks in areas where significant crack branching or widening occurs.

Another method that takes advantage of the narrow shape characteristics of cracks is a
Hessian-based approach [35,36], which identifies regions that exhibit sharp changes in image intensity.
Percolation methods have also shown significant promise in detecting cracks across a range of
materials [37]. These methods leverage the fact that most cracks are continuous, narrow objects
with relatively consistent (low) density. Percolation methods have proven insufficient, however,
to accurately detect complex cracks of varying size in most materials. Impressive results have also been
obtained through a combination of the Hessian and percolation-based methods into the Hessian-driven
percolation approach, although the processing time required for such an analysis remains prohibitive
for most high-resolution CT images [32].

Many methods have also been employed that leverage the unique characteristics of a specific
material or damage scenario. One excellent example of this approach is the use of digital volume
correlation (DVC) to detect cracks in samples subjected to in-situ loading [38–40]. DVC is used to
measure strains within samples by calculating voxel movements between subsequent CT images
(such as images calculated before and after a loading increment). Cracks can, thus, be identified as
areas of either high strain or poor correlation within DVC images or through more complex analysis
methods, such as phase-congruency analysis. Although these methods appear to exhibit a relatively
high accuracy (even sub-pixel, see [41]), they are only useful for detecting cracks caused by progressive
in-situ testing with simultaneous CT. They do not provide any benefit for detecting cracks that are
already present in specimens prior to testing. Phase congruency can, however, also be used to detect
edge features (including cracks) within the greyscale images without direct reference to DVC [42].

Another example of a material-specific crack detection approach is the leveraging of typical wood
structure within logs to identify cracks. These cracks typically run perpendicular to the growth rings
of the logs and can, thus, be easily identified by their orientation characteristics [43].

Despite the many promising crack detection methods outlined here, a series of obstacles remain
that have prevented the implementation of consistent, accurate, and quantitative crack analyses as part
of CT scanning. First, most of these methods require some amount of tailoring for specific material
properties (as in the case of template matching and percolation) or specific crack conditions (such as
measuring only those arising from in-situ testing using DVC methods). Second, none of these methods
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has been successfully validated for the quantitative determination of crack properties (such as surface
area) based on other standard measurement techniques.

In this study, we will show, on the example of different aggregate types, how the obstacles
mentioned above can be circumvented by a novel data fusion strategy.

2. Materials and Methods

2.1. Sample Selection

For this testing series, a group of aggregates from four different categories were selected and analysed.
These categories were selected in order to include stones with a variety of different mineralogical
compositions, deterioration conditions, and alkali-sensitivity characteristics (Table 1 and Figure 1) [44].
All stones included in this analysis were in the 8 mm to 16 mm size range: During the sieving process,
the individual stones passed successfully through a sieve with a 16 mm mesh but were unable to pass
through a sieve with an 8 mm mesh [45].

Table 1. Categories of stone selected for cracking analysis.

Category Stone Type Alkali Sensitivity [40 ◦C-BV]

GK1 River Gravel EIII-S
GK2 Quarried Stone (Greywacke) EIII-S
GK3 Quarried Stone (Rhyolite) EI-S
GK4 River Gravel EI-S
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Figure 1. Photographs of typical individual grains from each of the stone categories.

For the categories GK1 and GK4, the selected stones were sieved from a natural river gravel.
Such river gravels are typically characterized by significant mineralogical deterioration due to naturally
occurring weathering processes. In order to characterize these river gravels, which have a heterogeneous
mineralogical composition, the primary types of rock (7 types in total) occurring in GK1 and GK4 were
determined and 10 individual grains of each type were selected for CT analysis.

For the categories GK2 and GK3, the selected stones were sieved from crushed stone chips that
were quarried from solid rock deposits. Such quarried stones are typically characterized by greater
mineralogical integrity than river gravels because they have not been exposed to significant weathering.
Due to the homogeneity of the quarried stone, the selection of individual grains was limited to 10 each
for GK2 and GK3. Thus, combining all the individual grains from each of the four stone categories
included in this research study, a total of 90 different individual grains were investigated.

2.2. CT Scanning

During this research program, an acceleration voltage of 130 kV and current of 180 µA were used
for the X-ray source. The X-ray beam was also filtered using a 0.5 mm thick Copper plate immediately
upon leaving the source in order to remove (unwanted) photons of small energies from the X-ray beam,
thereby increasing the contrast of the resulting images. The flat panel detector used for this scanning
contained a 2048 × 2048 pixel field.

