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Abstract: Focused electron beam induced deposition (FEBID) is a direct-write nanofabrication
technique able to pattern three-dimensional magnetic nanostructures at resolutions comparable to
the characteristic magnetic length scales. FEBID is thus a powerful tool for 3D nanomagnetism which
enables unique fundamental studies involving complex 3D geometries, as well as nano-prototyping
and specialized applications compatible with low throughputs. In this focused review, we discuss
recent developments of this technique for applications in 3D nanomagnetism, namely the substantial
progress on FEBID computational methods, and new routes followed to tune the magnetic properties
of ferromagnetic FEBID materials. We also review a selection of recent works involving FEBID 3D
nanostructures in areas such as scanning probe microscopy sensing, magnetic frustration phenomena,
curvilinear magnetism, magnonics and fluxonics, offering a wide perspective of the important
role FEBID is likely to have in the coming years in the study of new phenomena involving 3D
magnetic nanostructures.

Keywords: nanomagnetism; nanofabrication; 3D printing; additive manufacturing; focused electron
beam; lithography; spintronics; magnetic nanowires

1. Introduction

Controlling the composition, structure and shape of materials at the nanoscale has become one
of the forefronts of modern science, opening new opportunities in virtually all areas of technology.
In nanomagnetism, accessing these length scales via 2D patterning and engineering of interfaces
has proven to be key for the uncovering of a plethora of fascinating effects including the Giant
Magnetoresistance [1], Spin-Transfer and Spin-Orbit Torques and domain wall and skyrmion devices [2–4],
just to name a few. Owing to the recent advances in computation, fabrication and characterization
tools, and driven by fundamental bottlenecks in 2D nanomagnetism, the field of 3D nanomagnetism is
evolving into a thriving subfield of nanomagnetic research with a number of exciting theoretical and
experimental results [5–8].
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Specifically, one of the key driving forces behind advances in the field is the development of
3D fabrication methods that push current resolution limits and control material properties, with,
e.g., two-photon lithography [9–11] and electrodeposition [12–14] as two clear exponents of such
methods. In this review, we focus on focused electron beam induced deposition (FEBID), an additive
manufacturing technique that is quickly developing into a versatile tool to grow 3D nanomagnets and
control their geometry with resolutions down to a few tens of nanometres [15], see Figure 1.
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similar resolution as cryo-FEBID, with an approximately 100 increase in growth rate has been recently 
demonstrated using cryo-FIBID [19,20] (not shown here). Adapted with permission from [21]. 
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Figure 1. (a) Schematics of focused electron beam induced deposition (FEBID) for 3D nano-patterning,
where gas injected by a nozzle is adsorbed on a substrate, with a fraction getting decomposed by a
focused beam of electrons. By controlling the time the beam dwells on each point, 3D nano-printing
of magnetic materials becomes possible. Reproduced with permission from [16]. Copyright 2020
American Chemical Society. (b) Comparison of speed and resolution of FEBID and its sister technique
focused ion beam induced deposition (FIBID), with other emerging additive manufacturing methods
for the direct writing of metallic micro- and nano- structures. FEBID at cryogenic temperatures
(cryo-FEBID) enables direct-writing at very high growth rates, with slightly worse resolution [17,18];
a similar resolution as cryo-FEBID, with an approximately 100 increase in growth rate has been recently
demonstrated using cryo-FIBID [19,20] (not shown here). Adapted with permission from [21].

Here, we describe some of the most important recent advances in the growth, characterization
and application of magnetic nanostructures fabricated by FEBID for 3D nanomagnetism. The article
is structured as follows: Section 2 discusses recent advances on the direct writing of complex 3D
geometries via new computational frameworks and other approaches. Section 3 is devoted to the
material properties of 3D FEBID ferromagnetic nanostructures, including ways to control the magnetic
and crystallographic properties of single-element materials, as well as alloys. Section 4 includes a
selection of recent works where 3D FEBID nanostructures are being used for different applications:
from the well-consolidated area of scanning probe microscopy, to other emerging research areas such
as magnetic frustration, chiral magnetism, magnonics and superconducting spintronics. Section 5
outlines conclusions and perspectives of FEBID for applications in 3D nanomagnetism.

2. Writing Nanomagnets Using FEBID

The fabrication of complex-shaped 3D nanomagnets by FEBID breeds from pioneering works where
computational tools devoted to 3D nanofabrication using FIBID and FEBID were developed [22,23].
In the last few years, together with generic software exploiting in-built capabilities of standard 3D
printing adapted to focused electron/ion tools [24], specialized FEBID patterning software has been
developed for 3D printing at the nanoscale [16,25,26]. This has enabled the realization of a variety of
3D nanostructures, from artificial nanowire lattices [25,26] to shapes with curved surfaces and complex
topologies [16], including in both approaches the successful usage of magnetic precursors [16,27].
We discuss here the main features of the FEBID process, highlighting key differences with respect to
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other 3D printing methods. We further describe the recent advances that are simplifying structure
design and generation of beam scanning patterns, including the new efforts to calculate optimal
patterns for general 3D structures directly from stereolithography (STL) files.

2.1. 3D Printing via FEBID

Regarding the 3D FEBID process itself, several points must be considered. Starting from a 3D
computer-aided design (CAD) model, a procedure must be developed that maps the 3D coordinates
onto a sequence of 2D writing patterns, needed for a bottom-to-top fabrication of the target structure.
Figure 2a schematically indicates a 2D pattern slice of a 3D CAD structure. However, the dynamics of
the adsorbed precursor, as well as the trajectories of the scattered electrons from the primary beam,
must be taken into account. In this regard, slicing a 3D CAD model for 3D FEBID is significantly
harder than the analogue task known from the 3D printing of polymers. On the simplest level,
the precursor dynamics and local growth rates during the writing process can be simulated by
numerical solution of the diffusion-reaction equation on the evolving 3D surface [28]. This has to
be coupled with considerations of the transferred beam energy in two accounts. First, scattering of
primary, forward and backscattered electrons leads to dose deliveries which are not local to the primary
beam impact position (see Figure 2b). At any point of the surface where energy is provided due to
inelastic collisions, secondary electrons may leave the surface and trigger a precursor dissociation
event causing growth. Second, the volumetrically deposited energy can lead to the heating of the
growing 3D structure, which can become particularly severe for low-metal content deposits with
associated low heat conduction. For deposits, e.g., from the well-known precursor Me3CpMePt(IV),
this has been shown to be a major problem [29]. Figure 2c shows an example for local heating effects in
the last growth stages of a tetrahedral target structure at typical beam energies for high-resolution
growth. Here, the temperature increase can easily exceed 10 K during growth, which leads to an
appreciable increase of thermal desorption of the precursor and thus to a reduced local growth rate [16].
In contrast to highly-carbon-based materials grown using non-magnetic FEBID precursors, magnetic
3D nanostructures are typically much higher in metallic content, normally reaching contents greater
than 80 at.% (see Section 3). This helps to mitigate this heating problem and it may be neglected in
many cases.
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Figure 2. (a) Exemplary 3D computer-aided design (CAD) model of a ferromagnetic tetrapod structure
with slicer plane for 2D pattern generation, for illustration. (b) Result of Monte Carlo simulation of
several primary electron trajectories at 20 keV energy for tetrapod structure illustrating elastic scattering
(yellow trajectories) and deposited energy (colour bar), due to inelastic scattering. (c) Temperature
distribution in tetrapod structure under electron beam exposure at 20 keV and 44 pA beam current,
when the electron beam hits at the topmost upper front arm (stationary state finite difference solution
of heat conduction equation). The temperature increase is from 293 K at the base of the structure to
about 303 K at the beam impact position; material parameters of Pt20C80.

In the development of efficient pattern generation software, the issues of (i) height-dependent
growth rate variation due to diffusion limits, (ii) precursor consumption due to proximity effects,
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(iii) height- and material-dependent heating effects and (iv) non-local deposition due to scattering,
have to be accounted for. Presently, available patterning programs [16,25,26] take (i) and (ii) into
account, and the one most recently developed [16] tackles partially (iii) by compensating for heating
effects assuming the growth of a single-material with effective thermal conductivity. Non-local
deposition (iv), however, remains an issue for future research, as a full simulation of 3D writing
process [22] is likely to be necessary for a complete compensation of non-local deposition artifacts by
suitable adaption of the 2D writing patterns.

2.2. 3D Printing of Arbitrary-Shaped Nanomagnets

Until quite recently, the main emphasis regarding 3D nanofabrication by FEBID has focused
on high-purity nanowires and nanowire networks, due to their wide scientific and technological
applicability [30]. However, FEBID can fabricate a much wider range of structures, having all the
capabilities of a traditional extruder-based 3D printer, but with a several orders of magnitude higher
resolution [31].

