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Abstract: Micro-arc oxidation (MAO) treatment is a simple and effective technique to improve the
corrosion resistance for magnesium alloys. However, the presence of micro-pores and cracks on the
coatings provides paths for corrosive ions to penetrate into and react with the substrate, limiting
the long-term corrosion resistance. In this paper, we designed a composite coating with which
GelMA hydrogel coatings with varying thicknesses were prepared on the surface of MAO-coated
magnesium alloys via a dip-coating method, aiming to improve the biocorrosion resistance and
biocompatibility. The surface morphology, the chemical composition of GelMA hydrogels, and the
crystallographic structure of magnesium alloys were characterized by scanning electron microscope
(SEM), Fourier-transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD), respectively.
The corrosion resistance and biocompatibility of all samples were evaluated through electrochemical
and biological experiments. The results demonstrated that the addition of GelMA hydrogel could
effectively seal the pores and improve the corrosion resistance and biocompatibility of MAO-coated
magnesium alloys, especially for the sample with one layer of GelMA hydrogel, showing high cell
proliferation rate, and its current density (Icorr) was two orders of magnitude lower than that of the
MAO coating. Besides, the balance mechanism between corrosion and protection was proposed.
As a result, the GelMA hydrogel coatings are beneficial to the application of MAO-coated magnesium
alloys in bone tissue engineering and other fields.
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1. Introduction

In recent years, magnesium (Mg) and its alloys are attracting immense attention in the clinical
applications owing to their excellent biocompatibility and suitable biomechanical compatibility [1–7].
However, the poor corrosion resistance of magnesium alloys leads to a series of biological problems,
such as excessive degradation speed, production of H2, and alkalization in the microenvironment
surrounding the implant, which gives rise to the loss of biological function of implants [8]. Therefore,
it is necessary to control the degradation rate of magnesium alloys for realizing long-term implantation.
At present, surface modifications are considered to be an effective way to improve the corrosion
resistance of magnesium alloys [9–14]. Among all of the various surface modifications, the MAO
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coatings have been widely employed on Mg alloys due to its metallurgical adhesion to the substrate,
good wear resistance, moderate corrosion resistance, and high hardness [15–19]. For example,
Zhao et al. [20] compared the properties of AZ91 alloy before and after the micro-arc oxidation (MAO)
treatment and found that MAO treatment significantly improved the wear resistance and corrosion
resistance, greatly improving the surface performance. However, MAO coatings have a larger number
of pores and micro-cracks generated during the coating formation process, and the presence of pores
and micro-cracks on the coatings provides paths, which facilitate the corrosive ions to penetrate into
and react with the substrate, accelerating corrosion, and the coatings composed of inert materials are
not conducive to cell adhesion and growth [21,22]. For instance, Fischerauer et al. [23] investigated the
degradation rate of uncoated and MAO-coated ZX50 magnesium alloy implants in rat femurs and
found that the degradation rate of uncoated magnesium alloy was higher than that of MAO-coated
magnesium alloy in the first 4 weeks, but there was a reverse trend in the following 4 weeks. The result
confirmed that the MAO coatings could ameliorate the corrosion resistance actually, but the corrosion
resistance of MAO coatings was only reflected in the initial period of time because of the existence of
the porous structure in MAO coatings.