Individual aggregates were sorted based on mineralogical characteristics and placed within
corresponding plastic tubes with small pieces of foam separating the aggregates from one another.
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As a result of heating and deterioration of the target material within the X-ray tube as well as changes
in detector sensitivity over time, significant variations in the measured X-ray beam intensity and
distribution can occur. To compensate for these variations, “dark-field” and “bright-field” images,
which correspond to blank images (i.e., containing no sample) acquired with no illumination and
full illumination, respectively, were acquired prior to the scanning of each plastic tube of samples.
These images were then used to calibrate the X-ray images of the samples.

The CT machine was pre-programmed to collect a complete scan of each aggregate before
repositioning the plastic tube using a manipulator and beginning the scan of the next aggregate. Thus,
the scanning conditions for all stones within any given plastic tube were identical. All scanning
conditions other than resolution were also held constant for all plastic tubes.

It was important to maintain scanning conditions that were as consistent as possible to ensure that
the results of the crack analysis would be comparable. In spite of this, the resolution was maximised
for each stone type, if they significantly varied in size and shape. This was done by adjusting the
distance between the plastic tube and the X-ray source. The corresponding voxel sizes were then
calculated directly from the measured distances between the X-ray source, the sample holder and the
X-ray detector for each individual set of scans.

Although these variations in image resolution are known to directly affect measurements of
crack properties, such as surface area (increased surface area is generally detected with decreasing
voxel sizes), some estimation of the magnitude of this effect can already be accounted for based on
a recent study [46]. The results of this study indicate that even a doubling of voxel size does not
appear to generally change the measured crack surface area by more than a factor around two. We will
see below that the small voxel size variations had little influence on the much larger variations in
measured crack surface area among the different aggregate types, so that comparisons could be made,
and conclusions drawn.

2.3. Image Analysis

2.3.1. Data Fusion Approach

In such an environment, where many analysis methods are readily available, but no individual
method is sufficiently accurate to provide the needed measurements, the use of a data-fusion inspired
approach becomes very promising and attractive. Data fusion enables researchers to combine data
from multiple sources in order to produce more consistent and accurate results than those provided by
any single source [47]. In non-destructive testing, the different sources used in data fusion typically
result from differing non-destructive measurement approaches. Such data-fusion based approaches
have even been successfully applied to the application of crack detection [48].

It is, however, often the case that researchers only possess meaningful data from a single
measurement technique, such as CT (often indeed used as a reference), or do not have access to further
non-destructive testing equipment. Even in this case, it should be possible to use the theory behind
the data fusion approach to improve the overall quality of the quantitative determinations resulting
from image analysis. Rather than relying on a wide variety of physical measurement techniques,
data fusion in this approach would be carried out by using the output from an array of different image
analysis techniques. Since such an approach relies on the fusion of different computationally generated
data sources resulting from the same original CT image rather than on a variety of different physical
measurement techniques, it can be more appropriately described as virtual data fusion. This is similar
to the process that is thought to occur when an expert identifies cracks using the human eye. The expert
has only one measurement technique (a visual image), but by considering its many different aspects
(such as coloration, shape, and relationship to surrounding objects or planes of stress), the expert is
able to quite easily and accurately detect a crack on the surface of a specimen.

Figure 2 shows a diagram of this virtual data fusion approach. In the diagram, the characteristics
of a crack are displayed in dark grey boxes and the image processing steps for identifying objects with



Materials 2020, 13, 3921 6 of 27

those characteristics are depicted in light grey boxes. The list provided here is only meant to serve
as an example and is by no means exhaustive. It is clear, however, that results obtained through a
fusion of the results from twelve such independent analyses will be much more accurate and resilient
to varying material conditions than the results from any single analysis technique. An example of how
such a step-by-step approach can identify individual cracks within a generic concrete sample is shown
in Figure 3.
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Figure 3. Step-by-step isolation of cracking by means of virtual data fusion. CT image of a concrete
sample (a), voids identified using a greyscale threshold (b), voids identified in (b) added to interfacial
zones identified using a gradient-based analysis (c), removal of small connected components (noise
and isolated pores) from image (d), and elimination of components with small specific surface areas
from image (e). Raw data courtesy of U.S. Army Engineer Research and Development Center (ERDC).

2.3.2. Implementation

Although, in theory, twelve or more different analysis methods could be used in the virtual
data fusion implementation for analysing the ASR-sensitive aggregate dataset, in practice such a full
implementation was impractical. We selected a partial implementation of the scheme including only
three analysis approaches. The choice included the approaches that would produce cracking data with
sufficient accuracy for this specific application while simultaneously testing the effectiveness of the
virtual data fusion concept for obtaining accurate and consistent results. A successful demonstration of
the virtual data fusion method with only three analysis components would then give justification for the
further development of the algorithm to gradually include additional analysis modules, simultaneously
growing in accuracy and resiliency. Moreover, the modular architecture of the strategy could more
easily be adapted to different problems than a full but rigid analysis.