The final goal of FEBID 3D printing consists of the faithful reproduction of any 3D CAD model,
while independently controlling the material properties, which is far from trivial when working at the
nanoscale and using focused electron beams and gases. Complex electron interactions with the deposit
and the substrate, together with a number of competing effects, such as gas flux, temperature and
diffusion, are dynamically changing the local deposition rates during the fabrication [18,32]. Each of
these effects is further dependent on a number of parameters, many of which are difficult to measure
with the required level of certainty [15,29,32]. Extensive research is under way combining hybrid
Monte Carlo-continuum simulations with experimental feedback to pinpoint the key parameters and
to examine the deposition process in detail [22,25,29].

However, despite this complexity, recent works show how, by carefully choosing the regime of
growth, the large number of fundamental parameters can be reduced to a few effective ones that can be
directly measured and are capable of modelling the deposition (see Figure 3a,b) [16,18]. This simplified
model is computationally tractable, directly creating beam scanning patterns from STL files used in
traditional 3D printers.
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Figure 3. (a) An array of vertical pillars is built with varying deposition times. The height of the
resulting structures is used to determine the base growth rate, and temperature scaling factor, reducing
the growth rate as pillars get longer. (b) The effective standard deviation σ of the deposit is determined
by comparing wide nanowires to a single pixel line (SPL), allowing correction for proximity effects.
(c) Stereolithography (STL) model of a human hand. (d,e) Side and top view SEM images of the model
fabricated with MeCpPt(Me)3. (f,g) Ferromagnetic Möbius strip made using Co2(CO)8, where arrows
are included to help visualize the geometry. Scale bars are 1 µm. Adapted with permission from [16].
Copyright 2020 American Chemical Society.
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A range of complex geometries have been nano-printed using this approach (see Figure 3c–g),
with both standard MeCpPt(Me)3 (that can be e.g., used as a scaffold for subsequent deposition of
magnetic thin films, Section 3.3), and the magnetic precursor Co2(CO)8, demonstrating a promising
route to fabricate general 3D magnetic nanostructures with FEBID. Further work, however, is necessary
to generalize the model to other precursors and more complex regimes of growth where higher-purity
materials can be achieved (Section 3).

3. Ferromagnetic 3D Nanostructured FEBID Materials

The happy marriage between FEBID and nanomagnetism is primarily due to the fact that
room-temperature ferromagnetic materials can be directly grown with this technique under particular
growth conditions [33–35]. Co2(CO)8, Fe(CO)5 and Fe2(CO)9 [36–38] are the most prevalent precursors
used for this purpose, giving rise to either Co or Fe materials with metallic purities typically above
75 at.%. This contrasts with most other FEBID precursors, mostly designed for chemical vapor
deposition (CVD) applications, where materials typically formed by ~70–80 at.% carbon are grown,
primarily due to the contamination by organic groups present in the precursor [33] as well as
contaminants originating from the dissociation of residual gases present in the vacuum chamber [39].
Investigations devoted to the development of new precursors is key for further progress in this area.
However, stringent requirements for precursor properties make the discoveries of practically usable
precursors difficult [40]. We discuss here recent advances regarding obtaining highly-pure Co and Fe
3D deposits, as well as new routes to integrate ferromagnetic alloys onto 3D nanostructures.

3.1. Tuning of Cobalt and Iron FEBID Materials by Post-Growth Annealing

As described above, a generally common issue regarding FEBID materials is the existence of
chemical impurities incorporated into the main deposit, which may become limiting factors for some
applications. To solve this fundamental limitation, diverse approaches such as ex situ [41] and in
situ [42] thermal annealing and electron beam irradiation at high vacuum and under controlled reactive
gas atmospheres [43,44], use of substrates at high temperatures [45,46] or post-growth Joule heating
and electromigration upon injection of high electric currents [47] have been conducted in the past.
Such strategies have been predominantly employed in non-magnetic materials, where the purity of
FEBID materials is generally very low [33].

For ferromagnetic materials, post-growth purification methods [42] seem particularly appealing
when fabricating 3D nanostructures, due to several reasons. For instance, there exists evidence of a
drastic reduction of the metallic content in high aspect ratio FEBID nanowires with small diameters,
due to complex temperature-dependent effects taking place during 3D FEBID [48]. Furthermore,
a high surface-to-volume ratio may also result in the oxidation of a substantial fraction of this type of
structures [49], having led, e.g., to strategies involving non-magnetic gases to protect them [50,51].

Recent works have employed post-growth thermal annealing under high vacuum conditions to
tune the purity, crystallinity, magnetic induction in cobalt and iron FEBID free-standing cylindrical
nanowires [52,53], revealing significant differences between both materials. In the case of Co (Figure 4),
the study focused on 3D nanowires of ≈90 nm in diameter and an initial ≈75 at.% metallic content,
which were subject to an in vacuum, ex situ post-growth annealing up to 600 ◦C. This thermal
treatment increased the metallic content up to 95 at.% (Figure 4a), and at the same time induced the
recrystallization of the pseudo-amorphous as-deposited structure into hcp and fcc crystals, with lateral
crystal sizes comparable to the nanowire diameter (Figure 4b). This contrasts with the study performed
on iron nanowires of ≈50 nm in diameter and an initial metallic content ≈40 at.% (not shown here),
where similar annealing conditions revealed how the as-deposited homogeneous nanocrystalline Fe
structure evolved during annealing into a material presenting a strong phase segregation, formed by a
combination of (highly-pure Fe) metallic and (richer in C and O) amorphous regions. In this second
case, the general morphology of the nanostructure was preserved.
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Importantly, in the case of Co, the annealing process led to a net magnetization increase of 80% with
respect to as-grown values (Figure 4a), up to 1.6 T, approaching the value of bulk Co. This procedure
also showed a minor volume shrinkage effect, unlike in other FEBID materials [54], which led to
good mechanical stability conditions during annealing and consequently to the original shape of the
3D nanowire being mostly maintained. The magnetic reversal of these nanowires was subsequently
measured by nano-SQUID (superconducting quantum interference device) magnetometry [55],
revealing that the enhancement of Co content and crystallinity under annealing results in larger
magnetic switching fields and better-defined magnetic switching field values (Figure 4c).
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Figure 4. Scanning transmission electron microscopy characterization of Co nanowires under an
annealing post-growth purification process. (a) Average B-field and Co composition as a function of
annealing temperature measured by off-axis electron holography. (b) High-angle annular dark-field
and corresponding fast-Fourier-transform (first row), and chemical maps by electron energy loss
spectroscopy (following rows). Scale bars are 20 nm. (c) Hysteresis loops obtained by nano-SQUID
(super quantum interference device) magnetometry at 15 K for each of the wires. (a,b) Reproduced
with permission from [52]. (c) Reproduced with permission from [55]. Copyright 2018 American
Chemical Society.

3.2. Ferromagnetic Alloys

The integration of ferromagnetic alloys onto 3D nanostructures offers various advantages with
respect to single-element materials regarding the fine-tuning of desired magnetic properties, such as
magnetic hardness, saturation magnetization or Curie temperature [56]. It therefore comes as no
surprise that several attempts have been made to fabricate alloy nanostructures by FEBID (see [57] for
a more complete account). So far, three different approaches have been taken, namely (i) using two
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or three precursors in parallel [57–59], (ii) electron-beam or thermally induced intermixing of FEBID
multilayer structures [60,61] and (iii) employing heteronuclear precursors [62,63].

Among these variants, the recent route of using a heteronuclear precursor has so far proved to
be most successful, specifically with the carbonyl HCo3Fe(CO)12, which provides ≈80 at.% metallic
Co3Fe deposits, it is easy to handle and is suitable for high resolution work at both, low and high beam
energy [62]. It should be stressed, however, that this is not guaranteed if heteronuclear precursors are
used. The chemically and structurally similar precursor H2Ru3Fe(CO)13 resulted instead in deposits
with a maximum metal content below 30 at.% and was found to exhibit a distinctively different
dissociation behaviour under low-energy electron impact [64]. At present, like in single-element
(Co and Fe) FEBID materials, the most promising pathway to tap into the large reservoir of potential
alloy precursors is the carbonyls. The presence of unoccupied orbitals with a dense band of ligand π*
orbitals, mixed with metal centred orbitals, in conjunction with a dense constellation of occupied metal
d-orbitals and associated band-like structure at the HOMO-LUMO gap of the bonding orbitals, may be
the most important ingredient to obtain an effective FEBID process [64].

