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Abstract: In a description of materials for orthotropic panels with a soft and/or corrugated core, it 

is important to correctly determine all constitutive parameters. In laboratory practice, the 

determination of transverse shear modulus is often overlooked. This paper presents a method for 

determining this property based on a plate torsion test and a correctly formulated analytical 

description. It has been proved that the transverse shear effect in some cases cannot be omitted 

because it significantly influences the mechanical behavior of corrugated board. The method of 

transverse shear modeling used so far can be modified to eliminate dimensionless, physically 

unjustified coefficient and replace them with coefficients that have a physical basis. It is shown here 

that such modification leads to results with lower error. The effective modeling of transverse shear 

effects enables a more conscious design of corrugated board structures, where the final goal is to 

obtain packaging with high strength and durability but low material consumption. 

Keywords: corrugated board; transverse shear modulus; laboratory tests; box performance; torsion 

 

1. Introduction 

Corrugated materials and structures have been used in mechanical engineering for many years, 

their application may have various characters from webs for I-beam [1] through very unique natural 

lattice sandwich structures [2] to a more conventional function of supporting structures in the 

corrugated board packaging industry. 

In recent years, corrugated board packaging has gained popularity in transport and logistics. 

The main reason for the increased interest in these products is the ever-growing e-commerce market. 

Internet sales naturally stimulate the market for transport services, which leads to increased demand 

for transport boxes. The economic and ecological aspects of this constantly increasing demand for 

corrugated packaging cannot be ignored. For effective recycling of wastepaper, many large 

production and trade companies use corrugated cardboard as a safe and environmentally friendly 

material for packaging their products. Effective recycling is one of the tools of the currently 

implemented sustainable development policies. In response to growing market requirements, the 

paper packaging industry constantly raises the standards of its packaging, not only as it relates to 

recycling but also for more effective use of materials (paperboard and corrugated cardboard). 

Trading companies are interested in ensuring the quality of their products, which should be 

well-protected in attractive, recognizable, and branded packaging. However, companies that 

produce corrugated packaging aim for lightweight products to reduce production costs. This is why 

packaging made of corrugated board must often be attractive and light, but also stabile and resistant. 
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Additionally, production cost should be low (through the use of recycled paper and/or optimal 

packaging) and good printability should be ensured (through a special layer of outer paper). 

Unfortunately, printing on the cardboard reduces the strength of the packaging. If a digital 

printing technique is used, the degree of cardboard damage is minimal. However, when flexographic 

or offset techniques are used, the damage to the printed material is greater. Because digital printing 

technology today accounts for a minority of the printing in the global market, the majority of printed 

packaging is to a greater or lesser extent weakened by printing technology. This phenomenon occurs 

mainly due to pressure during printing, which causes damage to the corrugated layers, and in turn 

leads to a reduction in the bending stiffness and torsion stiffness of the corrugated board. As a 

consequence, the degraded rigidity directly reduces the strength of the packaging for both static and 

dynamic loads. 

Therefore, manufacturers of corrugated board packaging should be able to determine to what 

extent the printing decreases the load capacity of the designed box. One way to do this is to estimate 

the load capacity of the packaging using analytical formulas, e.g., the popular McKee formula [3]. 

Unfortunately, the analytical formulas do not include all the parameters that degrade during 

printing, namely the thickness, the transverse shear stiffness in the machine direction (MD), and the 

transverse shear stiffness in the cross direction (CD). Another possibility is to check the decrease in 

load capacity of the printed packaging by using the box compression test (BCT). Unfortunately, if the 

load capacity is checked after box production has started (a posteriori), and the decrease is found to 

be too large, it is often too late to correct the construction or change the cardboard quality. In this 

case, either production must stop and resume with a new design and production setup, or the risk of 

returns and costly complaints must be accepted. 

In the literature, one can find some modifications of the McKee formula. Review of different 

formulas for box compression analysis and an improved approach were presented by Urbanik and 

Frank [4]. Recently, Coffin examined the McKee formula modified by Urbanik and Frank for BCT 

using the box data coming from the original McKee’s work and the data of Batelka and Smith [5]. 

Schaffrath et al. examined the influence of asymmetric properties of boxes on robustness of the McKee 

formula for prediction of box strength [6]. However, torsional test and transverse stiffness of boxes 

are considered very rarely in the literature. 