Therefore, it is necessary to carry out post-processing, such as pore sealing, further for MAO-coated
magnesium alloys to improve the corrosion performance and provide longer protection. Recently,
composite coatings are extensively proposed to reduce the risk of the corrosion of magnesium
alloys [24–26]. Li et al. [27] deposited Ta2O5 film on MAO coating by atomic layer deposition
(ALD) technology, which effectively sealed the micropores and microcracks of the MAO coating.
Moreover, the current density (Icorr)of the composite coating decreased three orders of magnitude than
that of the substrate and MAO coating, improving corrosion resistance. Zeng et al. [28] fabricated
MAO/poly(L-lactic acid) (PLLA) organic composite coatings on Mg-1Li-1Ca alloys by dip-coating and
freeze-drying method in order to improve the corrosion resistance and cell compatibility of Mg-1Li-1Ca
alloys. Yu et al. [29] prepared MAO/chitosan (CS) organic composite coatings on the surface of
magnesium alloy. It not only confirmed that the composite coating improved the corrosion resistance of
the alloy but also showed a noticeable inhibition on the growth of bacteria. Thereby, it is of importance
to improve both the corrosion resistance of magnesium alloys and biocompatibility by means of
forming the composite coatings prepared on MAO-coated magnesium alloys. As a hydrophilic
three-dimensional polymer mesh material, GelMA hydrogels have attracted particular attention in
tissue engineering owning to their stable physicochemical properties, good biocompatibility, and
cell enzymatic degradation [30–33]. Tan et al. [34] applied GelMA/HA composite as a coating on
titanium-based materials, and the results demonstrated that the coating had good bone repairability.
Thereby, it has great potential in improving the corrosion resistance and biocompatibility theoretically
if the GelMA hydrogels are used to seal the pores of the MAO coatings. Nevertheless, to the best
of our knowledge, there is no report related to the composite surface modification of MAO-coated
magnesium alloys with GelMA hydrogel coatings.

Herein, we fabricated a different thickness of GelMA hydrogel coating on the surface of
MAO-coated WE43 alloys by the dip-coating method and obtained insight into the corrosion resistance
and biocompatibility of MAO-coated magnesium alloys with and without GelMA hydrogel coatings.

2. Materials and Methods

2.1. Samples and Coating Preparation Procedures

WE43 Mg alloys ingot (Mg-4% Y-3.3% RE (Nd, Gd)-0.5Zr%) were purchased from Wuxi Taicheng
Metal Material Products Co. Ltd., and these materials were cut into pellets with Φ 10 mm × 1 mm
for electrochemical tests, atomic force microscope (AFM, the AFM mode of a scanning tunneling
microscope, CSPM5500, Benyuan nano Instrument Co. Ltd., Guangdong, China), scanning electron
microscope (SEM, Zeiss, Germany), and Φ 8 mm × 1 mm for extract preparation, cell culture tests, and
other assays. The preparation process of GelMA/MAO composite coating was carried out as follows,
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with a schematic diagram illustrated in Figure 1. Prior to MAO coating, the samples were polished
with abrasive papers and washed with alcohol ultrasonically. The MAO process was carried out under
the environment of 1400 Hz alternating current, 450 V voltage, and a duty cycle of 30% oxidized.
The whole processing of MAO lasted 9 min at room temperature.
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Figure 1. Schematic diagram illustrating the preparation process of the GelMA/MAO (micro-arc
oxidation) composite coating on the WE43 magnesium alloy substrate: (a) WE43 magnesium
alloy substrate pretreated by polishing, cleaning, and drying; the MAO coating prepared on the
magnesium alloy substrate; the GelMA hydrogel coating prepared on the MAO-WE43 alloy with the
dip-coating method; the GelMA/MAO-WE43 alloy pretreated by UV irradiation; (b) Section diagram of
GelMA/MAO-WE43 alloy.

The GelMA hydrogel coating was prepared via a dip-coating method. Firstly, GelMA prepolymer
(the synthesized process was described in Ref [35]) was dissolved in PBS at 37 ◦C for a 10 wt.%
solution. The MAO-treated samples were ultrasonically cleaned in alcohol for 10 min and dried at
room temperature. Subsequently, MAO-coated samples were dipped into the GelMA prepolymer
solution for 60 s, withdrawn at a speed of 1 cm/min, and cross-linked in UV for 5 min to form GelMA
hydrogel coating. The dipping repeated was set to 0, 1, 5, 10, and 15 times to obtain GelMA hydrogel
coatings with different thicknesses. The prepared samples were kept drying in the air for at least 48 h
for further assays. The prepared coated samples were as follows:

MAO-WE43, GelMA/MAO-WE43 with GelMA coating time of 1, 5, 10, 15. Therein,
GelMA/MAO-WE43 with GelMA coating time of 1, 5, 10, 15 was named as 1GelMA/MAO-WE43,
5GelMA/MAO-WE43, 10GelMA/MAO-WE43, and 15GelMA/MAO-WE43, respectively. Single
MAO-coated samples were used as control. The processing of samples is shown in Table 1.