3.3. 3D FEBID Scaffolds and Magnetic Thin Films

Together with the direct writing of ferromagnetic materials, a hybrid approach combining 3D
nano-printing by FEBID of non-magnetic scaffolds and a subsequent physical vapor deposition (PVD)
method of magnetic thin films has been recently developed [65,66], see Figure 5a–d. This approach
offers the key advantage of integrating into a 3D geometry highly-pure thin film spintronic materials,
eliminating possible issues due to the lack of purity and limited number of ferromagnetic materials
currently available by FEBID. It is, however, subject to issues such as non-conformality deposition of
PVD processes, shadowing effects, and the deposition of the magnetic material on the whole wafer,
around the 3D nanostructure.
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Figure 5. Fabrication and characterization of 3D FEBID-PVD (physical vapor deposition) hybrid
nanostructures. (a) Non-magnetic FEBID scaffold fabricated with the MeCpPt(Me)3 precursor.
(b) Permalloy evaporation onto the structure. (c) Schematic of the resulting nanomagnetic system.
The 2D film acts as the source of domain walls which can be injected into the nanowire via the 2D-3D
interconnect. (d) SEM image of the fabricated nanowire. Scale bar is 1 µm. (e) External magnetic fields
applied as a function of time. The coordinate system is defined with x being along the length of the
nanowire and y being parallel to the film (see c). A transverse field (Hy) (is employed as a magnetic
gate to control the injection of domain from the film transmitted by the rotating Hx and Hz fields.
(f) Magnetic switching of the nanowire via domain wall motion, probed by dark-field magneto-optical
Kerr effect. Adapted with permission from [65]. Copyright 2017 American Chemical Society.
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This approach has been successfully followed by using the standard MeCpPt(Me)3 precursor to
fabricate 3D nanowire scaffolds, followed by the PVD of a thin layer of magnetically-soft permalloy
film, with the nanowire smoothly connected to the planar substrate [65]. The domain wall motion
in these devices was measured by optical means, using a new dark-field magneto-optical method
that is capable of probing the magnetic properties of a 3D nanostructure surrounded by a magnetic
substrate. Due to the nanowire and substrate being at different planes, these structures can exhibit
a significantly more complex response to vector external magnetic fields than their 2D counterparts.
Specifically, domain walls can be controllably generated in the substrate plane, pinned at the 2D-3D
interconnect region, and injected into the nanowire. The injection can further be gated by applying a
field transverse to the nanowire (Figure 5e,f).

4. FEBID Nanostructures for 3D Nanomagnetism

Given the unique capabilities of FEBID for the additive manufacturing of metals at resolutions
comparable with the magnetic length scales (Section 1) and the recent advances in 3D nano-printing
(Section 2) and integration of ferromagnetic materials (Section 3), there are multiple areas of
nanomagnetism where FEBID nanostructures may play a crucial role to explore new physical effects in
the coming years [5,8]. Here, we discuss recent works in some areas identified as particularly promising.

4.1. Scanning Probe Microscopy Magnetic Sensing

Scanning probe microscopy (SPM) is one of the key applications where FEBID has excelled since
its invention, thanks to its ability for 3D nanofabrication at almost any location, which offers unique
opportunities for applications where specialized shapes are needed [33,67].

In the realm of magnetic SPM, three different types of FEBID sensors have been reported so far.
The first type consists of small magnetic tips grown on cantilevers for ferromagnetic resonance force
microscopy (FMRFM), a technique dedicated to image the spin dynamic properties of a magnetic
sample. In ferromagnetic resonance (FMR), the application of an a.c. magnetic field perpendicular to
the sample magnetization direction can excite its ferromagnetic resonance, an effect that gets modified
due to the force between the magnetic tip and sample in FMRFM. This technique is useful to investigate
the spatial dependence of the ferromagnetic resonance modes in a magnetic nanostructure, as well as
the magnetic coupling in between nearby magnetic nanostructures [68]. The lateral resolution of the
technique depends on the size of the magnetic tip, which has led to the development of magnetic tips
based on sub-micron probes. For instance, the ability of FEBID to grow small Co magnetic tips with
diameters down to 10 nm has been exploited to carry out high-resolution FMRFM measurements [69,70].
Moreover, FEBID has also been used to grow Co nanospheres as small as 100 nm in diameter [71],
as shown in Figure 6a. The spherical shape is preferred for this type of application, since it minimizes
possible magnetic hysteresis effects, making the quantitative analysis of the measurements simpler [72].
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Figure 6. SEM micrographs of the three types of magnetic sensors grown by FEBID on cantilevers
for scanning probe microscopy. (a) Co nanosphere on a cantilever for ferromagnetic resonance force
microscopy. (b) Fe tip for magnetic force microscopy. (c) Long Co nanowire for scanning magnetic
force sensing. (a) Reproduced with permission from [71]. (c) Reprinted with permission from [73].
Copyright 2020 by the American Physical Society.
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The second type of SPM sensor by FEBID concerns conventional magnetic force microscopy
(MFM). In MFM, a magnetic tip at the edge of a cantilever is used to study the magnetic state of a
sample through the modification of the cantilever resonance frequency, an effect that occurs due to
the change of the tip-sample magnetic force during a scan. In general, magnetic tips are created by
covering one side of standard atomic force microscopy (AFM) tips with a few-nm-thick magnetic
film, typically by sputtering, an approach that provides magnetic contrast but which limits the spatial
resolution of the method, due to the pyramidal shape of the tip. Instead, the use of FEBID makes the
growth of high aspect-ratio magnetic tips possible (Figure 6b), providing significantly better magnetic
resolution [37,74,75]. FEBID magnetic tips are of particular interest in the case of cantilevers based
on either piezoelectric or resistive detection, as is sometimes the case for stringent conditions such
as low-temperatures or high vacuum [76]. Moreover, recent results report how FEBID magnetic tips
shaped as small-diameter nanorods are beneficial to produce confined magnetic stray fields, enhancing
magnetic sensitivity and facilitating quantitative data analysis [77]. This type of FEBID nanorod
magnetic tips present higher coercive fields than standard ones, being less affected by magnetic stray
fields emanating from the sample, as well as external magnetic fields. Furthermore, they can be
customized to produce low magnetic stray fields, which is necessary for MFM studies of spin textures
in magnetically-soft samples [78]. Recent results also indicate that FEBID MFM tips present a great
performance under liquid environment, opening new routes in bio-magnetics [77,79].

The third type of application of magnetic FEBID nanostructures for SPM concerns its use in
scanning magnetic force sensing (SMFS), as demonstrated in [73]. Very high aspect-ratio Co nanowires
with lengths ≈11 µm and ≈100 nm in diameter were found in this publication to be excellent probes for
this technique. In SMFS, changes on resonance frequency associated to nanowire’s flexural vibration
modes, due to forces between the sample and the nanowire sensor, are exploited to image a magnetic
sample. The Co FEBID nanowires used for this purpose were found to be well-behaved mechanically,
with high quality factors of up to 2000. In this dynamic cantilever magnetometry technique, the superb
sensitivity obtained, equal to 3 nT/Hz0.5, is comparable to some of the most sensitive scanning probes
available [80], including scanning nitrogen-vacancy magnetometers and scanning SQUIDs. In contrast
to MFM, here the sample’s stray field interacts only with the magnetic charge distribution at the very
end of the nanowire close to a sample. This leads to a superior sensitivity and enables to work in a
regime of low invasiveness. The technique is also promising to develop SPM methods with 3D vector
magnetic force sensing capabilities.

4.2. Magnetic Nanowires and Nanowire Networks

Nanowire-based structures have been the dominating geometry targeted by FEBID, see,
e.g., [36,37,81,82], even before the advent of systematic and simulation-assisted 3D FEBID. In magnetism,
3D nanowire structures, as well as 3D networks formed by repeating nanowire-like unit cells, are very
attractive. 3D FEBID single nanowire structures can be used for a range of applications, from sensors
in scanning probe microscopy (Section 4.1) and domain wall conduits (Section 3.3), to field-driven
nano-actuators [83], to cite a few. Furthermore, 3D geometries open up exciting perspectives to explore
new theoretically-predicted effects exploiting the interplay of nanoscale geometry and curvature with
the magnetization (Section 4.2).