An alternative method that has recently become more popular is load capacity prediction based 

on numerical methods, which requires the definition of cardboard properties. These properties can 

be obtained through adequate laboratory testing [7,8], and include transverse shear stiffness in the 

MD ( ���  modulus) and the CD ( ���  modulus). Determining these parameters, although not 

complicated, is unfortunately rarely done. Knowing these parameters, especially for material that is 

converted (after printing, etc.), allows for an assessment of the extent to which the material 

(corrugated cardboard) has been damaged [9] and, consequently, the extent to which the strength of 

the final packaging has been reduced. 

In this work, a method for calculating the transverse stiffness of corrugated cardboard based on 

modified plate torsion tests (Figure 1) and analytical formulas is presented. There have been many 

attempts in the literature to determine and/or describe these properties [10–16]. One of the classical 

studies on the subject is the work of Reissner [17]. The approach presented in 1980 in his work 

regarding the prediction of torsional stiffness of beams and plates has become fundamental. Whitney, 

in his work from 1987 [18], gathered knowledge about the shear deformation in laminated anisotropic 

plates. He concluded that the classical laminate plate theory (CLPT) was not sufficient to model the 

behavior of laminated plates. More recent work by Popil et al. [19] deals with transverse shear 

measurement. The authors considered corrugated boards, and twisting stiffness in two directions; 

MD and CD, was introduced with the variables ���  and ��� , respectively. For ���, ��� , the 

transverse shear modulus was considered in the sample dominant direction only. We prove that both 

transverse shear moduli are “active”, but the one in the non-dominant direction plays a minor role, 

however they should be included. 
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(a) (b) 

Figure 1. (a) Scheme of the static plate torsion test; (b) visualization of the sample in the machine 

during test. 

Recently, the Carlsson group made an important contribution to this research area, namely in 

studies by Avilés et al. [20–22] and Hernandez-Perez et al. [23,24]. In their work from 2009, Avilés et 

al. [20] compare the results from CLPT with the finite element method (FEM) for sandwich (soft-core) 

plates. The conclusion was that the classical theory was not sufficient for modeling a twist in such 

structures. In the work from 2011, Avilés et al. [21] focused on experiments on the torsion and shear 

properties of sandwich panels and laminated composites. They made the first reference to a 

preliminary shear-corrected model, which was explicitly stated in the paper by Avilés et al. from 2012 

[22]. In addition, in 2012, Hernandez-Perez et al. [23] studied the twist test in sandwich plates, 

comparing results based on first-order shear deformation (FOSD) theory and finite element 

computations. The applicability of the theory was evaluated as acceptable, but with some limitations. 

However, mainly soft-core structures were analyzed. In their 2014 study [24], Hernandez-Perez et al. 

redirected their interest to the corrugated boards of single- and double-walled structures. It should 

be highlighted that for all numerical simulations of corrugated boards, including FEM calculations, 

the transverse shear moduli should be determined in an appropriate way [25,26]. In this study, 

experimental, structural FEM, homogenized FEM, CLPT, and FOSD results were compared. The 

FOSD and FEM predictions showed good performance compared with the experimental results. The 

CLPT results were highly overestimated. 

In our study, the modification by Avilés et al. from 2012 [22] is developed. It may be classified 

as one of the FOSD method and serve as an alternative to the FOSD approach presented by 

Hernandez-Perez et al. in their 2014 study [24]. Another example of FOSD was presented by Nguyen 

et al. in 2019 [27] for advanced composite plates such as functionally graded plates, where no shear 

correction factor was used. In the literature, also the alternatives to FOSD may be found, for instance 

in the work of Anish et al. [28], the so-called improved shear deformation theory was presented, in 

which a cubic variation of the thickness coordinate in the displacement field is employed. 

2. Materials and Methods 

2.1. Modified Analytical Approach 

In order to correctly identify the properties of cardboard as a construction material, it is 

necessary to perform a series of laboratory tests. The following properties describe the constitutive 

constants of corrugated board in the elastic range (see Figure 1): 

 ���—bending stiffness in the MD, 

 ���—bending stiffness in the CD, 

 ���—twisting bending stiffness, 

 ���—compression stiffness in the MD, 

 ���—compression stiffness in the CD, 
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 ���—compression stiffness in the z direction (out of plane), 

 ���—transverse shear stiffness in the 1–3 (x–z) plane, 

 ���—transverse shear stiffness in the 2–3 (y–z) plane. 

