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Abstract: In a description of materials for orthotropic panels with a soft and/or corrugated core, it is
important to correctly determine all constitutive parameters. In laboratory practice, the determination
of transverse shear modulus is often overlooked. This paper presents a method for determining
this property based on a plate torsion test and a correctly formulated analytical description. It has
been proved that the transverse shear effect in some cases cannot be omitted because it significantly
influences the mechanical behavior of corrugated board. The method of transverse shear modeling
used so far can be modified to eliminate dimensionless, physically unjustified coefficient and replace
them with coefficients that have a physical basis. It is shown here that such modification leads to
results with lower error. The effective modeling of transverse shear effects enables a more conscious
design of corrugated board structures, where the final goal is to obtain packaging with high strength
and durability but low material consumption.
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1. Introduction

Corrugated materials and structures have been used in mechanical engineering for many years,
their application may have various characters from webs for I-beam [1] through very unique natural
lattice sandwich structures [2] to a more conventional function of supporting structures in the corrugated
board packaging industry.

In recent years, corrugated board packaging has gained popularity in transport and logistics.
The main reason for the increased interest in these products is the ever-growing e-commerce market.
Internet sales naturally stimulate the market for transport services, which leads to increased demand
for transport boxes. The economic and ecological aspects of this constantly increasing demand for
corrugated packaging cannot be ignored. For effective recycling of wastepaper, many large production
and trade companies use corrugated cardboard as a safe and environmentally friendly material
for packaging their products. Effective recycling is one of the tools of the currently implemented
sustainable development policies. In response to growing market requirements, the paper packaging
industry constantly raises the standards of its packaging, not only as it relates to recycling but also for
more effective use of materials (paperboard and corrugated cardboard).

Trading companies are interested in ensuring the quality of their products, which should be
well-protected in attractive, recognizable, and branded packaging. However, companies that produce
corrugated packaging aim for lightweight products to reduce production costs. This is why packaging
made of corrugated board must often be attractive and light, but also stabile and resistant. Additionally,
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production cost should be low (through the use of recycled paper and/or optimal packaging) and good
printability should be ensured (through a special layer of outer paper).

Unfortunately, printing on the cardboard reduces the strength of the packaging. If a digital
printing technique is used, the degree of cardboard damage is minimal. However, when flexographic
or offset techniques are used, the damage to the printed material is greater. Because digital printing
technology today accounts for a minority of the printing in the global market, the majority of printed
packaging is to a greater or lesser extent weakened by printing technology. This phenomenon occurs
mainly due to pressure during printing, which causes damage to the corrugated layers, and in turn
leads to a reduction in the bending stiffness and torsion stiffness of the corrugated board. As a
consequence, the degraded rigidity directly reduces the strength of the packaging for both static and
dynamic loads.

Therefore, manufacturers of corrugated board packaging should be able to determine to what
extent the printing decreases the load capacity of the designed box. One way to do this is to estimate
the load capacity of the packaging using analytical formulas, e.g., the popular McKee formula [3].
Unfortunately, the analytical formulas do not include all the parameters that degrade during printing,
namely the thickness, the transverse shear stiffness in the machine direction (MD), and the transverse
shear stiffness in the cross direction (CD). Another possibility is to check the decrease in load capacity
of the printed packaging by using the box compression test (BCT). Unfortunately, if the load capacity is
checked after box production has started (a posteriori), and the decrease is found to be too large, it is
often too late to correct the construction or change the cardboard quality. In this case, either production
must stop and resume with a new design and production setup, or the risk of returns and costly
complaints must be accepted.

In the literature, one can find some modifications of the McKee formula. Review of different
formulas for box compression analysis and an improved approach were presented by Urbanik and
Frank [4]. Recently, Coffin examined the McKee formula modified by Urbanik and Frank for BCT
using the box data coming from the original McKee’s work and the data of Batelka and Smith [5].
Schaffrath et al. examined the influence of asymmetric properties of boxes on robustness of the McKee
formula for prediction of box strength [6]. However, torsional test and transverse stiffness of boxes are
considered very rarely in the literature.

