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Abstract: BiFeO3 nanocrystals were applied as the sensing material to isopropanol. The isopropanol
sensor based on BiFeO3 nanocrystals shows excellent gas-sensing properties at the optimum working
temperature of 240 ◦C. The sensitivity of as-prepared sensor to 100 ppm isopropanol is 31 and its
response and recovery time is as fast as 6 and 17 s. The logarithmic curves of the sensitivity and
concentration of BiFeO3 sensors are a very good linear in the low detection range of 2–100 ppm.
In addition, the gas sensing mechanism is also discussed. The results suggest that the BiFeO3

nanomaterial can be potentially applied in isopropanol gas detection.
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1. Introduction

With the fast economic growth accompanied by the large demands of industry activities, the
emission of harmful substances are increasing, resulting in serious environment problems, such as air
pollution. Volatile organic compounds (VOCs) are important atmospheric pollutants ubiquitous around
us due to their vast application in production and living activities of construction, transportation,
furnishing, etc., and can cause human-health problems. Isopropanol, added by IARC (part of WHO)
into the lists of group 1 and group 3 carcinogens, is a member of the widely used VOC-family [1].
It is very harmful for a human to be exposed to isopropanol. A low concentration (below 400 ppm)
will stimulate the upper respiratory tract and cause eye discomfort, while a high concentration will
suppress the central nervous system and cause severe vomiting, respiratory decline, and internal
bleeding [2]. Therefore, as an effective approach, using gas sensors to realize the precise detection and
early warning of isopropanol is of great importance.

During the past years, scientists have done a lot of researches on high-sensitive gas sensors [3,4],
especially miniaturized smart sensors with fast response and real-time monitoring characteristics [5].
Gas-sensitive materials are the basic core components of gas sensors. After decades of research
and development, binary metal oxide semiconductor materials have taken center stage, such as
SnO2 [6], ZnO [7], TiO2 [8], and Fe2O3 [9], which show many advantages of high sensitivity, simple
design, low cost, efficiency, compatibility, and portability. However, applications have seen the
unsatisfactory working temperature, long-term stability, and working life of binary metal oxides
as above [10]. To improve these weaknesses, several types of architectures such as mesoporous
ball-flower structures [11] and hollow nanospheres [12] have been designed. Although some gas
sensitive parameters such as gas sensitivity can be optimized, other important features are likely to be
compromised. Therefore, instead of binary oxides, seeking other materials inherently with excellent
gas sensing properties is another important way to improve gas sensors.

Since perovskite-structure oxides have excellent semiconductor properties, high temperature
stability and rapid oxygen mobility [13–16], they are ideal candidates. BiFeO3 is a distorted
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perovskite oxide which possesses both ferroelectricity (TC = 1103 K) and G-type antiferromagnetism
(TN = 643 K) [17]. BiFeO3 is also a p-type semiconductor and its optical band gap is approximately 2
and 3 eV for nanoparticles and single crystals, respectively [18,19]. Given the oxides’ commonalities,
lots of oxygen vacancies are in the body and the surface of BiFeO3, while the surface oxygen vacancies
provide reliable locations for external oxygen molecules. Meanwhile, BiFeO3 is a kind of oxide material
with a fast oxygen vacancy diffusion rate [20,21]. Therefore, BiFeO3 exhibits excellent gas sensing
properties. However, only a handful of relevant articles have been published, most of whose application
objectives are inorganic gases and limited VOCs such as acetone and ethanol [22–30]. Most of these
reports indicate that BiFeO3 is very sensitive to alcohols and ketones and the gas sensitivities of
BiFeO3 sensors are influenced by their morphology and particle size. Tong Tong [27] found that the
sensitivities of BiFeO3 gas sensors to 50 ppm ethanol based on their disk-shaped particles (2 µm) by
the hydrothermal method and nanoparticles (100 nm) by the co-precipitation method are respectively
3.3 and 4 at 260 ◦C. Yu Xuelian [29] controlled the size of nanoparticles by adjusting the growth time
using the sol-gel method to construct BiFeO3 tubular sensors and found that the smaller the particle
size of BiFeO3 is, the greater the sensitivity is. The sensitivity of 30 nm (100 nm) particles to 50 ppm
ethanol and acetone at 260 ◦C are 40 (27) and 36 (24), respectively. It can be seen that the growth time
and temperature need to be reduced in order to reduce the particle size and improve the sensitivity.
In those reported BiFeO3 ethanol sensors, BiFeO3 nanoparticles have better gas sensing property than
other nanostructures. It is probably because smaller nanoparticles have a larger specific surface area
and abundant oxygen vacancy defects. So far, the BiFeO3 gas sensitive material is limited to only a
few organic gases and is still worth further exploring for many organic gases. Considering the gas
sensing advantages of BiFeO3 nanoparticles and the toxicity of isopropanol, BiFeO3 nanocrystals are
applied as the sensing material to isopropanol in this paper. Different gas sensitive parameters such as
sensitivity and response/recovery time are studied, and the gas sensing mechanism is also discussed
by surface chemical reaction and gas adsorption/desorption between the external gas and the surface
of BiFeO3 nanocrystals.

