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Abstract: In the current work, a novel hybrid laminate with negative Poisson’s ratio (NPR) is
developed by considering auxetic laminate which is composed of carbon nanotube-reinforced
composite (CNTRC) and fiber-reinforced composite (FRC) materials. The maximum magnitude of
out-of-plane NPR is identified in the case of (20 F/20 C/−20 C/20 C) S laminate as well. Meanwhile,
a method for the geometric non-linear analysis of hybrid laminated beam with NPR including the
non-linear bending, free, and forced vibrations is proposed. The beam deformation is modeled by
combining higher-order shear-deformation theory (HSDT) and large deflection theory. Based on a
two-step perturbation approach, the asymptotic solutions of the governing equations are obtained
to capture the linear and non-linear frequencies and load-deflection curves. Moreover, a two-step
perturbation methodology in conjunction with fourth-order Runge–Kutta method is employed to
solve the forced-vibration problem. Several key factors, such as CNT distribution, variations in the
elastic foundation, and thermal stress, are considered in the exhaustive analysis. Theoretical results
for some particular cases are given to examine the geometric non-linearity behavior of hybrid beam
with NPR as well as positive Poisson’s ratio (PPR).

Keywords: hybrid laminated beam; negative Poisson’s ratio; non-linear vibration; carbon nanotube
-reinforced composite; non-linear bending; auxetic materials; temperature-dependent properties

1. Introduction

Materials and structures with negative Poisson’s ratio (NPR) behave in a counter-intuitive manner:
when compressed (stretched) in the axial direction, they contract (expand) transversely. The materials
and structures that exhibit this feature are also termed as “auxetics” [1]. Lakes [2] first reported NPR
behavior in polyurethane (PU) foam with re-entrant structures. Wojciechowski [3] presented the first
thermodynamically stable molecular model to study the mechanisms for generating auxetic behavior
of solid. NPR was analyzed in systems containing rigid rotating hexamers [4]. Thereafter, analysis
on cellular auxetics [5,6], multi-material auxetics [7,8], and auxetic composites [9,10] was carried out.
A more systematic review of the development and application for the investigation of auxetic material
and structures was reported by Ren et al. [11] and Lakes [12].

In recent years, laminated beams or plates with NPR are developed with more applications as
primary structural elements in many fields. Fascinating properties of composite materials with NPR
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have led researchers to find outstanding applications in the field of aerospace [13,14], automobile
industry [15,16], and civil engineering [17,18]. Recently, studies on the design of auxetic structures
have propelled to achieve improvements in the mechanical properties such as impact resistance [19,20]
and energy absorption [21,22]. On the other hand, with the growing applications of auxetic materials in
different industries, developing multi-scale models for design and capturing the non-linear static and
dynamic responses of the auxetic laminates under various loading scenarios is critical, when related
to the structural design. A series of work has been dedicated to the study of composite beams, in
particular, investigations have been carried out on their static and dynamic behavior [23–26]. However,
the value of NPRs (ranging from −0.2 to −1) is not for any particular composite material in real
engineering, but is a hypothetical value in a model analysis.

Fiber-reinforced composite (FRC) materials have attracted the attention of researchers, primarily
due to the strong anisotropy they offer when designing laminate with NPR. Zhang et al. [27] showed
that both the particular stacking sequence and the individual ply material (strongly anisotropic) are
essential for a laminate to exhibit NPR. The authors also presented an optimal angle for ply and
particular stacking sequences were presented. Evans et al. [28] specially designed a software to predict
the effective engineering constants. It was reported that the NPR property can be obtained by designing
stacking sequences in the laminated plates. Lempriere [29] measured that the effective Poisson’s ratio
(EPR) in orthotropic materials is −0.4, occurring at θ = 45◦ orientation. Clarke et al. [30] reported that
the EPR of the laminates show negative values for lay angle in a range between 15◦ and 30◦ for a (±θ).
It should be noted that when layers are oriented at angles equal in magnitude but with opposite signs,
the appropriate + or – sign is used. Herakovich [31] investigated the auxetic characteristics of
laminated structure made of graphite-epoxy to determine the value of ve

13. Such laminates exhibited
a very wide range of NPR ranging from a peak of 0.49 for a laminate with ply angle of 90◦ to as
low as −0.21 for laminate with ply angle of (±25)S. Hine et al. [32] reported that the out-of-plane
Poisson’s ratio reached −1/2 when a high modulus of elasticity carbon fiber is used in the laminates.
Matsuda et al. [33] observed that peak values of NPR in carbon fiber-reinforced plastic laminates were
around −0.7 when the axis is oriented at 25 o. The influence of Young’s modulus ratio (E1/E2), the type
of resin and the volume of fraction on the ERP (ve

13) of an angle-ply [±θ]2s plate was investigated by
Harkati et al. [34,35]. It was shown that the NPR of Kevlar and carbon reinforced composite plate
is −0.746 at θ = 20◦. Therefore, it can be concluded form the above discussion that the maximum
value of NPR of the laminates greatly depends on the ply orientations and stacking sequences in
laminates [36–38]. One of the practical applications of such composite structures with NPR is the
low-velocity impact resistance [39,40] and static indentation resistance [41]. Alderson and Coenen [39]
found that the auxetic FRC laminates showed increased load and energy absorption to failure at
low levels of impact energy. Zhou et al. [40] carried out experimental studies on the low-velocity
impact response of 3D auxetic composites. They found that 3D auxetic textile composite exhibited
excellent impact protective performance compared to 3D non-auxetic textile composite. Coenen and
Alderson [41] manufactured auxetic laminates and evaluated their static indentation resistance in
comparison with two laminates having near zero and larger positive Poisson’s ratio. The results
showed enhancement in load sustained and energy absorption by auxetic laminates.

Carbon nanotubes (CNTs) are extensively used in different fields of industry and research
with the development in fabrication technology [42–44]. A composite laminate structure made
from CNTRCs is prone to exhibit an auxetic feature due to inherent special properties such as
strong anisotropy. Furthermore, functionally graded (FG) materials are frequently employed in
engineering applications and the laminae with various CNT volume fractions are used to achieve
excellent mechanical properties [45]. Based on the studies mentioned above, the auxetic concept
of FRC laminates is introduced for designing FRC/CNTRC hybrid laminate with NPR. This hybrid
laminate is modeled by placing FRCs in the outermost layers and FG-CNTRC core. Shen was the
first investigator to analyze the particular characteristics and behavior of the FG-CNTRC structures
at different scales [45]. Following this landmark research, many studies on the forced vibration of
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FG-CNTRC beams [46,47] and plates [48] were carried out. The free vibration of FG-CNTRC plate
were examined by Huu Quoc et al. [49] with a new refined plate theory. Based on Timoshenko beam
theory (TBT), the non-linear vibration, forced vibration, and bending behavior of FG-CNTRC beams
were performed by Mohammadimehr et al. [50] and Ansari et al. [51]. Considering the matrix cracks,
Fan and Wang [52,53] presented an investigation on the non-linear static and dynamic responses of
hybrid laminated structures made either from FRCs or CNTRCs. Based on an element-free numerical
approach in conjunction with self-consistent model, the effect of matrix cracks on bending and vibration
characteristics of hybrid laminated plates were reported by Lei et al. [54,55]. In addition to the
applications of FRC/CNTRC hybrid beam or plate, the adoptions of the FRC/CNTRC hybrid concept
were later extended to the design of composite blades by Zhang et al. [56,57]. They carried out
several investigations exploring the non-linear vibration characteristics of hybrid composited blades.
In addition, the design and analysis of the hybrid laminates comprising multi-materials with different
strengths have been carried out by [58–61].