Furthermore, 3D nanowire networks are highly significant with regard to realizing extended
magnetically frustrated systems on the meso-scale [84], as recently investigated via 3D FEBID Co3Fe
tetrahedra by means of micro-Hall magnetometry. In these experiments, the magnetic stray field
generated from a tetrahedra grown within the sensor area of a 2D electron gas (2DEG) semiconductor
heterostructure was measured by means of the Hall voltage generated within the 2DEG (Figure 7a).
Conceptually, such a tetrahedral building block consisting of uniformly magnetized cylindrical arms
exhibits a sixfold degenerate magnetic ground state (Figure 7b). If extended into a 3D diamond-like
lattice, this represents an artificial spin ice equipped with several tuning options, such as saturation
magnetization and strength of dipolar coupling, something achievable in FEBID by diluting the
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magnetic component via the mixture with other precursor, as well as by scaling the lattice constant.
In this case, however, 3D cylindrical structures of 60–70 nm in diameter made vortex-like local
magnetization distributions energetically favored [85]. Therefore, whereas a simple macro-spin model
could reproduce concise features in some of the measured magnetic hysteresis curves, these were
reproduced more quantitatively via full micromagnetic simulations [27] (see Figure 7c–e). The magnetic
frustration effects associated to these curvature-induced magnetization structures is a work in progress.
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Figure 7. (a) Schematic of typical gradiometry setup for micro-Hall magnetometry with a tetrapod 3D
ferromagnetic structure fabricated by FEBID; see [85] for details. From the measured Hall voltages
VH

(s) and VH
(r), the magnetic stray field generated by the tetrapod can be deduced. (b) Energy diagram

of a tetrapod structure assuming uniformly magnetized arms within the dumbbell approximation.
The sixfold degenerate ground state refers to the “two in – two out” ice rule for tetrahedral spin
ice [86]. Configuration #4 shown in the inset depicts one of the possible ground states. (c) Macrospin
model for the tetrapod with uniaxial anisotropy along the arm directions in zero field, where a “two
in–two out” state is realized. (d) Result of zero-field micromagnetic simulation of tetrapod structure
using mumax3 [85] with material parameters of Co3Fe; see [85] for details. The colour code on the
plane of the 2DEG represents the z-component of the magnetic stray field generated by the tetrapod.
(e) Comparison of results of stray field calculations for Co3Fe tetrapod with field perpendicular to the
2DEG. Micromagnetic (red) and macro-spin (blue) simulation show roughly corresponding coercive
fields but clear differences in details of the stray field hysteresis. Suitable parameter selection for the
macro-spin simulation can reduce these differences to some degree; see [28] for details.

4.3. Curvilinear Nanomagnetism

Magnetism in curvilinear geometries has emerged as a rapidly developing domain of modern
magnetism with many exciting theoretical predictions and strong application potential [6,87,88].
By engineering the 3D shape and local curvatures, the intrinsic magnetic couplings can be modified,
which has allowed for the predictions of magneto-chiral effects [89], topologically induced magnetization
patterning [90], absence of the breakdown velocity for domain walls [91], chirality symmetry
breaking [87,92] and Cherenkov-like [93] magnonic effects. Among other geometries, magnetic
nanotubes and nanowires are those best explored so far, due to the range of fabrication techniques able
to create these simpler geometries [94]. However, the lack of suitable 3D nanofabrication techniques has
held back experimental studies in more complex geometries such as tori, Möbius strips, and spherical
shells. We anticipate that CAD-assisted direct-write of 3D FEBID nano-architectures (Section 1)
should bridge this gap between theory and experiments in the future, opening new horizons for
curvilinear magnetism.
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A complex chiral geometry that is particularly appealing in this realm is the helix, where control
over diameter, curvature and torsion at the nanoscale can lead, via an effective Dzyaloshinskii-Moriya
interaction, to exotic magnetization distributions and a very rich phenomenology [95]. This type
of geometry has been successfully obtained by FEBID in the past for both non-magnetic [96] and
magnetic [36] precursors, with recent results combining electron off-axis holography and tomography
to characterize Co helices spanning a range of curvature and torsion values [97]. In addition, the 3D
writing ability of FEBID has been just exploited to a greater extent, by interfacing two double
helices with strongly-overlapped strands of opposite chiralities [98], see Figure 8a–c. This approach,
as demonstrated by transmission X-ray magnetic microscopy and micromagnetic simulations, can be
exploited to imprint chiral spin states via geometrical chirality only; it also enables the formation of
localized complex 3D spin textures and topological defects at regions mediating the transition between
geometrical chiralities, something arguably not possible in standard approaches using bulk and thin
film magnetic systems.
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Figure 8. (a) Double-helix with opposite chirality (bottom LH: left-handed; top RH: right-handed)
interfaced at the region marked by an asterisk. Scale bar is 1 µm. (b,c) Micromagnetic simulations of
the double-helix system in an antiparallel magnetic state; a Bloch wall with a well-defined chirality
is formed between the strands, with the chirality defined by the chirality of the corresponding helix.
A 3D vortex with a Néel defect is formed at the region (*) connecting both chiralities. Reproduced with
permission from [98]. Copyright 2020 American Chemical Society.

4.4. Superconducting Spintronics and Fluxonics

Hybrid systems composed of superconductors (S) and ferromagnets (F) harbor numerous physical
phenomena emerging due to the antagonistic spin ordering [99] that affects spin transport [100]
and dynamics of magnetic moment excitations [101]. Examples are odd-frequency spin-triplet
superconductivity [102] favoring non-collinear magnetization environments [103] and leading to
long-range proximity [104,105], giant thermoelectric [106] and thermo-spin [107] effects. In addition,
S/F heterostructures find applications in magnetic recording [108], information storage devices [109],
and magnetic cloaking metamaterials [110]. Inhomogeneous magnetization configurations induced
by the geometry or topology of 3D FEBID structures should thus be pivotal for engineering new
states of matter in which the low-dissipative response of S is combined with the magnetic order of F,
opening new horizons for quantum computing.
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Ferromagnetic “decoration” of superconducting films provides a traditional means to induce
tailored pinning potentials which influence the dynamics of Abrikosov vortices [110–114],
see Figure 9a,b. Recently, Co-FEBID nanostrips extended into the third dimension by shaping
their cross-section in an asymmetric fashion (Figure 9a) has allowed for breaking the symmetry of the
vortex motion under current polarity reversal and studying vortex ratchet (rectification) effects [115].
By guiding magnetic flux quanta at a small tilt angle with respect to a Co nanostrip array, about 5 km/s
vortex velocities have been achieved [116] providing access to studying Cherenkov-like generation
of acoustic [117] and spin [118] waves. We anticipate that 3D FEBID structures will also find
applications in the rapidly developing field of magnon fluxonics [119–122], addressing the interplay of
superconductivity and spin-wave physics. In addition, the suitability of FEBID for the fabrication of
3D leads should enable magneto-resistance measurements in both in-plane and out-of-plane current
geometries [123–125].
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Figure 9. Atomic force microscopy images of exemplary FEBID structures for fluxonics and magnonics.
(a) Nb film decorated with an array of asymmetrically shaped Co nanostripes inducing a ratchet
pinning potential landscape of the washboard type for Abrikosov vortices. (b) Bi-periodic magnonic
crystal on the surface of a Py film that allows for reprogramming the band structure in the magnon
frequency spectrum. (c) Magnonic waveguide with a gradually decreasing thickness that induces a
graded refractive index for spin waves via the magnetization gradient. (d) 3D magnonic crystal in
which the thickness modulation period is a factor of two larger than the width modulation period.
(e) Y-shaped magnonic waveguide with a nanogroove milled by focused ion beam (FIB) at the junction
for frequency-selective steering of spin waves via the refraction and reflection effects. (f) “Nano-volcano”
for ferromagnetic resonance studies. Structures (b–f) are fabricated from Co3Fe employing the precursor
HFeCo3(CO)12.

A significant improvement of the microwave radiation detection has been demonstrated through
the use of superconducting bolometers made from rolled-up planar microstructures into 3D helices [126].
At the same time, superconducting FEBID structures remain so far limited to the systems Mo-C-O
(precursor Mo(CO)6, Tc ≈ 10 K) [127], W-C-O (precursor W(CO)6, Tc ≈ 2 K) [128], and Pb-C-O (precursor
Pb(CH3CH2)4, Tc ≈ 7.3 K) [129]. While current work is directed at the synthesis of novel precursors
for superconducting FEBID materials, 3D writing strategies are being extensively tested for the
complementary technique of FIBID. Employing a He+ ion beam microscope, Córdoba et al. fabricated
free-standing hollow superconducting tungsten carbide nanowires with diameters smaller than
32 nm [130] and 3D nano-helices with diameters of 100 nm [131]. In contrast to planar superconductor
structures, the complex 3D geometry of nano-helices leads to topologically non-trivial screening
currents and confinement potentials that depend on the curvature and torsion of the helices and
stipulate the occurrence of different patterns of topological defects whose dynamics affects the resistive
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response [126,131]. In this way, once available, superconducting 3D FEBID structures will offer much
potential for studying novel physics of geometry- and topology-induced effects [132,133], as well as for
remote sensing and electronic applications.