2. Materials and Methods

2.1. Preparation of BiFeO3 Nanocrystals

BiFeO3 nanocrystals were synthesized by a sol-gel method. All chemicals used were of analytical
grade. First, 0.006 mol Bi(NO3)3·5H2O (2.938 g) was added into the dilute nitric acid (2 ml concentrated
nitric acid whose content is 65–68% was mixed by 8 mL of water) and stirred for half an hour to
obtain a colorless transparent solution (Bi-based solution). Next, 0.006 mol Fe(NO3)3·9H2O (2.461 g)
was dissolved in deionized water (10 mL) to a form a transparent red solution (Fe-based solution).
Then, the Bi-based solution and the Fe-based solution were mixed together to form a transparent
yellow solution. A few drops of 3% polyvinyl alcohol solution and tartaric acid were successively
added into the transparent yellow solution as the surfactant and the complexing agent, respectively.
Here, the molar amount of tartaric acid was greater than the total molar number of metal ions of
nitrates. The mixed solution was stirred for about 10 h at room temperature and then heated at 90 ◦C
until the sol changed into a bright shining yellow dry gel. The dry gel was ground in an agate mortar
for 1 h and then sintered for 4 h at different temperatures (500 and 550 ◦C).

2.2. Characterization

Thermogravimetric analysis and differential thermal analysis (TG-DTA) were performed from
25 to 800 ◦C in air to determine the thermal behavior of the dry gel. The surface morphologies of
BiFeO3 nanocrystals were observed by a field emission scanning electron microscopy (FESEM, Merlin
Compact, Carl Zeiss, Oberkochen, Germany. An XRD-6000 (Shimadzu Corporation, Tokyo, Japan)
X-ray diffractometer (Cu Kα, λ = 1.5406 Å, scanning range 20–70◦, 4◦/min) was applied to analyze the
crystallinity and phase purity of the synthesized bismuth ferrite. An X-ray photoelectron spectrum
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(XPS) was used to characterize the surface compositions and corresponding element valence of
BiFeO3 nanocrystals.

2.3. Fabrication and Measurement of Gas Sensors

Two hundred mg BiFeO3 nanocrystals were mixed with deionized water (0.2 mL) by grinding
in an agate mortar to form a paste. The mixed paste was brushed thinly on the surface of the Ag-Pd
interdigital electrode on the Al2O3 substrate. After drying, the planar BiFeO3 gas sensors were obtained.

Before measurement, the dried BiFeO3 sensors were aged at 200 ◦C for 10 h in air. The gas sensitive
parameters (sensitivity, response time, recovery time, working temperature, stability, and selectivity) of
the BiFeO3 sensors were obtained on a CGS-1 TP intelligent gas sensing analysis system (Beijing Elite
Tech Co., Ltd., Beijing, China). Here, the Rg/Ra ratio was used to evaluate the sensitivity, where Rg

and Ra were the sensor resistance in the measured gas and in fresh air, respectively. The response or
recovery time was the time when the resistance change of BiFeO3 sensor reached 90% of (Rg − Ra) [31].
For more details about the measurement of the sensors, please refer to our previous work [26].

3. Results and Discussion

3.1. Growth Analysis

TG and DTA curves of the dry gel are shown in Figure 1. When the temperature increases from
room temperature to 100 ◦C, the weight hardly changes. The endothermic peak at 144 ◦C is attributed
to the evaporation of a small amount of water and acid attached to the gel, and the relevant weight
loss ratio is about 10%. The exothermic peak at 210 ◦C on the DTA curve corresponds to the collapse of
gel networks and the combustion of most organic materials producing a large number of nitrogen
and carbon oxides [32]. When the temperature reaches 300 °C, the weight loss ratio of the dry gel is
45%. A tiny weight loss (7%) between 300 and 500 ◦C means the release of carbon oxides, indicating
that there are still a small number of residual substances which has not been completely decomposed.
No more weight loss is observed when the temperature is above 500 ◦C. The exothermic peak at 502 ◦C
possibly indicates the full formation of the crystal. Therefore, to control the grain size, different grown
temperatures (500 and 550 ◦C) are adopted as the sintering temperature of BiFeO3 nanocrystals.
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dry gel.