An alternative method that has recently become more popular is load capacity prediction based
on numerical methods, which requires the definition of cardboard properties. These properties can be
obtained through adequate laboratory testing [7,8], and include transverse shear stiffness in the MD
(G13 modulus) and the CD (G23 modulus). Determining these parameters, although not complicated,
is unfortunately rarely done. Knowing these parameters, especially for material that is converted
(after printing, etc.), allows for an assessment of the extent to which the material (corrugated cardboard)
has been damaged [9] and, consequently, the extent to which the strength of the final packaging has
been reduced.

In this work, a method for calculating the transverse stiffness of corrugated cardboard based
on modified plate torsion tests (Figure 1) and analytical formulas is presented. There have been
many attempts in the literature to determine and/or describe these properties [10–16]. One of the
classical studies on the subject is the work of Reissner [17]. The approach presented in 1980 in his
work regarding the prediction of torsional stiffness of beams and plates has become fundamental.
Whitney, in his work from 1987 [18], gathered knowledge about the shear deformation in laminated
anisotropic plates. He concluded that the classical laminate plate theory (CLPT) was not sufficient to
model the behavior of laminated plates. More recent work by Popil et al. [19] deals with transverse
shear measurement. The authors considered corrugated boards, and twisting stiffness in two directions;
MD and CD, was introduced with the variables kMD and kCD, respectively. For kMD, kCD, the transverse
shear modulus was considered in the sample dominant direction only. We prove that both transverse
shear moduli are “active”, but the one in the non-dominant direction plays a minor role, however they
should be included.
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Figure 1. (a) Scheme of the static plate torsion test; (b) visualization of the sample in the machine 
during test. 
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2.1. Modified Analytical Approach 
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necessary to perform a series of laboratory tests. The following properties describe the constitutive 
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Figure 1. (a) Scheme of the static plate torsion test; (b) visualization of the sample in the machine
during test.

Recently, the Carlsson group made an important contribution to this research area, namely
in studies by Avilés et al. [20–22] and Hernandez-Perez et al. [23,24]. In their work from 2009,
Avilés et al. [20] compare the results from CLPT with the finite element method (FEM) for sandwich
(soft-core) plates. The conclusion was that the classical theory was not sufficient for modeling a twist
in such structures. In the work from 2011, Avilés et al. [21] focused on experiments on the torsion
and shear properties of sandwich panels and laminated composites. They made the first reference
to a preliminary shear-corrected model, which was explicitly stated in the paper by Avilés et al.
from 2012 [22]. In addition, in 2012, Hernandez-Perez et al. [23] studied the twist test in sandwich
plates, comparing results based on first-order shear deformation (FOSD) theory and finite element
computations. The applicability of the theory was evaluated as acceptable, but with some limitations.
However, mainly soft-core structures were analyzed. In their 2014 study [24], Hernandez-Perez et al.
redirected their interest to the corrugated boards of single- and double-walled structures. It should
be highlighted that for all numerical simulations of corrugated boards, including FEM calculations,
the transverse shear moduli should be determined in an appropriate way [25,26]. In this study,
experimental, structural FEM, homogenized FEM, CLPT, and FOSD results were compared. The FOSD
and FEM predictions showed good performance compared with the experimental results. The CLPT
results were highly overestimated.

In our study, the modification by Avilés et al. from 2012 [22] is developed. It may be classified
as one of the FOSD method and serve as an alternative to the FOSD approach presented by
Hernandez-Perez et al. in their 2014 study [24]. Another example of FOSD was presented by
Nguyen et al. in 2019 [27] for advanced composite plates such as functionally graded plates, where no
shear correction factor was used. In the literature, also the alternatives to FOSD may be found,
for instance in the work of Anish et al. [28], the so-called improved shear deformation theory was
presented, in which a cubic variation of the thickness coordinate in the displacement field is employed.