Table 1. The processing of samples.

Sample Processing The Number of Dip-Coating

1#, MAO-WE43 MAO 0
2#, 1GelMA/MAO-WE43 MAO + dip-coating 1
3#, 5GelMA/MAO-WE43 MAO + dip-coating 5

4#, 10GelMA/MAO-WE43 MAO + dip-coating 10
5#, 15GelMA/MAO-WE43 MAO + dip-coating 15

2.2. Characterization of Coatings and Electrochemical Test

2.2.1. Surface Analysis

The crystallographic structures of WE43 and MAO-WE43 samples were investigated by an X-ray
diffraction meter (XRD, Cu Kα, D/max-A, Rigaku, Japan) at a scanning speed of 2◦/min in the 2θ
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range of 20◦–90◦. The phase composition of GelMA hydrogel was analyzed by Fourier-transform
infrared spectroscopy (FTIR-850, Tianjin Gangdong Technology Co. Ltd, Tianjin, China). The range of
the spectra collected was 4000–400 cm−1. Then, a scanning electron microscope (SEM) was used to
observe the morphology and layer thickness of the coated samples. In addition, the surface roughness
of samples was analyzed through atomic force microscopy (AFM). The surface roughness (Ra) was
estimated by using the following equation:

Ra =

∫ L
0

∣∣∣r(x)∣∣∣dx

L
(1)

where r(x) is a profile deviation from its mean value, and L is a sampling length.

2.2.2. Electrochemical Corrosion Test

The electrochemical test was carried out on a multifunctional electrochemical workstation
(Reference3000, Gamry, Philadelphia, PA, USA) with a three-electrode system that includes the coated
samples as the working electrode (the exposed surface area was 0.785 cm2), a platinum plate as the
counter electrode, and a saturated calomel electrode (SCE) as the reference electrode. The scanning
rate was 1 mV·s−1 in the potentiodynamic polarization. The open circuit potential (OCP) was from
−0.5 V vs. OCP to 0.5 V vs. OCP.

2.3. The Evaluation of Cytocompatibility In Vitro

2.3.1. Preparation of Extracts

To gain the extracts, the coated samples were sterilized by ultraviolet irradiation at least 1 h
and then immersed in cell culture solution (90% α-MEM (Hyclone, Logan, UT, USA) + 10% fetal
bovine serum (Gibco, New York, NY, USA)) with 0.1% penicillin-streptomycin solution (and µg/mL,
respectively, Hyclone). The immersion ratio of sample surface area to solution volume was 3 mL/cm2.
Then, samples were all kept in the CO2 incubator (37 ◦C, 5% CO2) for 3 days. The Mg2+ content and
pH value of extracts were analyzed by an Ultraviolet spectrophotometer (T6 new centroy, Beijing
Puxi General Instrument Co. Ltd, Beijing, China) and a pH meter (FE20, Mettler Toledo, Göttingen,
Germany), respectively. The extracts of samples were saved at 4 ◦C for biocompatibility tests.

2.3.2. Cell Culture

MC3T3-E1 (Shanghai Zhong Qiao Xin Zhou Biotechnology Co., Ltd, Shanghai, China) were
cultured in cell culture solution (the component of culture solution was like above) under the
environment of CO2 incubator (37 ◦C, 5% CO2). When 80–90% of the bottom of the culture bottle was
full of cells, the cells were detached by 0.25% trypsin-EDTA (Gibco) and subcultured until the third
passage, which was used to the evaluation of cytocompatibility in vitro.