In fact, for the specific ASR-sensitive aggregate analysis described in this paper, it was not
important to separate internal pores from internal cracks since the surface area of both pores and cracks
was vulnerable to ASR degradation. Thus, modules related to this differentiation could be left out of
the analysis. Furthermore, since scans were not available at varying levels of degradation, all methods
relying on changes in sample state relative to time (such as DVC-based methods) were also left out
of this analysis. All image analysis described in this paper was completed using custom algorithms
developed and implemented in MATLAB [49].

Module 1: Identification of Objects with Low Density

When cracks or pores have widths exceeding two voxels, the voxels in their centres are completely
filled with air. Thus, these central voxels are characterized by a particularly low greyscale value.
In order to separate these voxels, a threshold has to be selected and subsequently used for image
binarization. All voxels darker than the threshold would then be transformed to white and all voxels
lighter than the threshold transformed to black. Given that this threshold must be consistently applied
for a large range of datasets, an automated selection method was implemented.

Using the triangle selection algorithm [50,51], a virtual line is drawn from the origin of the image
histogram to the top of the largest histogram peak (excluding the initial peak at zero, which represents
voxels from the air around the specimen) (Figure 4). A calculation is then conducted to determine
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which point on the histogram is furthest from the virtual line along an intersecting, perpendicular line.
The location of that point is identified as a potential threshold. It was found, however, that such
a threshold is rather over-encompassing, leading to the introduction of considerable noise into the
resulting binarized images. Thus, a slightly more conservative threshold value was also implemented
for this module that is 25% lower than the original threshold. An example of the results from this
analysis can be observed in Figure 5.
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Module 2: Identification of Objects with High Gradient

When an object in a CT-image has either a much higher or a much lower greyscale value compared
to the surrounding material, its edges can be identified as regions of high gradient. For this purpose,
a gradient-magnitude image is calculated from the original CT-image through the use of the Sobel
operator (Figure 6) [52]. Since the resulting gradient image consists of a wide range of grey values,
it must also be binarized. For this purpose, a histogram of the gradient image grey values is computed
and another automated triangular threshold selection is completed, this time from the right edge of the
histogram (Figure 7). The resulting binary image contains the edges of both bright and dark objects in
the original CT image (Figure 8). In order to remove the edges associated with the bright (high-density)
objects in the CT-image as well as some of the noise, the binarized gradient image can be multiplied
by a binarized CT-image (this time using the “over-encompassing void-solid threshold” identified in
Figure 4) (Figure 9).
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Module 3: Identification of Objects above a Given Size

Prior to noise identification and removal, the results from Modules 1 and 2 were combined into a
single image (Figure 10). This ensured that the centres and edges of the cracks/pores would both be
present and accounted for during object size analysis. The object size analysis was completed using a
connected components algorithm. During this analysis, individual voxels are assessed to determine
whether they are part of a larger object in the binary image by analysing whether they adjoin other
voxels of the same color. For this analysis, white voxels with touching faces, edges or corners (also
known as “26-connected”) were identified as connected. Objects with voxel volumes smaller than
125 voxels were subsequently identified and eliminated (Figure 11).
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Figure 11. Removal of noise from binary crack and void image (based on figure in [10]).

It was found that the use of smaller cubes than 125 voxels (with five voxel long sides) tended
to leave considerable noise within the image while the use of larger cubes resulted in the loss of
a considerable number of voxels along the path of the cracks. Given that the full CT images each
contained over seven billion voxels, such an object with a volume of 125 voxels represented less than
one ten-millionth of the total image volume. A flowchart of the entire crack-detection process is
provided in Figure 12.
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3. Results

After the cracks and internal voids were identified within each of the aggregates, their
characteristics could be quantified and compared. Of primary interest for this analysis was the
determination of volume and surface area characteristics. In particular, in order to compare the results
of the CT-analysis with those of other non-destructive measurement techniques, it was important
to separate surface-connected cracks and voids (referred here to as “open voids”) from internally
isolated cracks and voids (referred to here as “closed voids”). This is because measurements of internal
surface area using the Brunauer–Emmett–Teller (BET) method [53,54] only account for internal voids
accessible from outside of the sample. Similarly, the measurement of void volume through mercury
porosimetry is thought to depend primarily on the saturation of internal voids that are connected to
the stone surface. Such a separation of surface-connected cracks could be completed using a connected
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components analysis in which only cracks and voids containing voxels that touched the stone surface
were retained.