2. Materials and Methods

2.1. Modified Analytical Approach

In order to correctly identify the properties of cardboard as a construction material, it is necessary
to perform a series of laboratory tests. The following properties describe the constitutive constants of
corrugated board in the elastic range (see Figure 1):

• D11—bending stiffness in the MD,
• D22—bending stiffness in the CD,
• D66—twisting bending stiffness,
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• A11—compression stiffness in the MD,
• A22—compression stiffness in the CD,
• A33—compression stiffness in the z direction (out of plane),
• A44—transverse shear stiffness in the 1–3 (x–z) plane,
• A55—transverse shear stiffness in the 2–3 (y–z) plane.

These quantities occur in the constitutive equations that describe shell elements:

A =


A11 A12 0
A12 A22 0

0 0 A33

; B =


D11 D12 0
D12 D22 0

0 0 D66

; Γ =

[
A44 0

0 A55

]
, (1)

and can be represented by the following formulas:

D11 = E1 ·
t3

12w
; D22 = E2 ·

t3

12w
; D12 = D22ν12; w = 1− ν12ν21, (2)

D66 = G12 ·
t3

12
, (3)

A11 = E1t; A22 = E2t ; A12 = A22ν12, (4)

A44 =
5
6

G13t; A55 =
5
6

G23t, (5)

where:

• t—effective cardboard thickness,
• E1—effective stiffness modulus in the MD,
• E2—effective stiffness modulus in the CD,
• ν12 = 0.293

√
E1/E2—effective Poisson’s ratio in the 1–2 (x–y) plane [29],

• v21 = v12E2/E1—effective Poisson’s ratio in the 1–2 (x–y) plane,
• G12—effective shear modulus in 1–2 (x–y) plane,
• G13—effective transverse shear modulus in the 1–3 (x–z) plane,
• G23—effective transverse shear modulus in the 2–3 (y–z) plane.

A plate torsion test may be used to determine the shear stiffness of a particular corrugated
cardboard sample. The compliance of sample C from the plate torsion test takes the following form:

C =
δ
P

, (6)

where δ is the sample displacement (in this study δ = 1 mm) and P is the reaction force measured by
a torsion testing device [7]. The compliance of the sample proposed in the work of Avilés et al. [22],
compared to the classical laminate theory [17,18], was an extension of the traditional approach by
adding a transverse shear member, namely:

C = Cc + Cs, (7)

where Cc is the compliance from classical laminate theory, and Cs is the contribution due to the
transverse shear. According to classical laminate theory:

Cc =
ab

16D66
, (8)
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where a and b are the dimensions of the corrugated cardboard sample, and D66 is the torsion stiffness.
Parameter D66 is computed using Equation (3). Based on [22], the contribution due to the transverse
shear Cs is expressed by the following:

Cs =
c1

√
A44 ·A55

, (9)

where c1 is the nondimensional constant, A44 is the transverse shear stiffness in the 1–3 (x–z) plane, and A55

is the transverse shear stiffness in the 2–3 (y–z) plane. A44 and A55 are computed from Equation (5).
The dependence of variable Cs on the transverse shear modulus G13 and G23 in Equations (9) and

(5) seems to be a reasonable assumption. However, the approach is still not practical to effectively
determine the transverse shear contribution to the performance of the corrugated cardboard sample.
In the approach proposed in [22], the use of Equation (9) requires determination of the coefficient c1,
which, despite the analyses presented in the cited work, seems to be a non-trivial task.

The nondimensional constant c1 can be determined by rearranging the equations above.
The substitution of Equations (6), (8) and (9) into Equation (7) leads to the following form:

δ
P
=

ab
16D66

+
c1

√
A44 ·A55

. (10)

Assuming δ = 1 mm, simple mathematical operations of Equations (3), (5), and (10) enable the
following form of c1:

c1 =

(
1
P
−

3ab
4G12t3

)
·

5
6

t
√

G13 ·G23. (11)

Knowing the reference value of force P (Figure 1a) derived from numerical simulations, one can
determine the range of application of the coefficient c1 for different (assumed) values of a, b, t, G12, G13,
and G23.