Recently, a comparative study of structural and transport properties was reported for free-standing
3D nanowires fabricated by Ga+ FIBID and FEBID employing the precursor Nb(NMe2)3(N-t-Bu) [134].
Electrical transport measurements showed that FEBID nanowires are highly resistive, whereas FIBID
planar nanowires become superconducting at Tc ≈ 5 K. Interestingly, the critical temperature of
free-standing 3D nanowires is as high as Tc ≈ 11 K, which is close to the value of bulk NbC. Remarkably,
Nb-C-FIBID exhibits a rare combination of properties: weak volume pinning, close-to-depairing critical
current and fast heat removal from heated electrons. This provides access to investigations of vortex
dynamics at >10 km/s vortex velocities [135] and renders Nb-C-FIBID as a candidate material for
single-photon detectors, with properties comparable to NbN and MoSi thin films [136,137]. In addition,
the direct-write capability of FIBID and FEBID should be fortunate for on-chip and on-fiber detector
integration in circuits for quantum information processing.

4.5. Magnonics

Magnonics has emerged as one of the most rapidly growing research fields in magnetism [138].
It is concerned with the dynamics of spin waves, which are precessional excitations of ordered spins in
magnetic materials. Covering a wide frequency range from sub-GHz to tens of THz and being free
from the translational motion of electrons and the associated Joule heat, spin waves possess great
potential for realizing novel, highly efficient wave-based computing concepts [139]. In this regard,
FEBID, whose potential for magnonic applications has been demonstrated in a few proof-of-concept
experiments [71,140,141], can offer unique features which go beyond the rich instrumentation of
traditional fabrication techniques employed in magnonics.

Artificial magnetic media with properties periodically varied in space—magnonic crystals—are
especially valuable for controlling and manipulating spin waves [142]. The spectra of spin waves in
these materials exhibit forbidden-frequency regions (bandgaps), where spin waves are not allowed
to propagate [139]. Of especial interest are bi-component, reprogrammable magnonic crystals
whose magnetic configuration can be switched between different states [142]. Such crystals can
readily be fabricated by using a combination of FEBID with focused ion beam (FIB) milling, with a
unique possibility to gradually modify the spin-wave transmission characteristics by stopping the
deposition/milling process at the desired stage, or continuing it after a magneto-dynamic measurement.

One important function of future spin wave-based computers is to control their propagation.
The challenge of steering spin waves has primarily been addressed in curved waveguides, due to losses
and scattering in their bends. An alternative solution is to steer spin waves via a graded refractive index,
which smoothly alters the wave trajectory with minimal reflections [49]. To achieve a graded index
for spin waves, one must gradually change a magnonic parameter (e.g., magnetization), which was
demonstrated to steer spin waves around a 90◦ corner [143] and suggested for the development of
graded-index magnonic fibers and lenses [144]. A variation of the magnetization in FEBID structures can
be achieved by choosing specific writing strategies, beam parameters, and/or post-growth irradiation
of structures with ions or electrons. An example of a graded-index magnonic conduit is presented in
Figure 9c.

The capability to fabricate 3D nano-architectures appears to be the strongest advantage of FEBID.
Previous experiments on nanodisks with nanoholes [145] revealed that their magneto-dynamic response
differs essentially from that of flat ones. As conventional complementary metal–oxide-semiconductor
(CMOS) technology becomes three-dimensional and magnonics is aimed at remaining at the
same technological level, magnonic networks are also extended into the third dimension [146].
Of particular interest here are 3D nanoresonators [147], 3D magnonic crystals [147], as well as
directional couplers [148] and frustrated magnetic systems [149–152] whose extension into the third
dimension is expected to significantly enhance their functionality. Thus, while frustrated 3D magnetic
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nanowire lattices fabricated by two-photon lithography have recently been demonstrated [153],
further optimization of 3D nano-cube and nano-tree FEBID lattices [27,85] towards higher metal
contents and—ideally—a single-domain state of these building blocks should allow for building
magnonic 3D nano-architectures with complex interconnectivity and for the development of novel
types of human brain-inspired neuromorphic magnonic networks. An example of a 3D magnonic
crystal prepared by FEBID is shown in Figure 9d, while examples of a magnonic waveguide joint and a
3D “nano-volcano” structures are presented in Figure 9e,f.

5. Conclusions and Perspectives

We have discussed key advances of 3D magnetic nanostructures grown by FEBID in the last few
years. Fundamentally, the recent advances in understanding of competing fundamental effects during
FEBID deposition lead to the development of new pattern generating software for 3D nano-printing,
opening exciting opportunities in a range of nanotechnology areas. The growth of room-temperature
ferromagnets with tunable purity and magnetic properties makes FEBID particularly suitable for
nanomagnetism. The unique performance of the technique to direct writing of ferromagnets with
complex 3D shapes, in combination with the maturity reached by the technique, as exemplified by
the works described here, opens exciting opportunities in a variety of areas in the emerging field of
3D nanomagnetism.
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12. Bochmann, S.; Döhler, D.; Trapp, B.; Staňo, M.; Fruchart, O.; Bachmann, J. Preparation and physical properties
of soft magnetic nickel-cobalt three-segmented nanowires. J. Appl. Phys. 2018, 124, 163907. [CrossRef]

13. Andersen, I.M.; Rodríguez, L.A.; Bran, C.; Marcelot, C.; Joulie, S.; Hungria, T.; Vazquez, M.; Gatel, C.; Snoeck, E.
Exotic Transverse-Vortex Magnetic Configurations in CoNi Nanowires. ACS Nano 2019, 14, 1399–1405.
[CrossRef] [PubMed]

14. Ruiz-Gómez, S.; Foerster, M.; Aballe, L.; Proenca, M.P.; Lucas, I.; Prieto, J.L.; Mascaraque, A.; de la Figuera, J.;
Quesada, A.; Pérez, L. Observation of a topologically protected state in a magnetic domain wall stabilized by
a ferromagnetic chemical barrier. Sci. Rep. 2018, 8, 1–6. [CrossRef] [PubMed]

15. Winkler, R.; Lewis, B.B.; Fowlkes, J.D.; Rack, P.D.; Plank, H. High-Fidelity 3D-Nanoprinting via Focused
Electron Beams: Growth Fundamentals. ACS Appl. Nano Mater. 2018, 1, 1014–1027. [CrossRef]

16. Skoric, L.; Sanz-Hernández, D.; Meng, F.; Donnelly, C.; Merino-Aceituno, S.; Fernández-Pacheco, A.
Layer-by-layer growth of complex-shaped three-dimensional nanostructures with focused electron beams.
Nano Lett. 2019, 20, 184–191. [CrossRef]

17. Bresin, M.; Toth, M.; Dunn, K.A. Direct-write 3D nanolithography at cryogenic temperatures. Nanotechnology
2013, 24, 035301. [CrossRef]

18. Sanz-Hernández, D.; Fernández-Pacheco, A. Modelling focused electron beam induced deposition beyond
Langmuir adsorption. Beilstein J. Nanotechnol. 2017, 8, 2151–2161. [CrossRef]

19. Córdoba, R.; Orús, P.; Strohauer, S.; Torres, T.E.; De Teresa, J.M. Ultra-fast direct growth of metallic micro-
and nano-structures by focused ion beam irradiation. Sci. Rep. 2019, 9, 14076. [CrossRef]

20. De Teresa, J.; Orús, P.; Córdoba, R.; Philipp, P. Comparison between Focused Electron/Ion Beam-Induced
Deposition at Room Temperature and under Cryogenic Conditions. Micromachines 2019, 10, 799. [CrossRef]

21. Hirt, L.; Reiser, A.; Spolenak, R.; Zambelli, T. Additive Manufacturing of Metal Structures at the Micrometer
Scale. Adv. Mater. 2017, 29, 1604211. [CrossRef] [PubMed]

22. Fowlkes, J.D.; Winkler, R.; Lewis, B.B.; Stanford, M.G.; Plank, H.; Rack, P.D. Simulation-Guided 3D
Nanomanufacturing via Focused Electron Beam Induced Deposition. ACS Nano 2016, 10, 6163–6172.
[CrossRef] [PubMed]

23. Matsui, S. Three-Dimensional Nanostructure Fabrication by Focused Ion Beam Chemical Vapor Deposition.
In Springer Handbook of Nanotechnology; Springer: Berlin/Heidelberg, Germany, 2010; pp. 211–229.