2.3.3. Cell Viability and Proliferation Assay

In this experiment, MC3T3-E1 cells were firstly seeded in a 96-well plate for 24 h. The density and
volume of cell suspension were 2 × 104 cells/mL and 100 µL/well, respectively. After 24 h of incubation,
the cell culture solution was replaced by the sample extracts. Then, the cell was continually incubated
for 1, 3, and 5 days. When the experiment finished, 10 µL of CCK8 solution was added in each well
and then incubated for 2 h in the CO2 incubator. Lastly, the optical density of each well was measured
by a microplate reader (Model 680, Bio-Rad, California, America) at 450 nm.
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3. Results

3.1. XRD Results and FTIR Spectra

Figure 2a illustrates the XRD patterns of WE43, MAO-WE43 samples. Obviously, compared with
WE43 alloys, there was a MgO diffraction peak in MAO-WE43 samples, which was the result of plasma
chemical oxidation reactions in the discharge channels produced by spark [16]. The diffraction angle
corresponding to the diffraction peak of Mg was smaller than that of the standard card, which could be
ascribed that there were other elements in WE43 besides Mg, but they were not detected due to their
small content.
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Figure 2b shows the FTIR patterns of GelMA hydrogel. FTIR designated that the peak at 3289 cm−1

indicated the presence of peptide bonds (mainly N–H stretching). The strong peak at 1653 cm−1 was
related to C=O stretching vibration, and the peak at 1535 cm−1 was related to C–N stretching plus
N–H bending. It was found that the GelMA hydrogels contained abundant amino and amide groups
from the FTIR spectra, which also confirmed their high hydrophilicity.

3.2. The Morphologies of the Coatings

Figure 3 shows a comparison of SEM images of MAO-WE43 samples and four groups of
GelMA/MAO-WE43 samples with varying layers of GelMA hydrogel coating (1,5,10,15) (a–e), also,
the surface porosity (Figure 3g) and pore size (Figure 3h) of the five groups of samples. It could be seen
that there were micropores with a size of about 0.7 µm and microcracks (Figure 3f) on the surface of
MAO-WE43 coatings, resulting from discharge tunnels between electrolyte and surface during MAO
process. As for samples added to GelMA hydrogel coatings, no obvious distinct was observed between
MAO-WE43 samples and GelMA/MAO-WE43 samples with different layers in terms of porosity.
The average hole radius of 1GelMA/MAO-WE43, 5GelMA/MAO-WE43, 10GelMA/MAO-WE43, and
15GelMA/MAO-WE43 samples was about 1.725, 1.5, 0.85, and 1.225 µm, respectively, which was
larger than that of MAO-WE43 samples. Furthermore, the SEM images revealed that owing to the
porous structure of GelMA hydrogels, all surface morphology of the composite coatings showed a
poor coating uniformity with small island protuberances and asymmetrical pores, compared with
MAO-WE43 samples. In general, increasing the number of the coating layers decreased the pore size
and the pore size distribution; however, 15GelMA/MAO-WE43 samples had a bit larger pore size than
the previous grade samples. According to the previous research theory [14,36] that the achieved layer
thicknesses and the pore formation were influenced by the viscosity of the GelMA hydrogel or stress
on the coated layer during extraction, we could speculate that uniformity and individual anomalies
were the results of GelMA hydrogel viscosity and stress.
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As shown in Figure 4, the cross-section of GelMA/MAO-WE43 coatings presented the profile
of the hierarchical structure. From the cross-section images, we can observe the distinct boundary
between the GelMA layer and the MAO layer and the fuzzy connection between the WE43 magnesium
alloy and the MAO layer. The thicknesses of samples were 13.7, 14.9, 15.4, 16.8, and 25.2 µm with
the numbers of dip-coating of 0, 1, 5, 10, and 15 times on average, respectively (Figure 5, Table 2).
As expected, the coating thickness increased with an increase in the number of dip-coating. In particular,
the thickness of the 15GelMA/MAO-WE43 sample increased exponentially compared with that of
10GelMA/MAO-WE43. Therefore, it was reasonable to believe that the coating of GelMA hydrogel
could effectively seal the pores and microcracks of MAO coatings and achieve the purpose of improving
the corrosion resistance of materials.
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1GelMA/MAO-WE43; 3#: 5GelMA/MAO-WE43; 4#: 10GelMA/MAO-WE43; 5#: 15GelMA/MAO-WE43.