2.2. Computational Model

In this research study, the reference values of forces P were obtained using the FEM by performing
linear static analyses. Calculations were conducted in the Abaqus FEM commercial program.
A (homogenized) model of shell theory with three-node triangular elements was used. Assuming a
plane stress state in the shell, an orthotropic material model was used. The in-plane relation of the
stress vector σ and the strain vector ε can be described by the following relationship:


ε1

ε2

γ12

 =


1

E1
−
ϑ21
E2

0

−
ϑ12
E1

1
E2

0
0 0 1

G12



σ11

σ22

τ12

, (12)

where E1, E2, ϑ12, and G12 are the effective longitudinal elasticity modules in direction 1 (MD) and
direction 2 (CD), the effective Poisson’s ratio, and the effective in-plane shear modulus, respectively.

The boundary conditions of the sample were assumed to emulate a support in the plate torsion test.
The translational degrees of freedom were blocked at the opposite corner nodes of the plate (Figure 1a).
A kinematic constraint was introduced in the other corners of the plate to simulate displacement
application during testing. It is worth noting that P was the overall force applied during the test,
thus the reaction forces at the corners from the simulations were equal to half the force P.

3. Results

Depending on the particular sample of corrugated cardboard, a transverse shear contribution
may have an important effect on material performance. In this paper, using the formulas presented in
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Section 2.1 and the model described in Section 2.2, the contribution of the transverse shear to total
compliance C was verified (here C = 1/P). In other words, the ratio Cs to C was computed.

In Figure 2, the bar charts for compliance 1/P normalized to 1 are shown, where for the example
combinations of G12, G13, G23, and t, the ratios Cc/C (gray bars) and Cs/C (black bars) were calculated.
The assumed dimensions of the sample were 150× 25 mm. The high ratio of Cs/C shows how significant
the impact of the transverse shear was on the compliance for a given cardboard sample. Depending
on the adopted material parameters and sample thickness, this value may even reach several dozen
percent, e.g., 37% for G12 = 100 MPa (Figure 2a), 61% for G13 = 2 MPa (Figure 2b), and 53% for t = 6 mm
(Figure 2c). Therefore, it can be concluded that there are cases in which it is necessary to account for
the transverse shear correction Cs in relation to the use of (pure) classical theory, i.e., Equation (8).

Materials 2020, 13, 3791 6 of 11 

 

2b), and 53% for 6 = ݐ mm (Figure 2c). Therefore, it can be concluded that there are cases in which it 
is necessary to account for the transverse shear correction ܥ௦ in relation to the use of (pure) classical 
theory, i.e., Equation (8). 

 

(a) 

 

(b) 

 

(c) 

Figure 2. Examples of significant influence of transverse shear on sample compliance for selected 
values of G12, G13, G23, and t with respect to changing values of G12 (a), G13 (b), and t (c). 

In some cases, particularly for thin cardboard, the effect of transverse shear is negligible. This 
phenomenon is illustrated in Figure 3, where for 1 = ݐ mm and changing values of ܩଵଷ, the influence 
of ܥ௦ on ܥ is usually less than 2.5%. In such cases, applying only classical theory (ܥ௖), excluding ܥ௦, 
is accurate enough. 

The shear correction proposed in [22] and shown as Equation (9) introduces the questions: (i) 
what should be the value of the dimensionless coefficient ܿଵ to obtain the correct compliance value, 
and (ii) what is the influence on ܿଵ  if the material parameters, sample dimensions, or thickness 
change? In order to answer these questions, the sensitivity of ܿଵ  was systematically tested, and 
selected computational results are presented later in this work. 