3.2. Characterization

Figure 2 shows the surface micrographs of as-prepared BiFeO3 nanocrystals sintered at 500 and
550 ◦C. It is obvious that BiFeO3 nanocrystals have irregular surface morphologies and their average
size is approximately 100 nm. The nanocrystals appear to stick to each other and agglomerate in a large
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number. In addition, the nanocrystals grown at 550 ◦C are a little bigger and less agglomerated than
those grown at 500 ◦C. However, in general, the morphologies of nanocrystals at the two temperatures
are similar without much distinction.
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Figure 2. SEM images of BiFeO3 nanocrystals: (a) 500 ◦C and (b) 550 ◦C.

X-ray diffraction patterns of BiFeO3 nanocrystals sintered at 500 and 550 ◦C are shown in Figure 3.
It is obvious that all the reflection peaks of BiFeO3 nanocrystal powders match with the spectrum of
JCPDS Card No. 86-1518, and all diffraction peaks of BiFeO3 nanocrystals are obviously shifted to the
right by about 0.13◦, suggesting that BiFeO3 nanocrystal powders are of the rhombohedral distorted
perovskite structure (Space group R3c). It is probably because there are a large number of oxygen
vacancies in the body and on the surface of BiFeO3 nanocrystals greatly increasing the lattice distortion
and leading to the diffraction peak shift to the right. The diffraction peaks of two sintered powders
did not deviate significantly and the consistency of their peak heights and peak widths once again
indicates the comparability of the two nanocrystals.
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Figure 3. The XRD patterns of BiFeO3 nanocrystals.

Given the consistency of the 500 and 550 ◦C nanocrystals, here we choose the former for the XPS
study. Figure 4a shows the XPS spectrum of Bi, Fe, O, and C, among which C 1 s is from the measuring
environment. For Bi, Fe, and O elements, Gaussian deconvolution fitting is used to decompose two
peaks. Figure 4b shows two photoemission peaks of Bi 4f at 159.1 and 164.5 eV. Therefore, the spin
orbit splitting energy is 5.4 eV in the core level spectra between Bi 4f7/2 and Bi 4f5/2, which indicates
that Bi is +3 [33]. Figure 4c shows the spectrum of Fe 2p with two peaks of Fe 2p3/2 and Fe 2p1/2

at 709.6 and 724.2 eV, suggesting the presence of Fe2+ cations. In addition, a binding energy is also
fitted at 712.0 eV, corresponding to Fe3+ cations. Therefore, Fe2+ and Fe3+ cations coexist in BiFeO3
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nanocrystals and oxygen vacancies appear to compensate the electrical neutrality. Figure 4d shows
the O 1 s XPS spectrum. The two peaks at 529.7 and 531.8 eV are derived from lattice oxygen and
chemisorbed oxygen, respectively [34]. Thus, the XPS results demonstrate the presence of Bi, Fe, O in
the form of Bi3+, Fe3+, Fe2+, oxygen ions and O vacancies, respectively.
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3.3. Gas Sensing Performance

BiFeO3 sensors express the electrical characteristics of a typical semiconductor that the resistance
value of sensors in air decreases with the temperature increasing. The charge carriers of BiFeO3 are
holes produced by Bi3+ cation vacancy defects

(
Vx

Bi

) (
Vx

Bi → V′′′Bi+3h.
)
(Kroger-Vink defect notation) [35].

Since bismuth ferrite is a non-stoichiometric oxide, oxygen vacancy defects have been proven to exist
on its surface and in its body [21]. At different temperatures, the number of oxygen ions adsorbed
on the surface of BiFeO3 nanocrystals is different, so the number of oxygen ions reacting with the
isopropanol gas molecules is different too. The isopropanol sensing performance of BiFeO3 gas sensors
were investigated at different operating temperatures to confirm the optimum condition. Figure 5a
shows the gas response (assessed by sensitivity) of BiFeO3 gas sensors to 50 ppm isopropanol from 200
to 280 ◦C. With the temperature increasing, the isopropanol sensitivities of two BiFeO3 sensors are both
found to increase at first, undergo the maximum value at 240 ◦C, and then decrease gradually. Since
isopropanol gas molecules need a certain amount of thermal activation energy to react with the surface
absorbed oxygen species. When the operating temperature is too low, insufficient thermal energy and
low amount of absorbed oxygen ions on the sensor surface will inhibit the reaction between isopropanol
gas molecules and surface adsorbed oxygen ions [36]. However, when the operating temperature is too
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high, the desorption rate of oxygen gas is enhanced. As a result, some adsorbed oxygen species may
escape before reacting with isopropanol gas molecules so that the response to isopropanol decreases
correspondingly [37]. Therefore, the optimal operating temperature is at an equilibrium point between
the adsorption and desorption process. The largest response values for two sensors based on BiFeO3