Table 2. Average thicknesses of samples.

Sample The Number of Dip Coating Thickness (um)

1# 0 13.7
2# 1 14.9
3# 5 15.4
4# 10 16.8
5# 15 25.2

As the surface roughness of implant materials exerted a pronounced influence on cell attachment,
we investigated this property using atomic force microscopy (AFM), as depicted in Figure 6.
The statistical analysis diagram of the surface roughness of samples is shown in Figure 7. From the
three-dimensional and two-dimensional surface topography, it can be recognized that with the increase
of the coating thickness, the surface roughness decreased correspondingly, which was closely related
to the hydrophilicity of hydrogels. In addition, it was noted that the surface roughness of MAO-WE43
samples was higher than that of GelMA/MAO-WE43 samples, especially for 15GelMA/MAO-WE43
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samples, showing a smooth surface. Therefore, the preparation of GelMA hydrogel coating with
different thicknesses on MAO coating could change the surface water absorption degree and change
the surface roughness of the composite coating then. However, it could not be ignored that the number
and size of the pores on the coating surface could also affect the surface roughness.
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3.3. Electrochemical Corrosion

Electrochemical methods are extensively used in studying corrosion behaviors as they are suitable
for evaluating the corrosion mechanisms of the samples. Herein, potentiodynamic polarization
(PDP) was carried out to probe the effect of GelMA hydrogel coatings on the corrosion behaviors
of the MAO-coated magnesium alloys. The PDP curves are displayed in Figure 8, and relevant
electrochemical parameters are summarized in Table 3. It can be seen that the Icorr of the samples
followed this consequence: 1GelMA + MAO < 15GelMA + MAO < 5GelMA + MAO < 10GelMA +

MAO < MAO. This result indicated that the Icorr value of MAO-WE43 alloy was 1.65E-06A, lower than
that of MAO-WE43 alloys treated by GelMA hydrogel. Even the best sample was MAO + 1GelMA,
which was two orders of magnitude lower than that of MAO-WE43 alloy, which demonstrated that
its corrosion resistance had been effectively improved. The Ecorr of the samples increased in the
following consequence: 1GelMA + MAO < 10GelMA + MAO < 15GelMA + MAO < 5GelMA +

MAO < MAO. Data showed that the Ecorr value of MAO-WE43 alloys treated by GelMA hydrogel
with different coating layers decreased, in general, compared with that of MAO-WE43 alloy. It was
speculated that this might be related to the solvent permeability of GelMA hydrogels. In addition,
according to the analysis of corrosion rate: 1GelMA/MAO < 15GelMA/MAO < 5GelMA/MAO <
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10GelMA/MAO < MAO, it can be recognized that the corrosion rate of all GelMA/MAO-WE43 alloys
was better than that of MAO-WE43 alloy, especially 1GelMA/MAO sample had the lowest corrosion
rate. Namely, MAO-coated samples by the GelMA hydrogel treatment remarkably reduced the
presence of micropores in MAO coating, blocking the entry of aggressive ions through micropore,
and greatly increasing the corrosion resistance of the MAO-coated samples.
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Table 3. Parameters of the PDP curves of MAO-WE43 and GelMA/MAO-WE43 samples.