From the literature survey, it can be noted that no research has been carried out to analyze of
hybrid beams using FRC/CNTRC materials with NPR at different external conditions. Therefore,
the primary objective of the current work is to consider both hybrid configuration and NPR and analyze
the static and dynamic characteristics of these auxetic structures. Furthermore, a non-linear model is
developed based on the higher-order shear-deformation theory (HSDT) and the Von Kármán large
deflection assumption. The motion equations due to thermal stress and reaction force due to foundation
are derived. The effects of the CNT material distribution, environment condition, foundation type on
the free and forced-vibration feature, and non-linear bending behavior of hybrid laminated beams are
investigated in detail.

2. Design of Hybrid Laminate with NPR

As we know that both the ply orientations and stacking sequence have a significant effect on
the mechanical response of laminated structures. Therefore, the effective engineering constants are
usually used for the convenience of engineers in describing the mechanical behavior of the laminates.
Sun et al. [36] and Chen et al. [62] presented a model for EPR for general thick laminates. However,
only the extensional response was taken into consideration while the bending and bending-extension
coupling characteristics of the laminates were neglected. Therefore, their model fails to provide
accurate solutions for EPR of an asymmetric angle-ply laminated plate. Considering the effects of
bending and bending-extension coupling, the general solutions of the EPRs for an arbitrary angle-ply
laminate are derived in the previous works [63–65].

For a laminate where the material parameters of the layers are not distributed symmetrically
along the section, the general formula of ve

13 can be expressed as follows:

νe
13 = −

∣∣∣∣∣∣ A13 B11

B5-3 D

∣∣∣∣∣∣/
∣∣∣∣∣∣ A11 B11

B5-1 D

∣∣∣∣∣∣, (1)

where the matrixes (A11, A13, B11, B5-1, B5-3, D) are defined in [63–65].
For symmetric laminates, the bending-extension coupling stiffnesses Bij (i,j = 1,2 . . . 6) are zero.

The preceding expression simplifies as follows:

ve
13 =

A16(A22A36 −A23A26) + A13(A2
26 −A22A66) + A12(A23A66 −A26A36)

A2
26A33 − 2A23A26A36 + A2

23A66 + A22(A2
36 −A33A66)

, (2)

where Aij represents the beam stiffnesses, which are defined in terms of the transformed elastic
coefficients (Ci j)k as:

Ai j =
N∑

k=1

∫ hk

hk−1

(Ci j)kdZ, (i, j = 1 ∼ 6), (3)
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[Ci j]
−1

= [Si j], (4)

where the compliance constants (Si j) of a laminate whose fibers direction makes an angle θ with the
direction of X-axis (see Figure 1) and c = cosθ, s = sinθ.

S11

S12

S22

S16

S26

S66


=



c4 2c2s2 s4 c2s2

c2s2 c4 + s4 c2s2
−c2s2

s4 2c2s2 c4 c2s2

2c3s 2(cs3
− c3s) −2cs3

−cs(c2
− s2)

2cs3 2(c3s− cs3) −2c3s cs(c2
− s2)

4c2s2
−8c2s2 4c2s2 (c2

− s2)
2




S11

S12

S22

S66

, (5)


S13

S23

S33

 =


c2 s2 0
s2 c2 0
0 0 1




S13

S23

S33

, (6)

where the compliance constants of laminate Sij are given as follow:
S11 S12 S13

S22 S23 S33

S44 S55 S66

 =


1/E11 −ν12/E11 −ν13/E11

1/E22 −ν23/E22 1/E33

1/G23 1/G13 1/G12

 (7)

where the basic material parameters of each layer of laminate are introduced as follow by referring to
Figure 1.
Eii, (I = 1,2,3) = Young’s moduli in i, (i=1,2,3) directions
Gij, (ij = 12, 13, 23) = Shear moduli in i-j planes, respectively
vij, ij = 12, 13, 23) = Poisson’s ratios (the subscripts i and j represent the loading and strain directions,
respectively).

The theoretical solution presented above can predict the EPR of an arbitrary angle-ply laminates.
A systematic investigation of the symmetric hybrid laminates has been carried out. The hybrid
laminated beam is designed by placing FRC in the outermost layers and CNTRC in the rest of the
layers which gives excellent performance. The lay-ups of the hybrid laminated beam are considered
eight-layered and angle-ply (θF/θC/-θC/θC)S. The subscript/index “S” indicates that the laminate is
symmetric and θ is the angle of CNT or fiber orientation. Unless otherwise stated, the superscript
F represents the layer of FRC while the superscript C represents the other layers with CNTRC.
These configurations are for an identical material and have constant thickness of 0.125 mm and 0.25 mm
for FRC and CNT layers, respectively. Several types of CNT distributions are taken into consideration
and the type of CNT volume fraction (VCN) is given. The temperature-related material properties
of CNTRCs are predicted by the extended micromechanical model [45] as summarized in Table 1.
It should be noted that the thermal expansion coefficients (α11, α22) are calculated by Equation (15),
which is obtained by the Schapery model [66].

To assess how the distribution and volume fractions of CNT influence the static and dynamic
behavior of the beam, we considered five configurations summarized in Table 2. The volume fraction
of fiber is fixed as Vf = 0.6. It differ in the following characteristics: FG-Λ: 0.6/(0.11)2/(0.14)2/(0.17)2/0.6,
FG-V: 0.6/(0.17)2/(0.14)2/(0.11)2/0.6, FG-X:(0.6/0.11/0.14/0.17)S, FG-O: (0.6/0.17/0.14/0.11)S, and uniform
distribution (UD): (0.6/0.14/0.14/0.14)S. It can be assumed that G13 = G23 = G12.

The EPR (ve
13) of the hybrid FRC/CNTRC laminated beam is obtained by adjusting specific ply

orientations and stacking sequence. The results in terms of NPR and PPR of hybrid laminated beam
and the corresponding ply orientations are presented in Table 3.
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Table 1. Mechanical parameters with different temperature for each ply with CNTRC or FRC.