24. Niessen, F.; Nancarrow, M.J.B. Computer-aided manufacturing and focused ion beam technology enable
machining of complex micro- and nano-structures. Nanotechnology 2019, 30, 435301. [CrossRef]

25. Fowlkes, J.D.; Winkler, R.; Lewis, B.B.; Fernández-Pacheco, A.; Skoric, L.; Sanz-Hernández, D.; Stanford, M.G.;
Mutunga, E.; Rack, P.D.; Plank, H. High-Fidelity 3D-Nanoprinting via Focused Electron Beams:
Computer-Aided Design (3BID). ACS Appl. Nano Mater. 2018, 1, 1028–1041. [CrossRef]

26. Keller, L.; Huth, M. Pattern generation for direct-write three-dimensional nanoscale structures via focused
electron beam induced deposition. Beilstein J. Nanotechnol. 2018, 9, 2581–2598. [CrossRef]

27. Al Mamoori, M.; Keller, L.; Pieper, J.; Barth, S.; Winkler, R.; Plank, H.; Müller, J.; Huth, M. Magnetic
Characterization of Direct-Write Free-Form Building Blocks for Artificial Magnetic 3D Lattices. Materials
2018, 11, 289. [CrossRef]

28. Al Mamoori, M.; Schröder, C.; Keller, L.; Huth, M.; Müller, J. First-order reversal curves (FORCs) of
nano-engineered 3D Co-Fe structures. AIP Adv. 2020, 10, 015319. [CrossRef]

29. Mutunga, E.; Winkler, R.; Sattelkow, J.; Rack, P.D.; Plank, H.; Fowlkes, J.D. Impact of Electron-Beam Heating
during 3D Nanoprinting. ACS Nano 2019, 13, 5198–5213. [CrossRef]

30. Vázquez, M. Magnetic Nano-and Microwires: Design, Synthesis, Properties and Applications; Woodhead
Publishing: Cambridge, UK, 2020; ISBN 9780081028322.

http://dx.doi.org/10.3390/ma13030761
http://dx.doi.org/10.1016/j.mee.2018.01.018
http://dx.doi.org/10.1103/PhysRevLett.114.115501
http://www.ncbi.nlm.nih.gov/pubmed/25839287
http://dx.doi.org/10.1063/1.5049892
http://dx.doi.org/10.1021/acsnano.9b07448
http://www.ncbi.nlm.nih.gov/pubmed/31825584
http://dx.doi.org/10.1038/s41598-018-35039-6
http://www.ncbi.nlm.nih.gov/pubmed/30420675
http://dx.doi.org/10.1021/acsanm.8b00158
http://dx.doi.org/10.1021/acs.nanolett.9b03565
http://dx.doi.org/10.1088/0957-4484/24/3/035301
http://dx.doi.org/10.3762/bjnano.8.214
http://dx.doi.org/10.1038/s41598-019-50411-w
http://dx.doi.org/10.3390/mi10120799
http://dx.doi.org/10.1002/adma.201604211
http://www.ncbi.nlm.nih.gov/pubmed/28052421
http://dx.doi.org/10.1021/acsnano.6b02108
http://www.ncbi.nlm.nih.gov/pubmed/27284689
http://dx.doi.org/10.1088/1361-6528/ab329d
http://dx.doi.org/10.1021/acsanm.7b00342
http://dx.doi.org/10.3762/bjnano.9.240
http://dx.doi.org/10.3390/ma11020289
http://dx.doi.org/10.1063/1.5129850
http://dx.doi.org/10.1021/acsnano.8b09341


Materials 2020, 13, 3774 16 of 21

31. Winkler, R.; Fowlkes, J.D.; Rack, P.D.; Plank, H. 3D nanoprinting via focused electron beams. J. Appl. Phys.
2019, 125, 210901. [CrossRef]

32. Toth, M.; Lobo, C.; Friedli, V.; Szkudlarek, A.; Utke, I. Continuum models of focused electron beam induced
processing. Beilstein J. Nanotechnol. 2015, 6, 1518–1540. [CrossRef]

33. Utke, I.; Hoffmann, P.; Melngailis, J. Gas-assisted focused electron beam and ion beam processing and
fabrication. J. Vac. Sci. Technol. B Microelectron. Nanom. Struct. 2008, 26, 1197. [CrossRef]

34. De Teresa, J.M.; Fernández-Pacheco, A.; Córdoba, R.; Serrano-Ramón, L.; Sangiao, S.; Ibarra, M.R. Review of
magnetic nanostructures grown by focused electron beam induced deposition (FEBID). J. Phys. D Appl. Phys.
2016, 49, 243003. [CrossRef]

35. De Teresa, J.M.; Fernández-Pacheco, A. Present and future applications of magnetic nanostructures grown
by FEBID. Appl. Phys. A 2014, 117, 1645–1658. [CrossRef]

36. Fernández-Pacheco, A.; Serrano-Ramón, L.; Michalik, J.M.; Ibarra, M.R.; De Teresa, J.M.; O’Brien, L.; Petit, D.;
Lee, J.; Cowburn, R.P. Three dimensional magnetic nanowires grown by focused electron-beam induced
deposition. Sci. Rep. 2013, 3, 1492. [CrossRef] [PubMed]

37. Gavagnin, M.; Wanzenboeck, H.D.; Wachter, S.; Shawrav, M.M.; Persson, A.; Gunnarsson, K.; Svedlindh, P.;
Stöger-Pollach, M.; Bertagnolli, E. Free-Standing Magnetic Nanopillars for 3D Nanomagnet Logic. ACS Appl.
Mater. Interfaces 2014, 6, 20254–20260. [CrossRef] [PubMed]

38. Córdoba, R.; Sharma, N.; Kölling, S.; Koenraad, P.M.; Koopmans, B. High-purity 3D nano-objects grown by
focused-electron-beam induced deposition. Nanotechnology 2016, 27, 355301. [CrossRef] [PubMed]

39. Botman, A.; Mulders, J.J.L.; Hagen, C.W. Creating pure nanostructures from electron-beam-induced deposition
using purification techniques: A technology perspective. Nanotechnology 2009, 20, 372001. [CrossRef]

40. Mulders, J.J.L. Practical precursor aspects for electron beam induced deposition. Nanofabrication 2014, 1.
[CrossRef]

41. Shimojo, M.; Takeguchi, M.; Tanaka, M.; Mitsuishi, K.; Furuya, K. Electron beam-induced deposition using
iron carbonyl and the effects of heat treatment on nanostructure. Appl. Phys. A 2004, 79, 1869–1872.
[CrossRef]

42. Puydinger Dos Santos, M.V.; Velo, M.F.; Domingos, R.D.; Zhang, Y.; Maeder, X.; Guerra-Nuñez, C.; Best, J.P.;
Béron, F.; Pirota, K.R.; Moshkalev, S.; et al. Annealing-Based Electrical Tuning of Cobalt-Carbon Deposits
Grown by Focused-Electron-Beam-Induced Deposition. ACS Appl. Mater. Interfaces 2016, 8, 32496–32503.
[CrossRef]

43. Begun, E.; Dobrovolskiy, O.V.; Kompaniiets, M.; Sachser, R.; Gspan, C.; Plank, H.; Huth, M. Post-growth
purification of Co nanostructures prepared by focused electron beam induced deposition. Nanotechnology
2015, 26, 075301. [CrossRef] [PubMed]

44. Dobrovolskiy, O.V.; Kompaniiets, M.; Sachser, R.; Porrati, F.; Gspan, C.; Plank, H.; Huth, M. Tunable magnetism
on the lateral mesoscale by post-processing of Co/Pt heterostructures. Beilstein J. Nanotechnol. 2015,
6, 1082–1090. [CrossRef] [PubMed]

45. Córdoba, R.; Sesé, J.; De Teresa, J.M.; Ibarra, M.R. High-purity cobalt nanostructures grown by
focused-electron-beam-induced deposition at low current. Microelectron. Eng. 2010, 87, 1550–1553. [CrossRef]

46. Mulders, J.J.L.; Belova, L.M.; Riazanova, A. Electron beam induced deposition at elevated temperatures:
Compositional changes and purity improvement. Nanotechnology 2011, 22, 055302. [CrossRef]

47. Gazzadi, G.C.; Frabboni, S. Structural transitions in electron beam deposited Co-carbonyl suspended
nanowires at high electrical current densities. Beilstein J. Nanotechnol. 2015, 6, 1298–1305. [CrossRef]
[PubMed]

48. Pablo-Navarro, J.; Sanz-Hernández, D.; Magén, C.; Fernández-Pacheco, A.; De Teresa, J.M. Tuning shape,
composition and magnetization of 3D cobalt nanowires grown by focused electron beam induced deposition
(FEBID). J. Phys. D Appl. Phys. 2017, 50, 18LT01. [CrossRef]

49. Rodríguez, L.A.; Deen, L.; Córdoba, R.; Magén, C.; Snoeck, E.; Koopmans, B.; De Teresa, J.M. Influence of the
shape and surface oxidation in the magnetization reversal of thin iron nanowires grown by focused electron
beam induced deposition. Beilstein J. Nanotechnol. 2015, 6, 1319–1331. [CrossRef]