nanocrystals sintered at 500 and 550 ◦C both appear at 240 ◦C. Therefore, 240 ◦C is considered as the
optimum working temperature. Figure 5b shows the typical dynamic resistance-time gas response
curves of two sensors at 240 ◦C to different concentrations of isopropanol (2–300 ppm). The initial
resistances of BiFeO3 sensors grown at 500 and 550 ◦C in air are 2.2515 × 106 and 3.5876 × 106 Ω,
respectively. The sensitivity-time curve is automatically obtained by the gas sensitive testing software
according to the formula S = Rg/Ra. The sensitivity of two sensors is almost the same after calculation
by the testing software and increase gradually with the isopropanol concentration increasing in the
range of 2–100 ppm. The response value corresponds approximately to 4.8, 10, 14, 18, 26, 30, 31 for
the isopropanol concentration of 2, 5, 10, 20, 50, 80, 100 ppm. The sensitivity of BiFeO3 gas sensors to
the lowest testing concentration (2 ppm) of isopropanol reaches 4.8 which can be obviously observed,
meaning that the detection limit of BiFeO3 gas sensor is as low as 1 ppm level in our experiment error.
When the concentration is greater than 200 ppm, the sensitivity no longer increases. This indicates that
oxygen ions adsorbed on the surface of BiFeO3 nanocrystals have reached its saturation point, implying
that bismuth ferrite is very sensitive to isopropanol at a low concentration. During the exchanging
cycle between isopropanol and ambient air, the resistance almost restores its initial value immediately
after isopropanol is released, which suggests the good stability of BiFeO3 sensors.
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In order to further discuss the isopropanol response of BiFeO3 sensors under different
concentrations, the traditional empirical formula of oxide semiconductor gas sensor is applied
to fit the sensitivity-concentration curves. In general, the sensitivity-concentration dependence of
metal oxide semiconductor is empirically represented as:

S = a(C)b + 1 (1)

where S represents the sensitivity, C is the concentration of isopropanol, and the ideal constant value
(a) denotes a prefactor depending on the gas sensing material [8,11,38]. At the optimum working
temperature of 240 ◦C, the equation can be rewritten in the logarithm function form:

log(S− 1)= b log C + log a (2)

Based on Figure 5b, we obtained the sensitivity-time curve at different concentrations. The above
formula is used to fit the relation between sensitivity and concentration. Figure 5c reveals that
log(S− 1) − logC curves of two BiFeO3 sensors are linear in the concentration range of 2–100 ppm.
The b values of two sensors are respectively 0.38 and 0.43, approaching to 0.5, suggesting that oxygen
ions on the surface of BiFeO3 nanocrystals are mainly composed of O2–. The measured correlation
coefficients R2 of two gas sensors are respectively 0.986 and 0.996, indicating good linear relations.

The Rg/Ra ratio is greater than 1 for the p-type semiconductor in reducing gas, and the resistance
of the gas sensor is kept relatively steady in air before isopropanol gas molecules are injected. Upon the
injection of isopropanol gas molecules, the sensor resistance increases fast. When the resistance of
BiFeO3 sensor reaches the maximum value, it will maintain a relatively stable value. When isopropanol
gas molecules are removed, the resistance of the sensor decreases rapidly. Therefore, the sensor has a
very short response and recovery time. Figure 5d shows that the response and recovery time of two
BiFeO3 sensors toward 100 ppm isopropanol at 240 ◦C are 6 and 17 s. These results show that BiFeO3

nanocrystals can respond quickly to isopropanol in a few seconds and are very suitable for making fast
isopropanol gas sensors.

In practical application, the reversibility and long-term stability are also important properties
that determine the practicability and cost performance of sensors [1,2,12,13,38]. Thus, the six-cycle
experiment of BiFeO3 sensors to 100 ppm isopropanol at 240 ◦C was carried out, as shown in Figure 6a.
The curves show that the sensitivity almost has no change after six exchanging cycles between air and
isopropanol. The sensitivity in the end of each cycle can recover to the initial value, indicating that the
sensor has a good reversibility. Figure 6b shows that the sensitivity almost remains constant during
the test days, revealing good long-term stabilities of both sensors to 100 ppm isopropanol at 240 ◦C
during one month.