The crack/pore surface area measurements obtained using this approach are provided for all of
the river-gravel type aggregates in Figure 13 and for both river-gravel and quarried-stone aggregates
of the minerals rhyolite and greywacke in Figure 14. Note that the measurements for the greywacke
(GK4) and rhyolite (GK1) river gravels appear in both figures for comparison purposes. Figure 15 also
provides 3D images of cracking distributions for two selected individual grains of the same mineral
(greywacke), where one grain has been extracted from a quarry and the other has been taken from river
gravel. For images of all analysed aggregate types, see Appendix A. Tabulated values of the surface
area measurements are also provided for each individual sample in Appendix B.
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Error bars in Figures 13 and 14 could not be calculated. This is because there is still no universally
accepted method for estimating the combined error introduced by CT measurement systems and image
processing algorithms. Although numerous approaches for estimating such error bars have been
proposed [55,56], these tend to be rather computationally intensive and time consuming and remain an
active area of research. For pure dimensional measurements, it is common to use either the voxel size
or the focal spot size of the X-ray tube as an estimation of error. Given that the focal spot size of this
scanning system was significantly smaller than the voxel sizes obtained during these investigations,
the voxel sizes for each scan (also listed in Figures 13 and 14) can be taken as an estimation of possible
error in the dimensional measurements.

From Figure 14 it is clear that the amount of internal cracking (including both surface-connected
cracking and non-surface-connected cracking) in the river gravel aggregates was much higher than that
in the quarried aggregates, even when their mineralogical characteristics were similar. The magnitude
of this effect is also much too large to be attributed to variations in CT resolution. The underlying
basis for these differences in quantitative crack measurements can also be estimated through visual
observation of CT images, such as those displayed in Figure 15. Clear, layered cracking is visible within
river gravel greywacke stones; this is not present within the greywacke stones extracted from quarries.
This is thought to result from the aggressive weathering process that river gravel is subjected to during
its lifecycle prior to construction use. This indicates that the selection of high-quality aggregate based
on mineralogical characteristics alone may be insufficient.

It is also clear from Figure 13 that even for stones from a single source and with a single
mineral composition, a significant amount of variability in internal porosity and cracking is present.
The variation between individual stones of a single type (such as rhyolite (GK1)) is often much larger
than the average difference between two entirely different stone types (such as between rhyolite (GK1)
and granite (GK4)). Thus, we recommend the use of large statistical samples to properly characterize
each stone type for ASR sensitivity.
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4. Discussion and Conclusions

This research clearly demonstrates the need for universal, automated, and consistent crack
detection methods that allow the cross comparison of results from large quantities of CT-scan data
from different sample types. A framework, called “virtual data fusion“, was developed that has the
potential to successfully provide such a method. A partial implementation of this method in a custom
program was developed for use in research focused on crack measurement in ASR-sensitive aggregates.
Our results demonstrated the success of the program in effectively identifying crack-like structures and
measuring their characteristics such as crack extension (relative surface area) and surface connectivity.

These results demonstrate the significant impact that the source of extraction can have on the
characteristics of aggregates. Even for aggregates of the same mineral type, river gravels contain
significantly higher levels of internal porosity and cracking than quarried stone. This is thought to
result from the aggressive weathering process that river gravel is subjected to prior to its selection and
use for construction. This indicates that the selection of high-quality aggregate based on mineralogical
characteristics alone may be insufficient. It is also clear from these results that there is a significant
amount of variability in internal porosity and cracking even for stones with the same mineralogical
characteristics and extraction source. Thus, large statistical samples will be necessary to properly
characterize each stone type for ASR sensitivity.
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Appendix A. Visualization of Individual Grains

A visual impression of the internal microstructure of the individual grains is provided by selected
CT-based visualizations (Figures A1–A4). In these images, the solid material of the individual grains is
shown semi-transparently. This allows a better spatial visualization of the cracks and pores emanating
from the outer surface (i.e., open voids—colored red) and the cracks and pores not accessible from the
outside (i.e., closed voids—colored yellow).
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Figure A4. CT-visualizations for individual rhyolite aggregate from quarried stone (GK3) and river
gravel (GK1) (based on figures in [10,11]).

The strong fluctuation in the amount of open and closed voids in the individual quartz/quartzite
grains of aggregate type GK1 is clearly visible in Figure A1. For the rhyolite of aggregate type GK1,
Figure A1 includes a CT-based visualization of the single grain with the highest surface areas of open
and closed voids. The broad spectrum of open and closed void surface characteristics for plutonite is
demonstrated by the CT-based visualizations of the two individual grains shown in Figure A1.

In contrast to the GK1 aggregate, the surface characteristics of the individual grains of aggregate
type GK4 tend to vary much less. In Figure A2, a CT-based visualization of the individual sandstone
grain with the highest surface area of open voids of all examined sandstone grains is provided.
As expected, this image shows a relatively high content of open voids and a low content of closed voids.
The spatial arrangement of the open voids suggests a layered structure. The examined single grains
of mudstone and greywacke also show a stratification due to the similar formation history. In the
latter case, however, the closed voids predominate over open voids. The final CT-based visualization
in Figure A2 is a single grain of granite and demonstrates that this type of rock can also have high
contents of open voids.