These quantities occur in the constitutive equations that describe shell elements: 

� = �
��� ��� 0
��� ��� 0

0 0 ���

� ;    � = �

��� ��� 0
��� ��� 0

0 0 ���

� ;      Γ = �
��� 0

0 ���
�, (1) 

and can be represented by the following formulas: 

��� = �� ⋅
��

12�
;  ��� = �� ⋅

��

12�
;  ��� = ������;  � = 1 − ������, (2) 

��� = ��� ⋅
��

12
, (3) 

��� =  ���;  ��� = ��� ;   ��� = ������, (4) 

��� =
5

6
����;  ��� =

5

6
����, (5) 

where: 

 �—effective cardboard thickness, 

 ��—effective stiffness modulus in the MD, 

 ��—effective stiffness modulus in the CD, 

 ��� = 0.293��� ��⁄ —effective Poisson’s ratio in the 1–2 (x–y) plane [29], 

 ��� = �����/��—effective Poisson’s ratio in the 1–2 (x–y) plane, 

 ���—effective shear modulus in 1–2 (x–y) plane, 

 ���—effective transverse shear modulus in the 1–3 (x–z) plane, 

 ���—effective transverse shear modulus in the 2–3 (y–z) plane. 

A plate torsion test may be used to determine the shear stiffness of a particular corrugated 

cardboard sample. The compliance of sample � from the plate torsion test takes the following form: 

� =
�

�
, (6) 

where � is the sample displacement (in this study � = 1 mm) and � is the reaction force measured 

by a torsion testing device [7]. The compliance of the sample proposed in the work of Avilés et al. 

[22], compared to the classical laminate theory [17,18], was an extension of the traditional approach 

by adding a transverse shear member, namely: 

� = �� + ��, (7) 

where ��  is the compliance from classical laminate theory, and �� is the contribution due to the 

transverse shear. According to classical laminate theory: 

�� =
��

16���
, (8) 

where �  and �  are the dimensions of the corrugated cardboard sample, and ���  is the torsion 

stiffness. Parameter ��� is computed using Equation (3). Based on [22], the contribution due to the 

transverse shear �� is expressed by the following: 

�� =
��

���� ∙ ���

, (9) 

where �� is the nondimensional constant, ��� is the transverse shear stiffness in the 1–3 (x–z) plane, 

and ��� is the transverse shear stiffness in the 2–3 (y–z) plane. ��� and ��� are computed from 

Equations (5). 
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The dependence of variable �� on the transverse shear modulus ��� and ��� in Equations (9) 

and (5) seems to be a reasonable assumption. However, the approach is still not practical to effectively 

determine the transverse shear contribution to the performance of the corrugated cardboard sample. 

In the approach proposed in [22], the use of Equation (9) requires determination of the coefficient ��, 

which, despite the analyses presented in the cited work, seems to be a non-trivial task. 

The nondimensional constant �� can be determined by rearranging the equations above. The 

substitution of Equations (6), (8) and (9) into Equation (7) leads to the following form: 

�

�
=

��

16���
+

��

���� ∙ ���

. (10) 

Assuming � = 1 mm, simple mathematical operations of Equations (3), (5), and (10) enable the 

following form of ��: 

�� = �
1

�
−

3��

4�����
� ∙

5

6
����� ∙ ���. (11) 

Knowing the reference value of force � (Figure 1a) derived from numerical simulations, one 

can determine the range of application of the coefficient ��  for different (assumed) values of 

�, �, �, ���, ���, and ���. 

2.2. Computational Model 

In this research study, the reference values of forces �  were obtained using the FEM by 

performing linear static analyses. Calculations were conducted in the Abaqus FEM commercial 

program. A (homogenized) model of shell theory with three-node triangular elements was used. 

Assuming a plane stress state in the shell, an orthotropic material model was used. The in-plane 

relation of the stress vector � and the strain vector � can be described by the following relationship: 

�

��

��

���

� =

⎣
⎢
⎢
⎢
⎢
⎢
⎡

1

��
−

���

��
0

−
���

��

1

��
0

0 0
1

���⎦
⎥
⎥
⎥
⎥
⎥
⎤

�

���

���

���

�, (12) 

where ��, ��, ���, and ��� are the effective longitudinal elasticity modules in direction 1 (MD) and 

direction 2 (CD), the effective Poisson’s ratio, and the effective in-plane shear modulus, respectively. 

The boundary conditions of the sample were assumed to emulate a support in the plate torsion 

test. The translational degrees of freedom were blocked at the opposite corner nodes of the plate 

(Figure 1a). A kinematic constraint was introduced in the other corners of the plate to simulate 

displacement application during testing. It is worth noting that � was the overall force applied 

during the test, thus the reaction forces at the corners from the simulations were equal to half the 

force �. 

3. Results 

Depending on the particular sample of corrugated cardboard, a transverse shear contribution 

may have an important effect on material performance. In this paper, using the formulas presented 

in Section 2.1 and the model described in Section 2.2, the contribution of the transverse shear to total 

compliance � was verified (here � = 1/�). In other words, the ratio �� to � was computed. 