Volume Fraction
T E11 E22 G12 v12 α11 α22

(K) (MPa) (MPa) (MPa) (×10−6/K) (×10−5/K)

VCN = 0.11
300 K 94,416.77 2203.74 822.28 0.3219 3.5830 5.3182
400 K 92,708.58 1710.53 638.253 0.3219 4.2514 5.5640
500 K 91,682.21 1217.32 454.222 0.3219 4.6123 5.8198

VCN = 0.14
300 K 120,384.60 2297.68 857.33 0.3169 3.5531 5.1582
400 K 118,327.7 1783.46 665.46 0.3169 4.2269 5.3949
500 K 117,144.40 1269.22 473.586 0.3169 4.5940 5.6414

VCN = 0.17
300 K 144,771.38 3493.88 1303.66 0.3120 3.5337 4.9979
400 K 142,387.80 2711.95 1011.91 0.3120 4.2111 5.2255
500 K 141,057.96 1930.01 720.144 0.3120 4.5821 5.4627

300 K 140,670.00 5279.79 1731.78 0.2560 −0.2681 3.1446
Vf = 0.6 400 K 140,482.00 4242.64 1380.01 0.2560 −0.3182 3.2665

500 K 140,294.00 3130.95 1008.98 0.256 −0.3745 3.3885

Table 2. Distribution and volume fractions of CNT and fiber for hybrid beams.

Each Ply
Types UD FG-X FG-O FG-Λ FG-V Symmetric Laminates in the Case Study

Ply1 0.6 0.6 0.6 0.6 0.6
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-θC
θC

θC

θC
-θC

θC

θF

θF

(θF/θC/-θC/θC)S Z
FRC

FRC

Y
&(Middle plane)

FG-CNTRC

Ply2 0.14 0.17 0.11 0.11 0.17
Ply3 0.14 0.14 0.14 0.11 0.17
Ply4 0.14 0.11 0.17 0.14 0.14
Ply5 0.14 0.11 0.17 0.14 0.14
Ply6 0.14 0.14 0.14 0.17 0.11
Ply7 0.14 0.17 0.11 0.17 0.11
Ply8 0.6 0.6 0.6 0.6 0.6

Table 3. EPRs (ve
13) of hybrid laminated beams for various temperature conditions.

FG- UD FG-V FG-Λ FG-X FG-O

(25F/20C/−20C/20C)S

300K −0.4566 −0.3972 −0.3972 −0.4213 −0.4213
400K −0.5318 −0.5021 −0.5021 −0.5167 −0.5167
500K −0.7263 −0.6583 −0.6583 −0.6743 −0.6743

(25F/90C/−90C/90C)S

300K 0.3010 0.3016 0.3016 0.3017 0.3017
400K 0.3006 0.3012 0.3012 0.3013 0.3013
500K 0.3005 0.3009 0.3009 0.3010 0.3010

3. Theoretical Modeling of Hybrid Beams

Laminates consist of layers of composites reinforced with CNTRC and FRC. Consider a hybrid
laminated beam composed of eight layers with lamination scheme (θF/θC/-θC/θC)S resting on a
continuous visco-Pasternak foundation as shown in Figure 1. Figure 1a defines the coordinate system
used in development of the hybrid laminated beam analysis. The XYZ coordinate system is assumed to
have its origin on the middle face of the beam so that the middle surface lies in the XY-plane. Q(X,t) is
the out-of-plane static or dynamic load. The displacement at a point on the X, Y, and Z directions are
U, V, and W, respectively.
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Figure 1. Various types of hybrid laminated beams and reference system: (a) Geometry and coordinate
system of a hybrid laminated beam on a visco-elastic foundation; (b) Four types of CNT distribution in
the cross section of a hybrid laminated beam.

The simply supported beam is resting on a three-parameter foundation including the Winkler
foundation (K1), shearing layer stiffness (K2), and damping parameter Cd. The reaction force from the
visco-Pasternak foundation P0 (X,t) is given by:

p0
(
X, t

)
= K1W

(
X, t

)
−K2

∂2W
(
X, t

)
∂X2 + Cd

∂2W
(
X, t

)
∂t

2 (8)

The method of analysis is based on the HSDT [67] for the laminated beam undergoing large
deflection. The effect of the elevated temperature is considered by introducing thermal stress resultants

N
T

, M
T

, and P
T

as shown in Appendix A. The motion equations are given as follow:

S11
∂4W
∂X4

+ S12
∂3Ψx

∂X3 +
B11

A11

∂2N
T

∂X2 +
∂2M

T

∂X2 + Nx
∂2W
∂X2 + Q

(
X, t

)

= p0(X, t) + I1
∂2W

∂t
2 + Î5

∂3Ψx

∂X∂t
2 −

4
3h2 Î7

∂4W

∂X2∂t
2 (9)

S21
∂3W
∂X3 + S22

∂2Ψx

∂X2 − S23

(
∂W
∂X

+ Ψx

)
− S26

∂N
T

∂X
+
∂S

T

∂X
= Ĩ3

∂2Ψx

∂t
2 −

4̃I5

3h2
∂3W

∂X∂t
2 (10)

Nx = L−1
∫ L

0


A11

2

(
∂W
∂X

)2

−
4E11

3h2

(
∂2W
∂X2 +

∂Ψx

∂X

)
+ B11

∂Ψx

∂X

−N
T
dX (11)

where Ψx denotes rotation about the longitudinal axes. The reduced stiffnesses of the beam (A11,B11, E11)
and the coefficients Sij and inertias Ii are defined and given in Appendix A.

The formulae for the forces owing to thermal stress are given as:

(
N

T
, M

T
, P

T
)
=

N∑
k=1

b

tk∫
tk−1

[Ax]k(1, Z, Z3)∆T dZ (12)

S
T
= M

T
−

4P
T

3h2 (13)

where ∆T is the temperature increment from a reference state (T0 = 300 K), ∆T = T − T0. T is set as 400
K or 500 K.
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The coefficient Ax is known in terms of the thermal expansion coefficients (α11, α22):

Ax = Q11(c
2α11 + s2α22) + Q12(s

2α11 + c2α22) + Q162cs(α11 − α22) (14)

αi j =


(
VCNECN

11 α
CN
22 + VmEmαm

)
/
(
VCNECN

11 + VmEm
)

i j = 11
(1 + νCN

12 )VCNα
CN
22 + (1 + νm)Vmαm

− ν12α11 i j = 22
(15)

where αij (ij = 11,22) are the thermal expansion coefficients and subscripts 11 and 22 denote the
longitudinal and transverse directions, respectively. The formulae for calculating the α11 and α22 are
obtained from [66].

It should be noted that Equation (11) represent restricted boundary conditions. It is suitable for a
beam with immovable boundary condition i.e., the longitudinal displacement is equal to zero at both
ends of the beam. It should be noted that this immovable boundary condition is unacceptable for the
compressive post-buckling analysis of beam.