Sample Processing Mode Beta A
(mV)

Beta C
(mV)

Icorr
(A/cm2) Ecorr (V) CorrRate

(MPY) R (omega)

1# MAO 49.402 148.65 1.65 × 10−6 1.5079 1.44470 9.8 × 106

2# MAO + 1GelMA 191.63 189.42 5.40 × 10−8 1.6057 0.047302 7.7 × 108

3# MAO + 5GelMA 80.638 146.38 3.33 × 10−7 1.5437 0.29139 6.8 × 107

4# MAO + 10GelMA 408.37 337.01 1.60 × 10−6 1.5718 1.40000 5.0 × 107

5# MAO + 15GelMA 110.14 197.61 2.10 × 10−7 1.5480 0.18401 1.5 × 108

Beta A: anode slope; Beta C: cathode slope; Icorr: corrosion current density; Ecorr: corrosion potential; CorrRate:
corrosion rate; R: polarization impedance.

3.4. In Vitro Biocompatibility

It is well known that the biocompatibility of magnesium and its alloys is also affected by
their degradation behaviors. In the process of corrosion, the rapid changes in pH value and Mg2+

concentration will hinder the growth of cells. Herein, the degradation behavior in vitro was evaluated
by analyzing the pH value and Mg2+ concentration of the extract, as shown in Figure 9. Firstly,
the culture medium was presented as the blank, owning a typical physiological pH value of about
7.48, and it could be clearly found that compared with the culture medium, the pH value of the
extract increased significantly, especially for the 5GelMA/MAO-WE43 sample, but the other samples
exhibited minor differences. As for Mg2+ concentration, the result showed that Mg2+ concentration
of GelMA/MAO-WE43 samples was obviously lower than that of MAO-WE43 samples, and Mg2+

concentration of the 1GelMA/MAO-WE43 samples generated by corrosion decreased almost by half
with one layer of GelMA hydrogel, which exhibited the sealing effect of GelMA hydrogel coatings.
Meanwhile, it can be seen that these results were well in accordance with those obtained from
electrochemical tests, further confirming that the GelMA hydrogel coatings had an anticorrosive effect
on the MAO-WE43 alloy.
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Figure 9. (a) pH value and (b) Mg2+ concentration of the extracts of MAO-WE43 and
GelMA/MAO-WE43 samples. 1#: MAO-WE43; 2#: 1GelMA/MAO-WE43; 3#: 5GelMA/MAO-WE43;
4#: 10GelMA/MAO-WE43; 5#: 15GelMA/MAO-WE43.

The viability and proliferation of MC3T3-E1 cells cultured in five groups of sample extracts for 1, 3,
and 5 days were analyzed employing the CCK-8 assay kit, with statistical results displayed in Figure 10
and Table 4. Compared with MAO-WE43 samples, the MAO-WE43 samples treated by GelMA hydrogel
had superior viability and higher cell proliferation. The 5GelMA/MAO-WE43 samples exhibited the
highest cell viability, with a value of up to 90% on day 1. Nevertheless, the value of cell viability was
40% and 20% on day 3 and 5, respectively, showing that the cell viability decreased too fast. While,
for the 10GelMA/MAO-WE43 samples, relatively high cell viability and a slow decline of cell viability
could be obtained. Meanwhile, throughout the entire cell proliferation assay, the GelMA/MAO-WE43
samples showed excellent cell proliferation rate in comparison to the MAO-WE43 samples, especially
the 10GelMA/MAO-WE43 samples showed the highest cell proliferation rate on day 5. Therefore,
the existence of the GelMA hydrogel layer could provide a similar environment as the cell matrices
significantly improved cell viability and proliferation.
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Figure 10. Viability results of MC3T3-E1 cells cultured in MAO-WE43 and GelMA/MAO-WE43 samples
for 1, 3, 5 days.

Table 4. The number of MC3T3-E1 cells cultured in MAO-WE43 and GelMA/MAO-WE43 samples for
1, 3, 5 days (104 cells/mL).