50. Pablo-Navarro, J.; Magén, C.; De Teresa, J.M. Three-dimensional core-shell ferromagnetic nanowires grown
by focused electron beam induced deposition. Nanotechnology 2016, 27, 285302. [CrossRef]

http://dx.doi.org/10.1063/1.5092372
http://dx.doi.org/10.3762/bjnano.6.157
http://dx.doi.org/10.1116/1.2955728
http://dx.doi.org/10.1088/0022-3727/49/24/243003
http://dx.doi.org/10.1007/s00339-014-8617-7
http://dx.doi.org/10.1038/srep01492
http://www.ncbi.nlm.nih.gov/pubmed/23512183
http://dx.doi.org/10.1021/am505785t
http://www.ncbi.nlm.nih.gov/pubmed/25296008
http://dx.doi.org/10.1088/0957-4484/27/35/355301
http://www.ncbi.nlm.nih.gov/pubmed/27454835
http://dx.doi.org/10.1088/0957-4484/20/37/372001
http://dx.doi.org/10.2478/nanofab-2014-0007
http://dx.doi.org/10.1007/s00339-004-2952-z
http://dx.doi.org/10.1021/acsami.6b12192
http://dx.doi.org/10.1088/0957-4484/26/7/075301
http://www.ncbi.nlm.nih.gov/pubmed/25620617
http://dx.doi.org/10.3762/bjnano.6.109
http://www.ncbi.nlm.nih.gov/pubmed/26171284
http://dx.doi.org/10.1016/j.mee.2009.11.027
http://dx.doi.org/10.1088/0957-4484/22/5/055302
http://dx.doi.org/10.3762/bjnano.6.134
http://www.ncbi.nlm.nih.gov/pubmed/26199833
http://dx.doi.org/10.1088/1361-6463/aa63b4
http://dx.doi.org/10.3762/bjnano.6.136
http://dx.doi.org/10.1088/0957-4484/27/28/285302


Materials 2020, 13, 3774 17 of 21

51. Wartelle, A.; Pablo-Navarro, J.; Staňo, M.; Bochmann, S.; Pairis, S.; Rioult, M.; Thirion, C.; Belkhou, R.;
De Teresa, J.M.; Magén, C.; et al. Transmission XMCD-PEEM imaging of an engineered vertical FEBID cobalt
nanowire with a domain wall. Nanotechnology 2018, 29, 045704. [CrossRef]

52. Pablo-Navarro, J.; Magén, C.; de Teresa, J.M. Purified and Crystalline Three-Dimensional
Electron-Beam-Induced Deposits: The Successful Case of Cobalt for High-Performance Magnetic Nanowires.
ACS Appl. Nano Mater. 2018, 1, 38–46. [CrossRef]

53. Pablo-Navarro, J.; Winkler, R.; Haberfehlner, G.; Magén, C.; Plank, H.; De Teresa, J.M. In situ real-time
annealing of ultrathin vertical Fe nanowires grown by focused electron beam induced deposition. Acta Mater.
2019, 174, 379–386. [CrossRef]

54. Puydinger, M.V.; Szkudlarek, A.; Rydosz, A.; Guerra-nuñez, C.; Béron, F.; Pirota, K.R.; Moshkalev, S.;
Diniz, J.A.; Utke, I. Comparative study of post-growth annealing of Cu(hfac)2, Co2(CO)8 and Me2Au (acac)
metal precursors deposited by FEBID. Beilstein J. Nanotechnol. 2018, 9, 91–101. [CrossRef]

55. Martínez-Pérez, M.J.; Pablo-Navarro, J.; Müller, B.; Kleiner, R.; Magén, C.; Koelle, D.; De Teresa, J.M.; Sesé, J.
NanoSQUID Magnetometry on Individual As-grown and Annealed Co Nanowires at Variable Temperature.
Nano Lett. 2018, 18, 7674–7682. [CrossRef]

56. Coey, J.M.D. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, UK, 2010;
ISBN 9780511845000.

57. Huth, M.; Porrati, F.; Dobrovolskiy, O.V. Focused electron beam induced deposition meets materials science.
Microelectron. Eng. 2018, 185–186, 9–28. [CrossRef]

58. Porrati, F.; Kämpken, B.; Terfort, A.; Huth, M. Fabrication and electrical transport properties of binary Co-Si
nanostructures prepared by focused electron beam-induced deposition. J. Appl. Phys. 2013, 113, 053707.
[CrossRef]

59. Porrati, F.; Barth, S.; Sachser, R.; Jungwirth, F.; Eltsov, M.; Frangakis, A.S.; Huth, M. Binary Mn-Si
nanostructures prepared by focused electron beam induced deposition from the precursor SiH3Mn(CO)5.
J. Phys. D Appl. Phys. 2018, 51, 455301. [CrossRef]

60. Porrati, F.; Sachser, R.; Gazzadi, G.C.; Frabboni, S.; Huth, M. Fabrication of FeSi and Fe3Si compounds by
electron beam induced mixing of [Fe/Si]2 and [Fe3/Si]2 multilayers grown by focused electron beam induced
deposition. J. Appl. Phys. 2016, 119, 234306. [CrossRef]

61. Porrati, F.; Sachser, R.; Gazzadi, G.C.; Frabboni, S.; Terfort, A.; Huth, M. Alloy multilayers and ternary
nanostructures by direct-write approach. Nanotechnology 2017, 28, 415302. [CrossRef]

62. Porrati, F.; Pohlit, M.; Uller, J.; Barth, S.; Biegger, F.; Gspan, C.; Plank, H.; Huth, M. Direct writing of CoFe alloy
nanostructures by focused electron beam induced deposition from a heteronuclear precursor. Nanotechnology
2015, 26, 475701. [CrossRef]

63. Kumar, T.P.R.; Weirich, P.; Hrachowina, L.; Hanefeld, M.; Bjornsson, R.; Hrodmarsson, H.R.; Barth, S.;
Fairbrother, D.H.; Huth, M.; Ingólfsson, O. Electron interactions with the heteronuclear carbonyl precursor
H2FeRu3(CO)13 and comparison with HFeCo3(CO)12: From fundamental gas phase and surface science
studies to focused electron beam induced deposition. Beilstein J. Nanotechnol. 2018, 9, 555–579. [CrossRef]

64. Barth, S.; Huth, M.; Jungwirth, F. Precursors for Focused Electron Beam Deposition: A Review Highlighting
the Chemical Characteristics and State-of-the-Art. Chem. Rev. 2020. submitted.

65. Sanz-Hernández, D.; Hamans, R.F.; Liao, J.W.; Welbourne, A.; Lavrijsen, R.; Fernández-Pacheco, A. Fabrication,
Detection, and Operation of a Three-Dimensional Nanomagnetic Conduit. ACS Nano 2017, 11, 11066–11073.
[CrossRef]

66. Sanz-Hernández, D.; Hamans, R.; Osterrieth, J.; Liao, J.-W.; Skoric, L.; Fowlkes, J.; Rack, P.; Lippert, A.; Lee, S.;
Lavrijsen, R.; et al. Fabrication of Scaffold-Based 3D Magnetic Nanowires for Domain Wall Applications.
Nanomaterials 2018, 8, 483. [CrossRef]

67. Plank, H.; Winkler, R.; Schwalb, C.H.; Hütner, J.; Fowlkes, J.D.; Rack, P.D.; Utke, I.; Huth, M. Focused Electron
Beam-Based 3D Nanoprinting for Scanning Probe Microscopy: A Review. Micromachines 2019, 11, 48.
[CrossRef]

68. Guo, F.; Belova, L.M.; McMichael, R.D. Spectroscopy and Imaging of Edge Modes in Permalloy Nanodisks.
Phys. Rev. Lett. 2013, 110, 017601. [CrossRef]

69. Belova, L.M.; Hellwig, O.; Dobisz, E.; Dan Dahlberg, E. Rapid preparation of electron beam induced
deposition Co magnetic force microscopy tips with 10 nm spatial resolution. Rev. Sci. Instrum. 2012,
83, 093711. [CrossRef]

http://dx.doi.org/10.1088/1361-6528/aa9eff
http://dx.doi.org/10.1021/acsanm.7b00016
http://dx.doi.org/10.1016/j.actamat.2019.05.035
http://dx.doi.org/10.3762/bjnano.9.11
http://dx.doi.org/10.1021/acs.nanolett.8b03329
http://dx.doi.org/10.1016/j.mee.2017.10.012
http://dx.doi.org/10.1063/1.4790320
http://dx.doi.org/10.1088/1361-6463/aae2d3
http://dx.doi.org/10.1063/1.4954067
http://dx.doi.org/10.1088/1361-6528/aa8619
http://dx.doi.org/10.1088/0957-4484/26/47/475701
http://dx.doi.org/10.3762/bjnano.9.53
http://dx.doi.org/10.1021/acsnano.7b05105
http://dx.doi.org/10.3390/nano8070483
http://dx.doi.org/10.3390/mi11010048
http://dx.doi.org/10.1103/PhysRevLett.110.017601
http://dx.doi.org/10.1063/1.4752225