The non-linear motion equations for the vibration can be solved by a two-step perturbation
approach proposed by Shen [68,69]. By deriving the dimensionless forms of the motion Equations
(9)–(11), we get:

γ11
∂4W
∂x4 − γ12

∂3Ψx
∂x3 −π

{∫ π
0

[
γ13
2

(
∂W
∂x

)2
+ γ14

∂Ψx
∂x − γ15

∂2W
∂x2

]
dx

}
∂2W
∂x2 + C1

∂2W
∂x2 − γ16

∂2NT

∂x2

−C2
∂2MT

∂x2 = λq − (K1W −K2
∂2W
∂x2 + Cd

∂W
∂t ) + γ17

∂2W
∂t2 + γ18

∂3Ψx
∂x∂t2 + γ19

∂4W
∂x2∂t2

(16)

γ21
∂3W
∂x3 − γ22

∂2Ψx

∂x2 + γ23

(
∂W
∂x

+ Ψx

)
− γ26

∂NT

∂x
−C3

∂ST

∂x
= γ28

∂2Ψx

∂t2 + γ29
∂3W
∂x∂t2 (17)

where
(C1, C2, C3) = (γT1,γT3,γT3 − γT6)∆T (18)

The non-dimensional parameters mentioned above can be written as follow:

(x, W, Ψx) =
(
πX
L , W

L , Ψx
π

)
, (Nx, Mx, Px) =

L2

π2hD11

(
hNx, Mx, 4

3h2 Px
)
,

(K1, K2) =
L2

π2D11

(
L2

π2 K1, K2
)
, (k1, k2) =

L2

E0I

(
L2K1, K2

)
,

(γ11, γ12, γ21, γ22) =
1

D11
(−S11, S12, −S21, S22), γ23 = L2

π2D11
S23,

(γ13, γ14, γ15) =
L

π2D11
(LA11, B11 −

4
3h2 E11, 4

3h2 E11), (γ16, γ26) =
1

A11L

(
B11, B11 −

4
3h2 E11

)
,

(γ17,γ18,γ19,γ28, γ29) = −
(

I1L2

π2 Î5, − 4
3h2 Î7, Ĩ3, − 4

3h2 Ĩ5

)
bE0

ρ0D11
, t = π t

L

√
E0
ρ0

, γT1 =
L2AT

x
π2D11

,

ωL = ΩL
L
π

√
ρ0
E0

, (γT3, γT6) =
L2

π2hD11
(DT

x , 4
3h2 FT

x ), λq =
QL3

π4D11
, Cd = Cd

a3

π3D∗11

√
E0
ρ0

(19)

in which E0 = Em and ρ0 = ρm are the elastic modulus and density of the matrix. AT
x , DT

x , FT
x are the

functions of thickness and Ax can be defined by:

(AT
x , DT

x , FT
x ) = b

N∑
k=1

tk∫
tk−1

[Ax]k(1, Z, Z3)dZ (20)

4. Free Vibration Analysis

For non-linear vibration problem, the solutions for Equations (16) and (17) consist of an additional
displacement term and initial displacement term as a result of the varying temperature. The initial
deflection under the thermal loading for these structures are reported from Shen [63]. By considering,
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τ = εt, the solution equations can be expanded as a function with a small perturbation parameter
mboxemphεj (j = 1,2,3, . . . .) as given below:

Ψx(x, τ, ε) = εψx1(x, τ) + ε2ψx2(x, τ) + ε3ψx3(x, τ) + · · ·
Ψx(x, τ, ε) = εψx1(x, τ) + ε2ψx2(x, τ) + ε3ψx3(x, τ) + · · ·
λq(x, τ, ε) = ελq1(x, τ) + ε2λq2(x, τ) + ε3λq3(x, τ) + · · ·

(21)

The boundary conditions for τ = 0 can be expressed as:

W|τ=0 = Ψx|τ=0 = 0 ,
∂W
∂τ

∣∣∣∣∣τ=0 =
∂Ψx

∂τ

∣∣∣∣∣τ=0 = 0, (simply supported). (22)

If we substitute τ = εt and Equation (21) into Equations (16) and (17) and collect all the terms
of the same order of εi (i = 1,2,3, . . . ), we will get a set of perturbation equations. The solution of
Euler-Bernoulli beam with simply supported conditions can be used for perturbation equations with εi

(i = 1)
w1(x, τ) = A(1)

10 (τ) sin mx (23)

Then, the equations with εj (j = 1,2,3,...) can be solved step by step, we will get:

W(x, t, ε) = εA(1)
10 (t) sin mx + O(ε4) (24)

Ψx(x, t, ε) = εB(1)
10 (t) cos mx + ε3B(3)

10 (t) cos mx + O(ε4) (25)

λq(x, t, ε) =
(
ε

..
A
(1)
10 (t)g30 + εA(1)

10 (t)g31

)
sin mx +

(
(εA(1)

10 (t))
2
g321 + (εA(1)

10 )(εA∗10)g322

)
sin mx

+(εA(1)
10 (t))

3
g33 sin mx + O

(
ε4

) (26)

Introducing expression τ = t and εA(1)
10 =Wm in Equation (26) and applying Galerkin procedure

yielded Equation (26) which can be re-written as:

g30
d2(Wm)

dt2 + gc
d(Wm)

dt
+ g31(Wm) + g32(Wm)

2 + g33(Wm)
3
− λq(t) = 0 (27)

The numerical solution of Equation (27) corresponds to the forced-vibration response of the
structure. It can be converted to a free vibration problem by setting the uniform load to zero. Therefore,
the solution of the differential equation with gc = λq(t) = 0 can be obtained as follow:

ωNL = ωL

1 +
9g31g33 − 10g2

32

12g2
31

A2

1/2

(28)

ωL = (g31/g30)
1/2 (29)

where ωNL and ωL represent the dimensionless non-linear and linear frequency, respectively.
A = Wm = Wm/L. Wm is the amplitude of deflection. According to Equation (19), the corresponding
linear frequency can be expressed as Ω = ωL(π/L)(E0/ρ0)1/2. The details of g30, g31, g32, and g33 are
described in Appendix B.

For the purpose of verification, Table 4 and Figure 2 show the comparison of the solutions
obtained by the present method and the method proposed by Fan & Wang [70] with the present
solutions of a hybrid laminated beam. The reinforced material of the hybrid beam consists of two
parts: (1) for FRC, EF

11 = 233.05 GPa, v f
12 = 0.2, EF

22 = 23.1 GPa, ρf = 1750 kg/m3,GF
12 = 8.96 GPa, (2) for

CNTRC, ECN
11 = 5646.6 GPa, vCN

12 = 0.175, ECN
22 = 7080.0 GPa, ρCN = 1400 kg/m3 and GCN

12 = 1944.5 GPa.
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The material properties for the same matrix are Em = 2.5 GPa, ρm = 1150 kg/m3, and νm = 0.34. The
value of geometric parameters used are: L = 20 h, h = 0.5mm.