As mentioned in the paper, the individual grains of the quarried stone have very small open and
closed void surface areas compared to the river gravel grains. This is impressively documented by the
CT-based visualizations for greywacke and rhyolite, which are shown in Figures A3 and A4 and which
compare individual grains originating from quarried stone and river gravel. Aside from those shown
in Figures A3 and A4, further visualizations of the quarried stone aggregate (GK2 and GK3) have not
been included in the appendix. This is because these stone types have little to no visible porosity in the
CT-based visualizations.
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Appendix B. Tabulated Results of Cracking Analysis

Table A1. Individual grain results from the cracking analysis of stone category GK1 (river gravel; alkali sensitivity EIII-S).

Stone Type Mass of the
Individual Grain [g]

CT Scan
Number

Voxel Size [µm]

Surface Areas Measured Using CT [m2]

Closed Porosity Outer Surface Open Porosity
Outer Surface + Open Porosity

Absolute [m2] Relative [m2/g]

Quartz/Quartzite

3.37 7030

16.5

5.69 × 10−4 2.17 × 10−3 2.20 × 10−5 2.18 × 10−3 6.47 × 10−4

4.49 7031 1.42 × 10−4 1.10 × 10−3 6.20 × 10−5 1.12 × 10−3 2.49 × 10−4

2.89 7032 3.85 × 10−5 1.44 × 10−3 9.65 × 10−5 1.47 × 10−3 5.09 × 10−4

5.63 7033 3.94 × 10−6 9.50 × 10−4 1.43 × 10−6 9.50 × 10−4 1.69 × 10−4

6.26 7034 1.10 × 10−3 1.55 × 10−3 1.46 × 10−4 1.57 × 10−3 2.51 × 10−4

8.04 7035 9.13 × 10−4 2.39 × 10−3 3.24 × 10−3 2.79 × 10−3 3.47 × 10−4

7.33 7036 2.62 × 10−4 1.95 × 10−3 1.88 × 10−4 1.97 × 10−3 2.69 × 10−4

8.32 7037 2.33 × 10−3 2.38 × 10−3 8.53 × 10−4 2.48 × 10−3 2.98 × 10−4

6.50 7038 3.64 × 10−5 1.84 × 10−3 2.89 × 10−6 1.84 × 10−3 2.83 × 10−4

11.17 7039 3.10 × 10−4 2.09 × 10−3 3.71 × 10−4 2.13 × 10−3 1.91 × 10−4

Mean 5.71 × 10−4 1.79 × 10−3 4.98 × 10−4 1.85 × 10−3 3.21 × 10−4

Standard Deviation 6.88 × 10−4 4.82 × 10−4 9.46 × 10−4 5.52 × 10−4 1.40 × 10−4

Rhyolite

0.77 6880

11.2

0.00 5.18 × 10−4 0.00 5.18 × 10−4 6.73 × 10−4

0.74 6881 8.60 × 10−6 4.87 × 10−4 1.71 × 10−6 4.88 × 10−4 6.60 × 10−4

1.27 6882 1.59 × 10−4 7.50 × 10−4 7.07 × 10−5 8.21 × 10−4 6.47 × 10−4

1.24 6883 6.55 × 10−4 9.78 × 10−4 4.87 × 10−4 1.46 × 10−3 1.18 × 10−3

1.96 6884 9.57 × 10−6 8.32 × 10−4 1.49 × 10−5 8.47 × 10−4 4.32 × 10−4

1.16 6885 1.30 × 10−6 5.65 × 10−4 1.33 × 10−6 5.67 × 10−4 4.89 × 10−4

2.90 6886 8.63 × 10−5 1.21 × 10−3 3.28 × 10−5 1.25 × 10−3 4.30 × 10−4

2.74 6887 1.79 × 10−4 1.20 × 10−3 3.35 × 10−5 1.24 × 10−3 4.52 × 10−4

2.85 6888 3.67 × 10−5 1.03 × 10−3 1.80 × 10−5 1.05 × 10−3 3.68 × 10−4

5.70 6889 6.38 × 10−5 1.62 × 10−3 3.81 × 10−6 1.62 × 10−3 2.85 × 10−4

Mean 1.20 × 10−4 9.20 × 10−4 6.64 × 10−5 9.86 × 10−4 5.62 × 10−4

Standard Deviation 1.89 × 10−4 3.44 × 10−4 1.42 × 10−4 3.82 × 10−4 2.41 × 10−4
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Table A1. Cont.