Materials 2020, 13, 3774 18 of 21

70. Chia, H.J.; Guo, F.; Belova, L.M.; McMichael, R.D. Nanoscale spin wave localization using ferromagnetic
resonance force microscopy. Phys. Rev. Lett. 2012, 108, 087206. [CrossRef]

71. Sangiao, S.; Magén, C.; Mofakhami, D.; de Loubens, G.; De Teresa, J.M. Magnetic properties of optimized
cobalt nanospheres grown by focused electron beam induced deposition (FEBID) on cantilever tips. Beilstein J.
Nanotechnol. 2017, 8, 2106–2115. [CrossRef]

72. Lavenant, H.; Naletov, V.; Klein, O.; de Loubens, G.; Casado, L.; De Teresa, J.M. Mechanical magnetometry of
Cobalt nanospheres deposited by focused electron beam at the tip of ultra-soft cantilevers. Nanofabrication
2014, 1, 65–73. [CrossRef]

73. Mattiat, H.; Rossi, N.; Gross, B.; Pablo-Navarro, J.; Magén, C.; Badea, R.; Berezovsky, J.; De Teresa, J.M.;
Poggio, M. Nanowire Magnetic Force Sensors Fabricated by Focused-Electron-Beam-Induced Deposition.
Phys. Rev. Appl. 2020, 13, 044043. [CrossRef]

74. Lau, Y.M.; Chee, P.C.; Thong, J.T.L.; Ng, V. Properties and applications of cobalt-based material produced by
electron-beam-induced deposition. J. Vac. Sci. Technol. A Vac. Surf. Film. 2002, 20, 1295. [CrossRef]

75. Utke, I.; Hoffmann, P.; Berger, R.; Scandella, L. High-resolution magnetic Co supertips grown by a focused
electron beam. Appl. Phys. Lett. 2002, 80, 4792. [CrossRef]

76. Stiller, M.; Barzola-Quiquia, J.; Esquinazi, P.D.; Sangiao, S.; De Teresa, J.M.; Meijer, J.; Abel, B. Functionalized
Akiyama tips for magnetic force microscopy measurements. Meas. Sci. Technol. 2017, 28. [CrossRef]

77. Jaafar, M.; Pablo-Navarro, J.; Berganza, E.; Ares, P.; Magén, C.; Masseboeuf, A.; Gatel, C.; Snoeck, E.;
Gómez-Herrero, J.; de Teresa, J.M.; et al. Customized MFM probes based on magnetic nanorods. Nanoscale
2020, 12, 10090–10097. [CrossRef]

78. Berganza Eguiarte, E.; Jaafar, M.; Fernández-Roldán, J.Á.; Goiriena-Goikoetxea, M.; Pablo-Navarro, J.; García
Arribas, A.; Guslienko, K.; Magen, C.; De Teresa, J.M.; Chubykalo-Fesenko, O.; et al. Half-hedgehog spin
textures in sub-100 nm soft magnetic nanodots. Nanoscale 2020. [CrossRef]

79. Jaafar, M.; De Teresa, J.M.; Asenjo, A.; Pablo-Navarro, J.; Ares, P.; Magén, C.; Gómez-Herrero, J. System for
an Atomic Force Microscope. Patent PCT/ES2018/070709 and WO19086745, 11 May 2018.

80. Braakman, F.R.; Poggio, M. Force sensing with nanowire cantilevers. Nanotechnology 2019, 30, 332001.
[CrossRef]

81. Che, R.C.; Takeguchi, M.; Shimojo, M.; Zhang, W.; Furuya, K. Fabrication and electron holography
characterization of FePt alloy nanorods. Appl. Phys. Lett. 2005, 87, 223109. [CrossRef]

82. Porrati, F.; Begun, E.; Sachser, R.; Huth, M. Spin-dependent transport between magnetic nanopillars through
a nano-granular metal matrix. J. Phys. D Appl. Phys. 2014, 47, 495001. [CrossRef]

83. Vavassori, P.; Pancaldi, M.; Perez-Roldan, M.J.; Chuvilin, A.; Berger, A. Remote Magnetomechanical
Nanoactuation. Small 2016, 12, 1013–1023. [CrossRef]

84. Keller, L.; Al Mamoori, M.K.I.; Pieper, J.; Gspan, C.; Stockem, I.; Schröder, C.; Barth, S.; Winkler, R.; Plank, H.;
Pohlit, M.; et al. Direct-write of free-form building blocks for artificial magnetic 3D lattices. Sci. Rep. 2018,
8, 6160. [CrossRef]

85. Castelnovo, C.; Moessner, R.; Sondhi, S.L. Magnetic monopoles in spin ice. Nature 2008, 451, 42–45. [CrossRef]
[PubMed]

86. Nisoli, C.; Moessner, R.; Schiffer, P. Colloquium: Artificial spin ice: Designing and imaging magnetic frustration.
Rev. Mod. Phys. 2013, 85, 1473–1490. [CrossRef]

87. Volkov, O.M.; Kákay, A.; Kronast, F.; Mönch, I.; Mawass, M.-A.; Fassbender, J.; Makarov, D. Experimental
Observation of Exchange-Driven Chiral Effects in Curvilinear Magnetism. Phys. Rev. Lett. 2019, 123, 077201.
[CrossRef] [PubMed]

88. Sheka, D.D.; Pylypovskyi, O.V.; Landeros, P.; Gaididei, Y.; Kákay, A.; Makarov, D. Nonlocal chiral symmetry
breaking in curvilinear magnetic shells. Commun. Phys. 2020, 3, 1–7. [CrossRef]

89. Pylypovskyi, O.V.; Kravchuk, V.P.; Sheka, D.D.; Makarov, D.; Schmidt, O.G.; Gaididei, Y. Coupling of
Chiralities in Spin and Physical Spaces: The Möbius Ring as a Case Study. Phys. Rev. Lett. 2015, 114, 197204.
[CrossRef]

90. Kravchuk, V.P.; Sheka, D.D.; Kákay, A.; Volkov, O.M.; Rößler, U.K.; Van Den Brink, J.; Makarov, D.; Gaididei, Y.
Multiplet of skyrmion states on a curvilinear defect: Reconfigurable skyrmion lattices. Phys. Rev. Lett. 2018,
120, 067201. [CrossRef]

91. Yan, M.; Kákay, A.; Gliga, S.; Hertel, R. Beating the Walker Limit with Massless Domain Walls in Cylindrical
Nanowires. Phys. Rev. Lett. 2010, 104, 057201. [CrossRef]

http://dx.doi.org/10.1103/PhysRevLett.108.087206
http://dx.doi.org/10.3762/bjnano.8.210
http://dx.doi.org/10.2478/nanofab-2014-0006
http://dx.doi.org/10.1103/PhysRevApplied.13.044043
http://dx.doi.org/10.1116/1.1481040
http://dx.doi.org/10.1063/1.1489097
http://dx.doi.org/10.1088/1361-6501/aa925e
http://dx.doi.org/10.1039/D0NR00322K
http://dx.doi.org/10.1039/D0NR02173C
http://dx.doi.org/10.1088/1361-6528/ab19cf
http://dx.doi.org/10.1063/1.2136071
http://dx.doi.org/10.1088/0022-3727/47/49/495001
http://dx.doi.org/10.1002/smll.201503351
http://dx.doi.org/10.1038/s41598-018-24431-x
http://dx.doi.org/10.1038/nature06433
http://www.ncbi.nlm.nih.gov/pubmed/18172493
http://dx.doi.org/10.1103/RevModPhys.85.1473
http://dx.doi.org/10.1103/PhysRevLett.123.077201
http://www.ncbi.nlm.nih.gov/pubmed/31491129
http://dx.doi.org/10.1038/s42005-020-0387-2
http://dx.doi.org/10.1103/PhysRevLett.114.197204
http://dx.doi.org/10.1103/PhysRevLett.120.067201
http://dx.doi.org/10.1103/PhysRevLett.104.057201


Materials 2020, 13, 3774 19 of 21

92. Otálora, J.A.; Yan, M.; Schultheiss, H.; Hertel, R.; Kákay, A. Curvature-Induced Asymmetric Spin-Wave
Dispersion. Phys. Rev. Lett. 2016, 117, 227203. [CrossRef]

93. Yan, M.; Kákay, A.; Andreas, C.; Hertel, R. Spin-Cherenkov effect and magnonic Mach cones. Phys. Rev. B
Condens. Matter Mater. Phys. 2013, 88, 220412. [CrossRef]
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