Table 4. Comparison of the fundamental frequencies Ω̃ = Ω(L2/h)
√
ρ0/E0 for (θC/90F)S hybrid beam

with different values of the lamination angle of the CNTRC layer.

VCN
θC

15 30 45

0.12
Fan & Wang [70] 5.27645 3.29216 2.79561
Proposed method 5.28465 3.30550 2.81136

0.17
Fan & Wang [70] 6.66920 4.09226 3.42397
Proposed method 6.67556 4.10290 3.43674

0.28
Fan & Wang [70] 7.12107 4.29687 3.57689
Proposed method 7.12693 4.30689 3.58898
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Table 4 compares the fundamental frequencies Ω̃ = Ω(L2/h)
√
ρ0/E0 for (θC/90F)S hybrid beam

with different values of VCN and the angle of the CNT orientation with θC = 15◦, 30◦, and 45◦. It can
be found that the predicted frequencies tally reasonably well with those results obtained from Fan &
Wang [70]. Meanwhile, the non-linear vibration of a (0C/90F)S hybrid laminated beam is validated with
Fan &Wang study, as plotted in Figure 2. It can be observed from Figure 2 that the results in terms of
frequency ratio obtained from the presented model are very close to the predictions made by Fan &
Wang [70]. Based on the above discussion, it can be concluded that the proposed model is accurate to
analyze free vibration of the hybrid laminated beams.

In the following, a detailed investigation of the vibration of hybrid laminated beams has been
carried out. The effect of temperature T, distribution pattern, and the foundation constants (k1, k2) on
the free vibration of hybrid laminated beams are scrutinized. In the following study, the angle-ply
(25 F/20 C/-20 C/20 C) S and (25 F/90 C/-90 C/90 C) S hybrid laminated beams are adopted.

The effect of temperature T on the first four frequencies Ω̃i (i = 1, 2, 3, 4) of hybrid laminated
beams with five different distribution pattern is investigated in Table 5. It is observed that increase
in temperature cause decrease in the frequencies of both the angle-ply hybrid laminated beams.
In addition, the temperature effect of the first-order frequency is more significant than on the other
order frequencies. Consequently, the influence of degradation caused by thermal stress should be
taken into consideration in the design and service of hybrid laminated beams.

Table 6 shows the effects of foundation constants on the hybrid laminated beam with
length/thickness ratio of 20. Three different foundation coefficients (k1, k2) are (103, 10), (103, 0),
and (0, 0), respectively. It should be noted that structures with (k1, k2) = (0, 0) are selected for
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comparison. As can be seen from Table 6, the natural frequencies of the hybrid laminated beam for
higher (k1, k2) are more than the other cases.

Table 5. Natural frequencies Ω̃i = Ωi(a2/h)
√
ρ0/E0 for hybrid laminated beams in thermal environments

(L/h = 5, h = 1.75 mm).

T (K) Lay-Up Ω̃1 Ω̃2 Ω̃3 Ω̃4

300

(25 F/20 C/-20 C/20 C) S UD 4.6911 13.6948 23.2622 32.9778
FG-V&Λ 4.9235 14.3683 24.3888 34.5382

FG-X 5.0219 14.3477 24.1203 34.0164
FG-O 4.8071 14.5108 25.0357 35.7004

(25 F/90 C/-90 C/90 C) S UD 3.9290 12.4320 22.0451 31.9209
FG-V&Λ 4.0516 12.8855 22.9136 33.2090

FG-X 4.0952 12.8501 22.6652 32.7112
FG-O 3.9949 12.9939 23.4395 34.2276

400

(25 F/20 C/-20 C/20 C) S UD 3.5961 11.4037 19.6450 28.0129
FG-V&Λ 3.9020 12.0972 20.7582 29.5337

FG-X 3.9247 12.0007 20.4151 28.9379
FG-O 3.7144 12.1788 21.3000 30.5349

(25 F/90 C/-90 C/90 C) S UD 3.3652 10.8818 19.3508 28.0456
FG-V&Λ 3.4669 11.2728 20.1071 29.1715

FG-X 3.4951 11.2254 19.8643 28.7019
FG-O 3.4074 11.3733 20.5873 30.0945

500

(25 F/20 C/-20 C/20 C) S UD 1.8258 8.3787 15.0130 21.7286
FG-V&Λ 2.4974 9.2762 16.3236 23.4585

FG-X 2.2548 8.9424 15.7088 22.5508
FG-O 1.9929 9.1458 16.5824 24.0827

(25 F/90 C/-90 C/90 C) S UD 2.7546 9.1202 16.2644 23.5940
FG-V&Λ 2.8368 9.4451 16.8979 24.5401

FG-X 2.8478 9.3870 16.6674 24.1110
FG-O 2.7746 9.5311 17.3136 25.3358

Table 6. Natural frequencies Ω̃i = Ωi(L2/h)
√
ρ0/E0 for hybrid laminated beams resting on elastic

foundations (L/h = 20, h=1.75 mm).

(k1, k2) Lay-Up Ω̃1 Ω̃2 Ω̃3 Ω̃4

(0, 0)

(25 F/20 C/-20 C/20 C) S UD 5.5174 21.2692 45.2455 75.0582
FG-V&Λ 5.7912 22.3244 47.4888 78.7764

FG-X 6.0167 23.0823 48.7798 80.3508
FG-O 5.5054 21.3661 45.8826 76.9132

(25 F/90 C/-90 C/90 C) S UD 4.5382 17.0453 37.0174 62.8646
FG-V&Λ 4.4797 17.5337 38.1210 64.8256

FG-X 4.5665 17.8376 38.6771 65.5239
FG-O 4.3585 17.1122 37.3777 63.9190

(103, 0)

(25 F/20 C/-20 C/20 C) S UD 10.3970 23.0126 46.0837 75.5615
FG-V&Λ 10.5449 23.9911 48.2880 79.2561

FG-X 10.6704 24.6981 49.5584 80.8215
FG-O 10.3907 23.1020 46.7089 77.4038

(25 F/90 C/-90 C/90 C) S UD 9.8311 19.1760 38.0361 63.4629
FG-V&Λ 9.8855 19.6114 39.1109 65.4059

FG-X 9.9251 19.8836 39.6435 66.0983
FG-O 9.8312 19.2354 38.3866 64.5070

(103, 102)

(25 F/20 C/-20 C/20 C) S UD 13.5920 28.8850 52.9492 81.062
FG-V&Λ 13.7054 29.6705 54.8785 86.4789

FG-X 13.8022 30.2454 56.0016 87.9216
FG-O 13.5871 28.9558 53.4912 84.7756

(25 F/90 C/-90 C/90 C) S UD 13.1641 25.9308 46.1073 72.2569
FG-V&Λ 13.2048 26.2543 46.9974 73.9677

FG-X 13.2344 26.4583 47.4424 74.5835
FG-O 13.1642 25.9744 46.3947 73.1687
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The frequency ratio–deflection curves for all the five types of hybrid laminated beams are
described in Figure 1. As expected, FG-X has the highest frequency ratio while FG-O has the lowest
frequency ratio. At the room temperature, FG-Λ and FG-V show similar higher amplitude frequency
(see Figure 3).
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(a) (25 F/20 C/−20 C/20 C) S; (b) (25 F/90 C/−90 C/90 C) S.