The selectivity to a target gas among various gases is a crucial parameter to evaluate the gas
sensing performance. The selectivity of BiFeO3 sensors was investigated by the response to VOCs
including isopropanol, methanol, formaldehyde, cholamine, acetic acid, ammonia, dimethylformamide
(DMF), and acrylic acid. As shown in Figure 7, the maximum response value of BiFeO3 sensor sintered
at 500 ◦C is respectively 26, 12.2, 10.2, 7.2, 6.2, 3.8, 5.6, 8.7 to isopropanol, methanol, formaldehyde,
cholamine, acetic acid, ammonia, DMF, and acrylic acid at 240 ◦C. In addition, the 550 ◦C sintered
BiFeO3 shows the same trend. It shows that the response value to isopropanol is prominently higher
than that to other gases. This phenomenon might be attributed to the intrinsic nature of gas species
such as the molecular weight, molecular structure, and bond strength [36]. Since the bond strength
of C=O (799 kJ/mol) is much higher than other bonds, e.g., C–O, C–H, C–C, H–O, C–N, C=C, N–H
corresponding to 358, 411, 346, 459, 305, 602, 386 kJ/mol, respectively, it is more difficult for organic
gases containing C=O such as formaldehyde, acetic acid, DMF, and acrylic acid to be decomposed
than other organic gases such as isopropanol and methanol. For isopropanol and methanol, the former
with larger molecules can be more easily adsorbed to react with oxygen ions. Therefore, the sensors
show higher response to isopropanol than to methanol.
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At present, the understanding of the gas sensing mechanism of single phase oxide semiconductor
such as BiFeO3 is based on the electrical resistance change during adsorption and desorption in different
gas atmospheres. When the BiFeO3 sensor is exposed to air, oxygen molecules will be adsorbed
on the surface of BiFeO3 nanocrystals and they can be ionized into O−2 , O−, O2− by capturing free
electrons of the conduction band. These oxygen species (O−2 , O−, O2−) are formed on the surface
of BiFeO3 nanocrystals, resulting in the reducing of electron concentration and the development of
the electron depletion layer between air and the surface of BiFeO3 sensor. It can be described as
follows [3,6,9,13,27,28]:

O2(gas)→ O2(ads (3)

O2(ads) + e− → O−2 (ads) (4)

O−2 (ads) + e− → 2O−(ads) (5)

O−(ads) + e− → O2−(ads) (6)
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When the BiFeO3 sensor is in the reducing gas, just as isopropanol, oxygen species will react with
isopropanol molecules and produce CO2 and H2O. In the reaction process, the trapped electrons will
come back to the conduction band of BiFeO3 material, leading to an increase of electron concentration.
However, bismuth ferrite is a p-type semiconductor, whose main carriers are holes. According to
Equation (10), a small number of released electrons can neutralize the holes so that the resistance
increases during the reaction with isopropanol. The above reactions can be described as follows [31]:

C3H8O (gas)→ C3H8O (ads) (7)

C3H8O (ads) + 9O− (ads)→ 3CO2 (gas) + 4H2O (gas) + 9e− (8)

C3H8 (ads) + 9O2− (ads)→ 3CO2 (gas) + 4H2O (gas) + 18e− (9)

e− + h.
→ Null (10)

When exposed to air again, the resistance value of BiFeO3 sensor will get back to its original value.

4. Conclusions

• Pure BiFeO3 nanocrystals have been successfully fabricated by a simple wet chemical method.
BiFeO3 nanocrystals sintered at 500 and 550 ◦C and the prepared gas sensors display almost the
same performance.

• At the optimum working temperature of 240 ◦C, the fabricated sensor shows excellent isopropanol
gas sensing properties with a high gas sensitivity of 31 exposed to 100 ppm isopropanol, fast
response and recovery time (6 and 17 s), nice stability, and good selectivity to isopropanol.

• The sensor shows a perfect linear relationship between sensitivity and concentration in the range
of 2–100 ppm at 240 ◦C and reaches the saturation point when the concentration is over 100 ppm.
In addition, the measurement accuracy is of 1 ppm level. Therefore, the isopropanol gas sensor
based on BiFeO3 nanocrystals can realize precise detection under 100 ppm concentration ranges
and early warning over 100 ppm.

• The mechanism analysis reveals that the adsorbed oxygen ions may be mainly composed of O2.
• Conclusions above show that BiFeO3 nanocrystals are the superior candidate for a gas sensing

application toward isopropanol detection.
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