In Figure 4, the calculated values of ܿଵ according to Equation (11) for certain combinations of 
material parameters ( ,ଵଶܩ ,ଵଷܩ  and ܩଶଷ ), thickness ݐ , and sample dimensions are shown. The 
following sample dimensions are adopted: 25 × 150  mm, 150 × 75  mm, and 75 × 75  mm. 
Regardless of the ܩଵଶ  value (Figure 4a) and sample thickness ݐ  (Figure 4b), the values of the 
computed coefficient ܿଵ  are constant. Based on the results, it can be concluded that ܿଵ  does not 
depend on ܩଵଶ and ݐ. 

Figure 2. Examples of significant influence of transverse shear on sample compliance for selected
values of G12, G13, G23, and t with respect to changing values of G12 (a), G13 (b), and t (c).

In some cases, particularly for thin cardboard, the effect of transverse shear is negligible.
This phenomenon is illustrated in Figure 3, where for t = 1 mm and changing values of G13, the influence
of Cs on C is usually less than 2.5%. In such cases, applying only classical theory (Cc), excluding Cs,
is accurate enough.
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Figure 3. Example of a negligible influence of transverse shear on sample compliance for selected
values of G12, G23, and t with respect to the change in G13.

The shear correction proposed in [22] and shown as Equation (9) introduces the questions: (i) what
should be the value of the dimensionless coefficient c1 to obtain the correct compliance value, and (ii)
what is the influence on c1 if the material parameters, sample dimensions, or thickness change? In order
to answer these questions, the sensitivity of c1 was systematically tested, and selected computational
results are presented later in this work.

In Figure 4, the calculated values of c1 according to Equation (11) for certain combinations of
material parameters (G12, G13, and G23), thickness t, and sample dimensions are shown. The following
sample dimensions are adopted: 25× 150 mm, 150× 75 mm, and 75× 75 mm. Regardless of the G12

value (Figure 4a) and sample thickness t (Figure 4b), the values of the computed coefficient c1 are
constant. Based on the results, it can be concluded that c1 does not depend on G12 and t.
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Figure 4. Influence of G12 (a) and effective thickness t (b) on the value of the c1 parameter.

In the next step, two aspects of c1 are analyzed, i.e., the impact of sample aspect ratio for constant
and equal transverse shear moduli (G13 = G23) and the relation between transverse shear moduli
G13, G23 (the selected sample sizes a× b were 25× 150 mm and 75× 75 mm). In Figure 5a, the influence
of dimensions a and b is shown. The values of c1 reach a maximum of about 3.09 for a longitudinal
sample with a dimension aspect ratio of 1:6 (25× 150 mm), i.e., the transverse shear correction due
to the sample geometry should be significant. For square samples, e.g., 50× 50 mm, 125× 125 mm,
the factor c1 should be 1 (no correction). The contour plot of c1 values is symmetrical in relation to
the main diagonal, i.e., the transverse shear correction for the 25× 150 mm and 150× 25 mm samples
is the same, assuming G13 = G23. On the contrary, in Figure 5b, the effect of cross shear modulus
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relationships for a rectangular sample (a = 25 mm, b = 150 mm) is shown. The variable c1 reaches a
value of around 12.9, a very significant effect of transverse shear correction due to the relationship of
G13/G23 (G13 = 10 MPa and G23 = 200 MPa). In Figure 5c, the same relationship for a square sample
(a = 75 mm, a = 75 mm) is shown. The maximum value of c1 in this case is approximately 2.35. On this
contour plot, one can see a symmetry with respect to the main diagonal, similar to the case shown in
Figure 5a.Materials 2020, 13, 3791 8 of 11 
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of 75 × 75 mm (c), on the value of the c1 parameter.

Based on the systematic calculations of c1, a modification of Equation (9) was proposed.
Two physically justified coefficients, k1 and k2, were introduced instead of coefficient c1. Thus,
the correction due to shear takes the following form:

Cs =
k1 · k2
√

A44 ·A55
, (13)

k1 = 2
5

(
b
a +

7
5

)
, b > a , (14)

k2 = 3
5

(
a
b ·

G23
G13

) 2
5 , G23 > G13 , (15)

where k1 is a factor that accounts for the proportion of sample dimensions, and k2 is a factor that accounts
for the ratio G23 /G13. Both dimensionless coefficients were proposed based on an approximation of
the systematic computations made.