The influence of temperature field on the non-linear vibration behavior of UD and FG-X hybrid
laminated beam with NPR is examined by considering three different temperature values (T = 300 K,
400 K, 500 K). Due to the presence of thermal stress, increase in the temperature leads to a higher
frequency ratio, as shown in Figure 4. It is found that (25 F/20 C/−20 C/20 C) S laminated beams are
more sensitive to the temperature effect than those with (25 F/90 C

−90 C/90 C) S.
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Figure 4. Frequency ratio (ωNL/ωL) versus dimensionless deflection (W/h) of hybrid beams with
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C/90 C) S.

The effect of the foundation coefficients on the resulting lager amplitude vibration frequency of
UD and FG-X are examined in Figure 5, for a member with L = 10 h. From Figure 5, it is confirmed that
the beam becomes more rigid as the foundation coefficients of the beam increases. Hence, the frequency
ratio of the UD and FG-X increases.
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5. Forced-Vibration Analysis

In this section, the dynamic response of hybrid laminated beams is investigated by considering
uniform load Q which is dependent on time as plotted in Figure 1. We need to determine the relationship
between central deflection and time. Hence, a numerical procedure for solving the second order

differential Equation (27) is employed here. Given the initial value Wm (t0) and
.

W̃m (t0) at initial time
t0 = 0, Equation (27) can be solved to obtain the central deflection-time relationship for the beam under
applied load by employing the fourth-order Runge–Kutta method. Here, it should also be noted that
the initial deflection for FG-Λ or FG-V will be triggered because of thermal stress.

In the following, the time response history of the verification analyses is presented. Figure 6
shows the comparison of the solution of a cross-ply (0/90/0/90/0)S graphene-reinforced composite (GRC)
laminated beam under a sudden load Q = 12 Mpa by the method presented by Fan et al. [71]. and
the method presented in this study. The dimensions and material properties of the GRC layer are as
follows: L = 20 h = 60 mm, EG

11= 1.812 TPa, EG
22= 1.87 TPa, GG

12= 0.683 TPa, vG
12= 0.177, ρG = 4118 kg/m3,

Em = 2.5 GPa, ρm = 1150 kg/m3. vm = 0.34. The subscripts, G and m, represent the graphene and matrix,
respectively. In the forced-vibration stage (time range 0 to 0.2 ms), the central deflection-time curve is
described in Figure 6. It is found from Figure 6 that the forced response predicted from the proposed
model follows the same trend and agrees well with that provided by Fan et al. [71].

Let us examine the forced-vibration behavior by applying the proposed method to the cases
(25 F/20 C/−20 C/20 C) S. Figure 7 exhibits the forced-vibration curves of the uniform distribution
(UD) beam under the reference temperature (T = 300 K). Four different dynamic loads are taken into
consideration. The values of the parameters used are L = 20 h, h = 1.75 mm. In the forced-vibration
region (time range 0 to 0.8 ms), it can be observed that the step load leads to highest deflection among
the four while lowest deflection occurs at the exponential load. At time range of 0.8 to 1.6 ms, the free
vibration behavior of hybrid laminated beams with an initial deflection and velocity is triggered
resulting of the dynamic load is released. Please note that a sudden uniform load is taken as the
applied load in the parametric study.

Figure 8 depicts central deflection versus time for UD and FG-CNTRC beam under the reference
temperature (T = 300 K). Five different distribution patterns designed above are considered. The value
of load amplitude is taken as Q = 0.4 MPa. Figure 8 shows deflection-time curves among the above
designed distributing patterns. The curves of the UD pattern are used at the same temperature
for reference. It can be observed that the lowest deflection is obtained by FG-Λ beam as the UD plate
has the highest deflection. Thus, for the next parametric analysis, UD and FG-Λ are considered/studied.
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The above approach is also used to investigate the influence of changing the temperature field
on UD and FG-Λ beams. Figure 9 shows the influence of the thermal stress on UD and FG-Λ beams.
The applied load is 45 MPa for (25 F/20 C/−20 C/20 C) S and (25 F/90 C/−90 C/90 C) S with L = 5 h.
Incremental temperatures are marked on these curves. The curves show that the amplitude and
period of response increase with increase in temperature. This is again attributed to the fact that the
development of thermal resultants reduces the overall plate stiffness.
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Figure 9. Deflection versus time (t) of hybrid laminated beams with various temperature conditions
(T = 300 K, 350 K, 400 K): (a)(25 F/20 C/−20 C/20 C) S; (b) (25 F/90 C/−90 C/90 C) S.

Figure 10 shows the maximum deflection with time variation of hybrid beams (25 F/20 C/−20 C/20 C) S

and (25 F/90 C/−90 C/90 C)S for different foundations stiffnesses ((k1, k2 Cd) = (0, 0, 0), (102, 0, 0), (102, 10, 1),
(102, 10,2)). Beams without foundation (k1 = k2 = Cd = 0) are selected as a reference. The results confirm
that the foundation stiffness decrease the transverse deflection. Moreover, the deflection of beams on
the viscoelastic foundation decreases with increasing time.Materials 2020, 13, x FOR PEER REVIEW 16 of 25 

 

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

1

2

3

4

C
en

tr
al

 D
ef

le
ct

io
n(

m
m

)

Time (ms)

UD&1
FG-Λ&1
UD&2
FG-Λ&2

(25F/20C/-20C/20C)S,L=20h,Q=0.4MPa
1:(k1, k2, Cd)=(0,0,0)
2:(k1, k2, Cd)=(100,10,0)
3:(k1, k2, Cd)=(100,10,1)
4:(k1, k2, Cd)=(100,10,2)

 UD&3
FG-Λ&3
 UD&4
FG-Λ&4

 
0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

1

2

3

4

C
en

tr
al

 D
ef

le
ct

io
n(

m
m

)

Time (ms)

UD&1
FG-Λ&1
UD&2
FG-Λ&2

(25F/90C/-90C/90C)S, L=20h,Q=0.4MPa
1:(k1, k2, Cd)=(0,0,0)
2:(k1, k2, Cd)=(100,10,0)
3:(k1, k2, Cd)=(100,10,1)
4:(k1, k2, Cd)=(100,10,2)

 UD&3
FG-Λ&3
 UD&4
FG-Λ&4

 
(a) (b) 

Figure 10. Deflection versus time (t) of hybrid laminated beams with various foundation constants at 
the reference temperature (T = 300 K): (a)(25 F/20 C/−20 C/20 C) S ; (b) (25 F/90 C/−90 C/90 C) S. 