Stone Type Mass of the
Individual Grain [g]

CT Scan
Number

Voxel Size [µm]

Surface Areas Measured Using CT [m2]

Closed Porosity Outer Surface Open Porosity Outer Surface + Open Porosity
Absolute [m2] Relative [m2/g]

Plutonite

2.43 6970

11.2

1.21 × 10−4 9.24 × 10−4 1.17 × 10−5 9.35 × 10−4 3.85 × 10−4

1.50 6971 1.57 × 10−4 9.03 × 10−4 3.64 × 10−4 1.27 × 10−3 8.44 × 10−4

1.62 6972 4.53 × 10−5 6.74 × 10−4 9.49 × 10−6 6.84 × 10−4 4.22 × 10−4

2.09 6973 2.12 × 10−4 4.72 × 10−3 9.71 × 10−4 5.69 × 10−3 2.72 × 10−3

2.67 6974 1.23 × 10−3 1.07 × 10−3 2.26 × 10−4 1.30 × 10−3 4.87 × 10−4

1.96 6975 3.46 × 10−4 8.53 × 10−4 1.02 × 10−4 9.54 × 10−4 4.87 × 10−4

5.58 6976 1.66 × 10−3 3.43 × 10−3 2.35 × 10−3 5.79 × 10−3 1.04 × 10−3

2.47 6977 3.58 × 10−4 1.00 × 10−3 7.83 × 10−5 1.08 × 10−3 4.38 × 10−4

4.08 6978 7.40 × 10−4 1.65 × 10−3 2.67 × 10−4 1.91 × 10−3 4.69 × 10−4

4.44 6979 0.00 1.24 × 10−3 9.91 × 10−8 1.24 × 10−3 2.79 × 10−4

Mean 4.86 × 10−4 1.65 × 10−3 4.38 × 10−4 2.08 × 10−3 7.57 × 10−4

Standard Deviation 5.27 × 10−4 1.27 × 10−3 6.95 × 10−4 1.85 × 10−3 6.89 × 10−4

Table A2. Individual grain results from the cracking analysis of stone category GK2 (quarried stone; alkali sensitivity EIII-S).

Stone Type Mass of the
Individual Grain [g]

CT Scan
Number

Voxel Size [µm]

Surface Areas Measured Using CT [m2]

Closed Porosity Outer Surface Open Porosity Outer Surface + Open Porosity
Absolute [m2] Relative [m2/g]

Greywacke

1.03 6860

11.2

2.94 × 10−7 5.31 × 10−4 2.67 × 10−6 5.34 × 10−4 5.18 × 10−4

1.12 6861 5.87 × 10−8 6.23 × 10−4 0.00 6.23 × 10−4 5.56 × 10−4

0.66 6862 7.67 × 10−7 4.74 × 10−4 8.48 × 10−7 4.74 × 10−4 7.19 × 10−4

2.23 6863 2.59 × 10−7 9.14 × 10−4 5.49 × 10−7 9.15 × 10−4 4.10 × 10−4

2.04 6864 0.00 9.55 × 10−4 3.03 × 10−7 9.55 × 10−4 4.68 × 10−4

1.9 6865 0.00 9.78 × 10−4 1.72 × 10−6 9.80 × 10−4 5.16 × 10−4

1.39 6866 1.14 × 10−7 7.21 × 10−4 0.00 7.21 × 10−4 5.19 × 10−4

1.08 6867 0.00 7.26 × 10−4 1.48 × 10−7 7.26 × 10−4 6.72 × 10−4

2.11 6868 9.99 × 10−8 1.03 × 10−3 6.28 × 10−7 1.03 × 10−3 4.87 × 10−4

3.98 6869 4.92 × 10−8 1.61 × 10−3 1.21 × 10−6 1.61 × 10−3 4.04 × 10−4

Mean 1.64 × 10−7 8.56 × 10−4 8.07 × 10−7 8.57 × 10−4 5.27 × 10−4

Standard Deviation 2.24 × 10−7 3.11 × 10−4 8.09 × 10−7 3.11 × 10−4 9.63 × 10−5
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Table A3. Individual grain results from the cracking analysis of stone category GK3 (quarried stone; alkali sensitivity EI-S).