In the next step, a numerical verification of Equations (13)–(15) that takes into account the transverse
shear effect was carried out. Intervals for transverse shear moduli G13, G23 from 2 to 300 MPa (6 discrete
values for G13 and G23, namely, 2, 20, 50, 100, 200, and 300 MPa) and sample dimensions from 25 to
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150 mm (6 discrete values for a and b, namely, 25, 50, 75, 100, 125, and 150 mm) were assumed. Using all
possible combinations for the values of G13, G23, a and b values, 1296 computational cases (64) were
obtained. Based on Equation (6) (assuming that δ = 1) and using Equations (7), (8), and (13)–(15),
the values of P were calculated. For the same input data, the reference values of forces Pre f were
obtained using the FEM (see Section 2.2, in which the computational model used was described).

The differences between P and Pre f are graphically presented in Figure 6. Figure 6a shows raw
data, where on the vertical axis the reference values of the force Pref are presented, while on the
horizontal axis, its counterparts computed by our proposed approach are demonstrated. In Figure 6a,
almost perfect alignment of the magnitudes can be observed. Figure 6b presents a histogram of the data.
In may be observed that the error is less than 5% for about 95% of all cases (see black dot). The average
overall error for the solutions of the 1296 cases is 0.11%. The error is 10.1% in only one case; in all other
cases, it is less than 10%. The largest errors (greater than 5%) were obtained in cases where G13 and
G23 reached the limit values, e.g., G13 = 2 MPa and at the same time G23 = 300 MPa. Such values of
these parameters are usually non-physical, which would mean that the material has very high shear
stiffness in one direction and virtually no shear stiffness in other, perpendicular direction. All raw data
used to generate Figure 6 can be found in Supplementary materials.
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For the classical solution (using c1 as an a priori constant), the largest error in estimating P
according to [22] for c1 = 1 is equal to 35% (average error 2.5%), and for c1 = 2, the largest error is
equal to 32% (average error 1.2%).

4. Discussion

In this paper, the effect of the contribution of transverse shear on the results of torsion tests of
corrugated cardboard plates was analyzed. It was proved by using numerical and analytical approaches
that in some configurations, not including the transverse shear, may lead to results with a significant
error. Therefore, it is proposed to modify the analytical form available in the literature to account
for a transverse shear effect. Based on the calculations carried out, by eliminating the dimensionless
physically unjustified coefficients, the mechanical effects observed were introduced into the formulas,
and those with no significant influence were ignored. The effectiveness of the newly proposed method
was proved by comparing the results with the FEM calculations.

We conclude that a measurement of torsional stiffness in certain configurations of sample size ratio
and for small (degraded) values of transverse stiffness moduli can be effectively used to determine the
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transverse shear stiffness of corrugated cardboard. This is especially important when the corrugated
layers of cardboard are damaged due to traditional printing methods, which directly reduce the
load capacity of the packaging. The load capacity of the packaging is largely influenced by the edge
crushing resistance of cardboard (ECT), and its bending stiffness. The last, though not least important
property that affects the load capacity of corrugated board packaging is the transverse shear stiffness.
Its influence is crucial, especially when the cardboard is crushed during printing, lamination, etc.
The correct determination of this property is therefore very important for a reliable estimation of the
strength of cardboard packaging after processing.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1944/13/17/3791/s1.
Figure 6 was presented as CSV file, in which 1st column are the numbers of the case analyzed, 2nd and 3rd
columns are a and b dimensions of the sample, 4th and 5th columns are G13 and G23 assumed for particular case,
6th column are the values obtained from the modified analytical approach, 7th column are the reference values
derived from the FEM and 8th column are the error values between 5th and 6th columns.
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