6. Non-Linear Bending Analysis 

In this section, non-linear bending response of hybrid laminated beams with NPR and PPR will 
be discussed in detail. For this purpose, we will determine relationship between applied pressure 
and deflection of the beam. For the static analysis, this relationship is independent of the change in 
time (t). Therefore, the transverse load is modified to be uniformly distributed, and Q (X, t) = Q (X) = 
q0. W is independent of time. Under these assumptions, Equations (16) and (17) can be simplified as: 

2

2

12

2

2

2

1514

2
13

03

3

124

4

11 2 x
WC

x
Wdx

x
W

xx
W

xx
W xx

∂
∂+

∂
∂

























∂
∂−

∂
Ψ∂

+







∂
∂−

∂
Ψ∂

−
∂
∂

 γγγπγγ
π

 

 

2 2 2

16 2 1 22 2 2( )
T T

q
N M WC KW K
x x x

γ λ∂ ∂ ∂− − = − −
∂ ∂ ∂  

(29) 

23

21 22 23 26 33 2 0
T T

x
x

W W N SC
x x x x x

γ γ γ γ∂ Ψ∂ ∂ ∂ ∂ − + + Ψ − − = ∂ ∂ ∂ ∂ ∂   

(30) 

A perturbation approach is also used to derive the solutions of equations (29) and (30). The 
solution equations can be expanded as a function with a small perturbation parameter εj (j = 1,2,3,…). 
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Following the perturbation solutions procedure, the solutions for the equations with the first 
order ε can be assumed as:  

Figure 10. Deflection versus time (t) of hybrid laminated beams with various foundation constants at
the reference temperature (T = 300 K): (a) (25 F/20 C/−20 C/20 C) S; (b) (25 F/90 C/−90 C/90 C) S.

6. Non-Linear Bending Analysis

In this section, non-linear bending response of hybrid laminated beams with NPR and PPR will
be discussed in detail. For this purpose, we will determine relationship between applied pressure and
deflection of the beam. For the static analysis, this relationship is independent of the change in time (t).
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Therefore, the transverse load is modified to be uniformly distributed, and Q (X, t) = Q (X) = q0. W is
independent of time. Under these assumptions, Equations (16) and (17) can be simplified as:

γ11
∂4W
∂x4
− γ12

∂3Ψx

∂x3 −π


∫ π

0

γ13

2

(
∂W
∂x

)2

+ γ14
∂Ψx

∂x
− γ15

∂2W
∂x2

dx

∂2W
∂x2 + C1

∂2W
∂x2

− γ16
∂2NT

∂x2 −C2
∂2MT

∂x2 = λq − (K1W −K2
∂2W
∂x2 ) (30)

γ21
∂3W
∂x3 − γ22

∂2Ψx

∂x2 + γ23

(
∂W
∂x

+ Ψx

)
− γ26

∂NT

∂x
−C3

∂ST

∂x
= 0 (31)

A perturbation approach is also used to derive the solutions of Equations (30) and (31). The solution
equations can be expanded as a function with a small perturbation parameter εj (j = 1,2,3, . . . ).

W(x, ε) =
∑
j=1

ε jw j(x)

Ψx(x, ε) =
∑
j=1

ε jψxj(x)

λq(x, ε) =
∑
j=1

ε jλ j(x)

(32)

Following the perturbation solutions procedure, the solutions for the equations with the first
order ε can be assumed as:

w1(x) = A(1)
10 sin mx (33)

The thermal load can be expanded as the Fourier modes as:[
MT

x
ST

x

]
=

∑
k=1,3,...

−1
k

sin kx

 M(1)
x

S(1)
x

 (34)

(
M(1)

x , S(1)
x

)
=

4
π
(γT3,γT3 − γT6)∆T (35)

For the free vibration analysis, the half-wavelength (m) can be assumed as m = 1,2,3 . . . , whereas,
for the bending study m is adopted as 1. Substituting Equations (32) and (35) in the motion equations,
we get the asymptotic solution as:

W(x, ε) = εA(1)
10 sin mx + O

(
ε4

)
(36a)

Ψ̃x(x, ε) = εB(1)
10 cos mx + O

(
ε4

)
(36b)

and
λq(x, ε) = λq1(A

(1)
10 ε) + λq2(A

(1)
10 ε)

2
+ λq3(A

(1)
10 ε)

3
+ O

(
ε4

)
(37)

Equations (36) and (37) are the functions of A(1)
10 . In Equations (36) and (37), (εA(1)

10 ) is
taken as the second perturbation parameter related to the dimensionless maximum deflection Wm.
From Equations (36a) and (37), the relationships between the load and central displacement are
obtained as:

q0L3

π4D11
= A(0)

W + A(1)
W

(
Wm

L

)
+ A(2)

W

(
Wm

L

)2

+ A(3)
W

(
Wm

L

)3

+ . . . (38)
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in which
A(0)

W = −
[
γT3 − (γT3 − γT6)

γ12
γ22+γ23

]
∆T,

A(1)
w = π

4

[(
γ11 − γ12

γ21−γ23
γ22+γ23

)
+ (K1 + K2) − γT1∆T

]
,

A(2)
W = π2

2

(
γ15 − γ14

γ21−γ23
γ22+γ23

)
,

A(3)
W = π3

16γ13,

(39)

The non-linear bending of a hybrid laminated beam with cross-ply (0 C/90 F/0 C/90 F/0 C) under a
uniformly distributed load is studied in the current analysis. Both the ends of the beam are taken as
simply supported. The same analysis has been reported by Fan & Wang [72]. Constituent materials of
the beam are similar to the cases of hybrid beam listed in Table 4. Present dimensionless deflections are
compared with those of Fan & Wang [72] for the hybrid laminated beam with L/h = 10, 20, 40. For the
sake of consistency, we have used qoL3/E0I, which is adopted by Fan & Wang [72]. Nevertheless, qoL4/E0I
is non-dimensional load which is adopted in this paper. According to curves plotted in Figure 11,
similar trend and good accordance may be observed between the results.
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Figure 11. Comparisons of load-deflection relationships of a hybrid laminated beam.

Figure 12 illustrates the dimensionless load-deflection curves for UD and FG beam under a uniform
pressure. Five different distribution patterns designed above are considered. Wm/h and qoL4/E0I
represent the dimensionless defection and load, respectively. Figure 12 shows the deflection-time
curves among the above-mentioned distributing patterns. The curve of the UD pattern is used at the
same temperature for reference. UD beam has the maximum central deflection as compared with the
other distribution patterns while FG-Λ beam has the minimum central displacement. Thus, for the
next comprehensive studies, UD and FG-Λ are taken as the case studies.