Stone Type Mass of the
Individual Grain [g]

CT Scan
Number

Voxel Size [µm]

Surface Areas Measured Using CT [m2]

Closed Porosity Outer Surface Open Porosity Outer Surface + Open Porosity
Absolute [m2] Relative [m2/g]

Rhyolite

1.53 6890

16.5

5.14 × 10−6 9.00 × 10−4 1.86 × 10−5 9.18 × 10−4 6.00 × 10−4

1.66 6891 4.52 × 10−7 9.12 × 10−4 8.54 × 10−6 9.21 × 10−4 5.55 × 10−4

2.68 6892 6.18 × 10−6 1.32 × 10−3 4.16 × 10−5 1.36 × 10−3 5.07 × 10−4

2.56 6893 6.92 × 10−6 1.13 × 10−3 2.93 × 10−5 1.16 × 10−3 4.52 × 10−4

2.89 6894 1.36 × 10−7 1.30 × 10−3 1.24 × 10−5 1.32 × 10−3 4.56 × 10−4

3.08 6895 4.42 × 10−6 1.24 × 10−3 6.88 × 10−6 1.25 × 10−3 4.05 × 10−4

5.18 6896 7.97 × 10−7 1.97 × 10−3 6.97 × 10−6 1.98 × 10−3 3.82 × 10−4

3.44 6897 9.38 × 10−6 1.42 × 10−3 2.21 × 10−5 1.44 × 10−3 4.19 × 10−4

5.07 6898 1.44 × 10−6 1.96 × 10−3 6.57 × 10−6 1.96 × 10−3 3.87 × 10−4

3.47 6899 8.69 × 10−7 1.50 × 10−3 3.59 × 10−6 1.50 × 10−3 4.32 × 10−4

Mean 3.57 × 10−6 1.36 × 10−3 1.57 × 10−5 1.38 × 10−3 4.59 × 10−4

Standard Deviation 3.10 × 10−6 3.52 × 10−4 1.16 × 10−5 3.48 × 10−4 6.92 × 10−5

Table A4. Individual grain results from the cracking analysis of stone category GK4 (river gravel; alkali sensitivity EI-S).

Stone Type Mass of the
Individual Grain [g]

CT Scan
Number

Voxel Size [µm]

Surface Areas Measured Using CT [m2]

Closed Porosity Outer Surface Open Porosity Outer Surface + Open Porosity
Absolute [m2] Relative [m2/g]

Sandstone

0.84 6980

21.1

0.00 5.67 × 10−4 0.00 5.67 × 10−4 6.75 × 10−4

1.95 6981 0.00 7.24 × 10−4 0.00 7.24 × 10−4 3.71 × 10−4

1.35 6982 1.06 × 10−5 6.95 × 10−4 8.69 × 10−6 7.03 × 10−4 5.21 × 10−4

3.63 6983 5.04 × 10−6 1.07 × 10−3 2.26 × 10−7 1.07 × 10−3 2.96 × 10−4

3.35 6984 7.44 × 10−5 1.28 × 10−3 5.34 × 10−4 1.82 × 10−3 5.42 × 10−4

4.19 6985 7.09 × 10−5 1.56 × 10−3 1.09 × 10−4 1.67 × 10−3 4.00 × 10−4

4.78 6986 1.01 × 10−3 1.42 × 10−3 4.23 × 10−5 1.47 × 10−3 3.07 × 10−4

5.28 6987 3.25 × 10−4 1.66 × 10−3 2.01 × 10−5 1.68 × 10−3 3.18 × 10−4

6.26 6988 1.80 × 10−4 1.91 × 10−3 4.91 × 10−5 1.95 × 10−3 3.12 × 10−4

8.3 6989 3.80 × 10−4 2.20 × 10−3 1.59 × 10−5 2.21 × 10−3 2.67 × 10−4

Mean 2.05 × 10−4 1.31 × 10−3 7.79 × 10−5 1.39 × 10−3 4.01 × 10−4

Standard Deviation 2.97 × 10−4 5.17 × 10−4 1.55 × 10−4 5.52 × 10−4 1.28 × 10−4
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Table A4. Cont.

Stone Type Mass of the
Individual Grain [g]

CT Scan
Number

Voxel Size [µm]

Surface Areas Measured Using CT [m2]

Closed Porosity Outer Surface Open Porosity Outer Surface + Open Porosity
Absolute [m2] Relative [m2/g]