Sample
1 Day 3 Days 5 Days

Mean SD Mean SD Mean SD

1# 1.647 0.144 1.372 0.551 2.222 1.726
2# 2.430 0.304 4.472 1.418 8.705 7.234
3# 3.155 0.742 4.005 2.570 5.355 4.594
4# 3.063 0.355 4.922 0.850 9.355 5.887
5# 2.897 0.379 4.422 1.242 8.538 1.754
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4. Discussion

4.1. Corrosion Resistance

Micro-arc oxidation (MAO) technology can achieve a high degree of combination with the substrate
and effectively improve the corrosion resistance of magnesium alloy. Nevertheless, the existence of a
porous surface structure limits its long-term corrosion resistance. Therefore, in this study, GelMA/MAO
composite coatings are prepared on the surface of MAO-coated magnesium alloy to achieve proper
control of its degradation process. Based on the results of morphologies of the samples in Figures 3–6,
it could be seen that there are micropores and microcracks on the surface of MAO-WE43 coatings,
and compared with them, the surface morphology of GelMA/MAO-WE43 alloys with varying layers
shows a nonuniform coating with a bit big pores, which is owning to the unfixed GelMA hydrogel
viscosity and stress. But overall, the thickness of the hydrogel coating increases with the increase of dip
times. The corrosion behaviors of the composite coating are investigated by corrosion measurements.
The conclusions are as follows: the results of Icorr and corrosion rate show that GelMA/MAO-WE43 alloys
improve the corrosion resistance and reduce the corrosion rate, but the Ecorr result is negatively shifted
(Figure 8, Table 3), which may be resulted from the solvent permeability of GelMA hydrogel. According to
the electrochemistry theory [37], the Ecorr of the whole reaction shifts towards the equilibrium potential of
the reaction with the larger reaction rate. The present study has found that due to the solvent permeability
of GelMA hydrogel water diffusion, the GelMA coating is preferentially attacked in the presence of water.
Meanwhile, the hydrogel coatings will absorb, expand, delaminate, and peel off with the diffusion of
water. As well known, Mg (OH)2 and hydrogen gas will be produced during the degradation process of
magnesium alloys, and the overall reaction can be expressed as follows:

Mg→Mg2+ + 2e− (2)

2H2O + 2e−→ 2OH− + H2↑ (3)

Mg + 2H2O→Mg(OH)2 + H2↑ (4)

The corrosion mainly occurs at the interface of the MAO coating and magnesium alloys, where
the corrosion products, such as Mg(OH)2, accumulate and can hinder the further corrosion of the
MAO-coated alloy to a certain extent, so the corrosion resistance of the magnesium alloy improved.
Meanwhile, the H2 generated can be expelled through the pores of the hydrogel, while the concentrated
H2 increases the internal stress under the MAO coatings and GelMA hydrogel coatings if the hole is
too small to discharge in time, leading to the generation of expansion bubbles on the GelMA hydrogel
coatings. Furthermore, the GelMA/MAO alloys degrade below the GelMA hydrogel layer and exhibit
the pitting corrosion characteristics of magnesium alloys, accumulation of products, and swelling of
hydrogels, finally leading to destruction and exfoliation. Thus, a degradation mechanism is illustrated
in Figure 11, indicating that the degradation of GelMA/MAO-WE43 alloys experiences four steps:
(1) water contacts GelMA hydrogel and is absorbed. (2) water diffusing through the micropores of
GelMA hydrogel onto the MAO coating and the magnesium alloys. (3) electrochemical corrosion of
the MAO coating and magnesium alloys. (4) the swelling and rupture of the GelMA hydrogel.