In Figure 2, the bar charts for compliance 1/� normalized to 1 are shown, where for the example 

combinations of ���, ���, ���,  and � , the ratios �� �⁄  (gray bars) and �� �⁄  (black bars) were 

calculated. The assumed dimensions of the sample were 150 × 25  mm. The high ratio of �� �⁄  

shows how significant the impact of the transverse shear was on the compliance for a given cardboard 

sample. Depending on the adopted material parameters and sample thickness, this value may even 

reach several dozen percent, e.g., 37% for ��� = 100 MPa (Figure 2a), 61% for ��� = 2 MPa (Figure 
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2b), and 53% for � = 6 mm (Figure 2c). Therefore, it can be concluded that there are cases in which it 

is necessary to account for the transverse shear correction �� in relation to the use of (pure) classical 

theory, i.e., Equation (8). 

 

(a) 

 

(b) 

 

(c) 

Figure 2. Examples of significant influence of transverse shear on sample compliance for selected 

values of G12, G13, G23, and t with respect to changing values of G12 (a), G13 (b), and t (c). 

In some cases, particularly for thin cardboard, the effect of transverse shear is negligible. This 

phenomenon is illustrated in Figure 3, where for � = 1 mm and changing values of ���, the influence 

of �� on � is usually less than 2.5%. In such cases, applying only classical theory (��), excluding ��, 

is accurate enough. 

The shear correction proposed in [22] and shown as Equation (9) introduces the questions: (i) 

what should be the value of the dimensionless coefficient �� to obtain the correct compliance value, 

and (ii) what is the influence on ��  if the material parameters, sample dimensions, or thickness 

change? In order to answer these questions, the sensitivity of ��  was systematically tested, and 

selected computational results are presented later in this work. 

In Figure 4, the calculated values of �� according to Equation (11) for certain combinations of 

material parameters ( ���, ���,  and ��� ), thickness � , and sample dimensions are shown. The 

following sample dimensions are adopted: 25 × 150  mm, 150 × 75  mm, and 75 × 75  mm. 

Regardless of the ���  value (Figure 4a) and sample thickness �  (Figure 4b), the values of the 

computed coefficient ��  are constant. Based on the results, it can be concluded that ��  does not 

depend on ��� and �. 
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Figure 3. Example of a negligible influence of transverse shear on sample compliance for selected 

values of ���, ���, and t with respect to the change in ���. 

  
(a) (b) 

Figure 4. Influence of ��� (a) and effective thickness t (b) on the value of the �� parameter. 

In the next step, two aspects of ��  are analyzed, i.e., the impact of sample aspect ratio for 

constant and equal transverse shear moduli (��� = ���) and the relation between transverse shear 

moduli ���, ��� (the selected sample sizes � × � were 25 × 150 mm and 75 × 75 mm). In Figure 

5a, the influence of dimensions � and � is shown. The values of �� reach a maximum of about 3.09 

for a longitudinal sample with a dimension aspect ratio of 1:6 (25 × 150 mm), i.e., the transverse shear 

correction due to the sample geometry should be significant. For square samples, e.g., 50 × 50 mm, 

125 × 125  mm, the factor ��  should be 1 (no correction). The contour plot of ��  values is 

symmetrical in relation to the main diagonal, i.e., the transverse shear correction for the 25 × 150 

mm and 150 × 25 mm samples is the same, assuming ��� = ���. On the contrary, in Figure 5b, the 

effect of cross shear modulus relationships for a rectangular sample (a = 25 mm, b = 150 mm) is shown. 

The variable �� reaches a value of around 12.9, a very significant effect of transverse shear correction 

due to the relationship of ���/���  (���  = 10 MPa and ���  = 200 MPa). In Figure 5c, the same 

relationship for a square sample (� = 75 mm, � = 75 mm) is shown. The maximum value of �� in 

this case is approximately 2.35. On this contour plot, one can see a symmetry with respect to the main 

diagonal, similar to the case shown in Figure 5a. 
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(a) 

 

(b) 

 

(c) 

Figure 5. Influence of the relation �/� (a) and ���/��� for a sample of 25 × 150 mm (b), and a sample 

of 75 × 75 mm (c), on the value of the �� parameter. 