Mudstone

3.6 6960

21.1

1.72 × 10−4 1.30 × 10−3 2.56 × 10−5 1.33 × 10−3 3.68 × 10−4

1.59 6961 4.28 × 10−7 7.14 × 10−4 9.34 × 10−7 7.15 × 10−4 4.49 × 10−4

1.61 6962 5.36 × 10−5 9.01 × 10−4 5.17 × 10−4 1.42 × 10−3 8.81 × 10−4

3.27 6963 0.00 1.15 × 10−3 1.26 × 10−6 1.15 × 10−3 3.51 × 10−4

1.13 6964 0.00 1.45 × 10−3 0.00 1.45 × 10−3 1.28 × 10−3

2.78 6965 7.04 × 10−4 1.02 × 10−3 4.66 × 10−4 1.49 × 10−3 5.36 × 10−4

2.39 6966 4.35 × 10−6 8.54 × 10−4 0.00 8.54 × 10−4 3.57 × 10−4

2.63 6967 2.16 × 10−4 1.12 × 10−3 4.55 × 10−5 1.16 × 10−3 4.42 × 10−4

4.34 6968 0.00 1.70 × 10−3 8.01 × 10−7 1.70 × 10−3 3.93 × 10−4

2.51 6969 1.13 × 10−5 1.06 × 10−3 1.56 × 10−6 1.06 × 10−3 4.23 × 10−4

Mean 1.16 × 10−4 1.13 × 10−3 1.06 × 10−4 1.23 × 10−3 5.48 × 10−4

Standard Deviation 2.10 × 10−4 2.79 × 10−4 1.94 × 10−4 2.88 × 10−4 2.86 × 10−4

Greywacke

8.19 6870

16.5

5.61 × 10−4 2.33 × 10−3 1.25 × 10−4 2.46 × 10−3 3.00 × 10−4

5.28 6871 6.17 × 10−5 1.99 × 10−3 3.93 × 10−5 2.03 × 10−3 3.84 × 10−4

8.67 6872 5.56 × 10−4 2.70 × 10−3 3.04 × 10−4 3.01 × 10−3 3.47 × 10−4

5.99 6873 1.71 × 10−6 3.13 × 10−3 3.88 × 10−5 3.17 × 10−3 5.29 × 10−4

4.89 6874 1.68 × 10−3 1.69 × 10−3 4.92 × 10−4 2.18 × 10−3 4.46 × 10−4

2.61 6875 3.26 × 10−6 1.43 × 10−3 4.02 × 10−6 1.44 × 10−3 5.50 × 10−4

6.3 6876 7.10 × 10−4 2.16 × 10−3 1.11 × 10−4 2.27 × 10−3 3.61 × 10−4

3.86 6877 8.41 × 10−5 1.51 × 10−3 7.54 × 10−6 1.51 × 10−3 3.92 × 10−4

3.09 6878 4.12 × 10−4 2.31 × 10−3 2.89 × 10−4 2.60 × 10−3 8.41 × 10−4

2.63 6879 9.88 × 10−6 1.24 × 10−3 2.88 × 10−6 1.24 × 10−3 4.72 × 10−4

Mean 4.08 × 10−4 2.05 × 10−3 1.41 × 10−4 2.19 × 10−3 4.62 × 10−4

Standard Deviation 4.96 × 10−4 5.68 × 10−4 1.58 × 10−4 6.19 × 10−4 1.47 × 10−4
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Table A4. Cont.

Stone Type Mass of the
Individual Grain [g]

CT Scan
Number

Voxel Size [µm]

Surface Areas Measured Using CT [m2]

Closed Porosity Outer Surface Open Porosity
Outer Surface + Open Porosity

Absolute [m2] Relative [m2/g]

Granite

1.53 6950

11.2

2.14 × 10−5 8.15 × 10−4 6.23 × 10−5 8.77 × 10−4 5.74 × 10−4

0.72 6951 1.58 × 10−6 5.08 × 10−4 1.41 × 10−5 5.22 × 10−4 7.26 × 10−4

1.09 6952 3.63 × 10−5 6.80 × 10−4 1.84 × 10−4 8.64 × 10−4 7.93 × 10−4

0.98 6953 1.17 × 10−5 5.76 × 10−4 5.53 × 10−5 6.31 × 10−4 6.44 × 10−4

1.92 6954 1.01 × 10−6 8.71 × 10−4 1.59 × 10−5 8.87 × 10−4 4.62 × 10−4

1.76 6955 7.23 × 10−5 9.39 × 10−4 6.90 × 10−5 1.01 × 10−3 5.73 × 10−4

3.17 6956 1.36 × 10−4 1.43 × 10−3 3.65 × 10−4 1.80 × 10−3 5.68 × 10−4

2.77 6957 1.37 × 10−4 1.28 × 10−3 5.26 × 10−4 1.81 × 10−3 6.53 × 10−4

2.69 6958 4.95 × 10−5 1.62 × 10−3 5.91 × 10−5 1.67 × 10−3 6.23 × 10−4

6.15 6959 1.09 × 10−4 1.87 × 10−3 9.91 × 10−8 1.87 × 10−3 3.04 × 10−4

Mean 5.76 × 10−5 1.06 × 10−3 1.35 × 10−4 1.19 × 10−3 5.92 × 10−4

Standard Deviation 5.06 × 10−5 4.42 × 10−4 1.66 × 10−4 5.04 × 10−4 1.29 × 10−4
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