4.2. In Vitro Biocompatibility

An important surface morphology factor related to cell compatibility is roughness. As a general
trend, cells are prone to attach and function more actively on rough surfaces [13]. In this study, combined
with the experimental results of surface morphology, surface roughness, and cell proliferation, it is
found that the surface roughness of GelMA/MAO-WE43 alloys is lower than that of MAO-WE43 alloys.
This result is familiar with that of Shang et al. [38], that is, the surface roughness of MAO/GO composite
coatings on magnesium alloy surface is smaller than that of the MAO film. However, their cell viability
and cell proliferation results are better than those of MAO-WE43 alloys, which indicates that the
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addition of GelMA hydrogel decreases the surface roughness but promotes the cell proliferation owing
to the hydrophilic porous structure. Simultaneously, it is reported that hydrophilic surfaces could
increase the surface area of the implants for human osteoblast adhesion. Therefore, as a porous organic
material, GelMA hydrogel can not only work as a sealing layer but also provide a great condition for
cell adhesion and proliferation on the MAO-coated magnesium alloys. It is well-known that cells are
very sensitive to changes in the microsurrounding environment, such as the sharp changes in the pH
value and Mg2+ concentration. The sharp increase in the pH value and concentration of Mg2+ released
by the degradation of magnesium alloys and the MAO coatings may hinder cell growth. In this study,
the Mg2+ concentration of GelMA/MAO-WE43 alloys is lower than that of MAO-coated alloys, and
correspondingly, the results of cell viability and cell proliferation have similar rules (Figures 9 and 10).
Thereby, as a porous organic material, GelMA hydrogel not only works as a physical barrier layer
but also provides a suitable condition for cell adhesion and proliferation on the MAO-WE43 alloys.
Combining MAO with GelMA hydrogel can take advantage of the superiority of the two coatings on
biodegradable magnesium alloys.Materials 2020, 13, x FOR PEER REVIEW 12 of 15 
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4.3. The Balance Mechanism of Corrosion and Coating Protection

It has been supposed that the increase of the thickness of GelMA hydrogel coating would increase
the corrosion resistance of the MAO-WE43 alloys, owing to better protection of the coating on the
substrates. However, in this study, there is no linear relationship between coating thickness and
electrochemical test results, biocompatibility results, etc. For instance, Figure 9 shows that the Mg2+

concentration of the MAO-WE43 alloy extract treated by GelMA hydrogel is obviously lower than that
of the uncoated samples, and the pH value of the MAO-WE43 alloy extract treated by GelMA hydrogel
is higher than that of the uncoated samples. However, the previous studies [29] have proposed that the
degradation of MAO/CS coatings gives rise to a decrease in pH value with increasing immersion time
and leads to, finally, the MAO/CS coating, keeping the solution’s pH at a medium level. In addition,
in this study, with the increase of the coating thickness, the Mg2+ concentration gradually increases,
but the pH value first increases and then decreases. In general, the 1GelMA/MAO-WE43 alloys have
superior corrosion resistance and biocompatibility. That is, the thickness of MAO is not the only
factor directly affecting the corrosion resistance and biocompatibility. We speculate that this is due to
the balance mechanism between the corrosion of magnesium alloy and the protection of the coating.
In detail, GelMA hydrogel can prevent the release of corrosion products more and further protect
the MAO-coated alloys with the increase of the thickness of the coating. Nevertheless, as a physical
sealing, GelMA hydrogel inevitably generates microcracks during drying; meanwhile, the GelMA
hydrogel coatings absorb much water and accelerate the expansion of the coatings, leading to their
limited binding force with the substrate, especially for the ones with thicker coating. Finally, it will
easily peel-off from the MAO-WE43 alloys. Therefore, it is still challenging to balance the corrosion
resistance of magnesium alloys with the long-term protection of GelMA hydrogel coatings by varying
the coating thickness in the future.
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5. Conclusions

GelMA hydrogel coatings with different thickness were prepared on MAO-WE43 alloy substrate
by dip-coating method, and the experimental results are as follows:

• The GelMA hydrogel coating plays a role in the sealing of the MAO-coated magnesium alloys,
which effectively prevents the entry of corrosive ions, and has more corrosion resistance than the
ones without GelMA hydrogel coating.

• GelMA hydrogel coatings can effectively control the Mg2+ content of the extract, promoting
the cell proliferation and growth, and the good cytocompatibility of the GelMA/MAO-coated
magnesium alloys is expected to be a promising bone tissue engineering material.

• There is no linear relationship between coating thickness and biocompatibility results and
electrochemical test results consisting of corrosion potential and corrosion rate due to the balance
mechanism between corrosion of magnesium alloy and the protection of GelMA hydrogel coatings.
Further study may be focused on optimizing the processing of GelMA hydrogel coatings.
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