Based on the systematic calculations of ��, a modification of Equation (9) was proposed. Two 

physically justified coefficients, ��  and �� , were introduced instead of coefficient �� . Thus, the 

correction due to shear takes the following form: 

�� =
�� ∙ ��

���� ∙ ���

, (13) 

�� =
2

5
�

�

�
+

7

5
� , � > �, (14) 

�� =
3

5
�

�

�
∙

���

���
�

�
�

, ��� > ���
, (15) 

where �� is a factor that accounts for the proportion of sample dimensions, and �� is a factor that 

accounts for the ratio ��� /��� . Both dimensionless coefficients were proposed based on an 

approximation of the systematic computations made. 

In the next step, a numerical verification of Equations (13)– (15) that takes into account the 

transverse shear effect was carried out. Intervals for transverse shear moduli ���, ��� from 2 to 300 

MPa (6 discrete values for ���  and ��� , namely, 2, 20, 50, 100, 200, and 300 MPa) and sample 

dimensions from 25 to 150 mm (6 discrete values for � and �, namely, 25, 50, 75, 100, 125, and 150 

mm) were assumed. Using all possible combinations for the values of ���, ���, � and � values, 1,296 

computational cases (64) were obtained. Based on Equation (6) (assuming that �  = 1) and using 

Equations (7), (8), and (13)– (15), the values of �  were calculated. For the same input data, the 

reference values of forces ����  were obtained using the FEM (see Section 2.2, in which the 

computational model used was described). 

c1  c1  



Materials 2020, 13, 3791 9 of 11 

 

The differences between � and ���� are graphically presented in Figure 6. Figure 6a shows raw 

data, where on the vertical axis the reference values of the force Pref are presented, while on the 

horizontal axis, its counterparts computed by our proposed approach are demonstrated. In Figure 

6a, almost perfect alignment of the magnitudes can be observed. Figure 6b presents a histogram of 

the data. In may be observed that the error is less than 5% for about 95% of all cases (see black dot). 

The average overall error for the solutions of the 1296 cases is 0.11%. The error is 10.1% in only one 

case; in all other cases, it is less than 10%. The largest errors (greater than 5%) were obtained in cases 

where G13 and G23 reached the limit values, e.g., G13 = 2 MPa and at the same time G23 = 300 MPa. 

Such values of these parameters are usually non-physical, which would mean that the material has 

very high shear stiffness in one direction and virtually no shear stiffness in other, perpendicular 

direction. All raw data used to generate Figure 6 can be found in Supplementary materials. 

 

(a) 

 

(b) 

  

Figure 6. Solution error for � from the modified analytical approach, and ����, the reference values 

derived from the FEM: (a) logarithmic regression plot of raw data and (b) cumulative distribution 

function plot of the data. 

For the classical solution (using �� as an a priori constant), the largest error in estimating � 

according to [22] for �� = 1 is equal to 35% (average error 2.5%), and for �� = 2, the largest error is 

equal to 32% (average error 1.2%). 

4. Discussion 

In this paper, the effect of the contribution of transverse shear on the results of torsion tests of 

corrugated cardboard plates was analyzed. It was proved by using numerical and analytical 

approaches that in some configurations, not including the transverse shear, may lead to results with 

a significant error. Therefore, it is proposed to modify the analytical form available in the literature 

to account for a transverse shear effect. Based on the calculations carried out, by eliminating the 

dimensionless physically unjustified coefficients, the mechanical effects observed were introduced 

into the formulas, and those with no significant influence were ignored. The effectiveness of the 

newly proposed method was proved by comparing the results with the FEM calculations. 

We conclude that a measurement of torsional stiffness in certain configurations of sample size 

ratio and for small (degraded) values of transverse stiffness moduli can be effectively used to 

determine the transverse shear stiffness of corrugated cardboard. This is especially important when 

the corrugated layers of cardboard are damaged due to traditional printing methods, which directly 

reduce the load capacity of the packaging. The load capacity of the packaging is largely influenced 

by the edge crushing resistance of cardboard (ECT), and its bending stiffness. The last, though not 
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least important property that affects the load capacity of corrugated board packaging is the transverse 

shear stiffness. Its influence is crucial, especially when the cardboard is crushed during printing, 

lamination, etc. The correct determination of this property is therefore very important for a reliable 

estimation of the strength of cardboard packaging after processing. 

Supplementary Materials: The following are available online at www.mdpi.com/1996-1944/13/17/3791/s1. 

Figure 6 was presented as CSV file, in which 1st column are the numbers of the case analyzed, 2nd and 3rd 

columns are a and b dimensions of the sample, 4th and 5th columns are G13 and G23 assumed for particular 

case, 6th column are the values obtained from the modified analytical approach, 7th column are the reference 

values derived from the FEM and 8th column are the error values between 5th and 6th columns. 
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