Figure 13 demonstrates the influence of the changing temperature field on the bending response
of UD and FG-Λ with the above-mentioned conditions and L = 5 h. It may be concluded from
Figure 13 that the central deflection increases with a rise in temperature. It is also observed that
(25 F/20 C/−20 C/20 C) S laminated beams are less sensitive to variations in the temperature than
(25 F/90 C/−90 C/90 C) S laminated beam.

Figure 14 plots the effect of the foundation stiffnesses on the bending characteristics of UD and
FG-Λ with reference environmental conditions and L = 20 h. The predicted load-deflection curves are
given for (k1, k2) = (0, 0), (103, 0), (103, 102). In Figure 14, it is evident that the dimensionless central
deflection decreases by increasing the foundation stiffnesses. Meanwhile, the effect of reinforcement of
foundation on (25 F/90 C/−90 C/90 C) S laminated beam is more obvious than the other beams.
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7. Conclusions

In this study, a model for free vibration, non-linear forced vibration, and bending analyses of
hybrid laminated beams with NPR and PPR under various external conditions is proposed. The model
developed accounts for the FG configurations and NPRs in hybrid laminated beams. Five types of
volume fractions of CNTs are considered which include: UD, FG-Λ, FG-V, and FG-X. For a configuration
of (25 F/20 C/−20 C/20 C) S and (25 F/90 C/−90 C/90 C) S, the out-of-plane Poisson’s ratios exhibit NPR
and PPR, respectively. The solutions for the static and dynamic responses are derived by using a
two-step perturbation approach by using a fourth-order Runge–Kutta method. The theoretical model
predicts reliable values of frequencies and deflections in comparison with the results available in the
existing model in the literature. The influence of the temperature variations and elastic foundation on
the static and dynamic behavior of hybrid laminated beams is investigated in detail.

Following comprehensive results are concluded:

• The distribution type of CNTs show considerable effect on the static and dynamic behavior
of FRC/CNTRC plate with NPR or PPR. It is concluded that the FG-X beams have a lower
frequency ratio. Moreover, for the non-linear bending and dynamic response, the FG-Λ beam
showed better performance than that with UD under different external conditions.

• An increment in the temperature make the frequencies ratio and central defection considerably
larger, whereas the increasing foundation stiffness will result in an opposite effect.

• The dynamic responses considering viscosity of foundation show obvious differences from those
obtained with Pasternak foundation.

• The comparative studies reveal that the non-linear vibration of (25 F/20 C/−20 C/20 C) S laminated
beams are more sensitive to the temperature field, whereas, the non-linear bending in the (25 F/20
C/−20 C/20 C) S laminated beams are less sensitive to the changes in temperature and foundation
coefficient than those with (25 F/90 C/−90 C/90 C) S.

The results of the current work demonstrate that the NPR has a significant effect on the non-linear
bending, free vibration, and forced-vibration characteristics of FRC/CNTRC hybrid laminated beams.
Furthermore, the results show that the thermal-mechanical characteristics of FRC/CNTRC hybrid
laminated beam can be remarkably improved by the determination of proper distribution of CNTs.
For example, to have satisfactory performance in high temperature environments from hybrid laminated
beams, beams with FG-X or FG-Λ arrangement can be preferred. Meanwhile, it is hoped that the
current work will give an insight into the non-linear behavior of hybrid laminated beams with NPR
and will be helpful for the further investigations.
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Appendix A

In Equations (9) and (10)

S11 = 4
3h2

(
B11E11

A11
− F11

)
, S12 = D11 −

4F11
3h2 + B11

A11

(
4

3h2 E11 − B11
)
,

S21 = 4
3h2

[
4

3h2 H11 +
E11

A11

(
B11 −

4
3h2 E11

)
− F11

]
,

S22 = D11 −
4F11
3h2 + 4

3h2

(
4H11
3h2 − F11

)
−

1
A11

(
B11 −

4E11
3h2

)2
,

S23 = A55 −
4D55

h2 −
4
h2

(
D55 −

4F55
h2

)
, S26 = 1

A11

(
B11 −

4E11
3h2

)
,

(A1)
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(A11, B11, D11, E11, F11, H11) =
N∑

k=1

b

hk∫
hk−1

(Q̃11)k(1, Z, Z2, Z3, Z4, Z6)dZ (A2)

(A55, D55, F55) =
N∑

k=1

b

hk∫
hk−1

(Q̃55)k(1, Z2, Z4)dZ (A3)

in which the detailed definition of Q̃11 and Q̃55 are found in [73]

Q̃11 = Q11 +
(Q16)

2
Q22 − 2Q12Q16Q26 + (Q12)

2
Q66

(Q26)
2
−Q22Q66

, Q̃55 = Q55 −
(Q45)

2

Q44

, (A4)

and
(
Qi j

)
k

are the components of the transformed stiffness of kth lamina with orientationθ(k), defined by



Q11

Q12

Q22

Q16

Q26

Q66


=



c4 2c2s2 s4 4c2s2

c2s2 c4 + s4 c2s2
−4c2s2

s4 2c2s2 c4 4c2s2

c3s cs3
− c3s −cs3

−2cs(c2
− s2)

cs3 c3s− cs3
−c3s 2cs(c2

− s2)

c2s2
−2c2s2 c2s2 (c2

− s2)
2


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
Q44

Q45

Q55

 =
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c2

−cs
s2

s2

cs
c2


[

Q44

Q55

]
(A5b)

where
Q11 = E11(1− v12v21)

−1,Q22 = E22(1− v12v21)
−1,Q12 = v21E11(1− v12v21)

−1

Q44 = G23, Q55 = G13, Q66 = G12

(A6)
E11, E22, v12 etc . . . are summarized in Table 1.
In Equations (9) and (10), the coefficient Ii (i = 1,2,3,4,5,7) can be calculated as:

(I1, I2, I3, I4, I5, I7) =
N∑

k=1

ρk

∫ hk

hk−1

(1, Z, Z2, Z3, Z4, Z6)dZ (A7)

and
I2 = I2 −

4I4
3h2 , I3 = I3 −

8
3h2

(
I5 −

2
3h2 I7

)
, Ĩ3 = I3 −

I2I2
I1

, I5 =I5 −
4I7
3h2 ,

Ĩ5 = I5 −
I2I4
I1

, Î5 = Ĩ3 +
4̃I5
3h2 , Ĩ7 = I7 −

I4I4
I1

,Î7 = Ĩ5 +
4̃I7
3h2 ,

(A8)
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In Equation (27)
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g30 = −γ17 + m2
(
γ19 +

γ18(γ21m2
−γ23)

γ22m2+γ23

)
+

γ21m4

γ22m2+γ23

(
γ29 +

γ28(γ21m2
−γ23)

γ22m2+γ23

)
,

g31 = m4
(
γ11 −

γ12(γ21m2
−γ23)

γ22m2+γ23

)
+ (K1 + K2m2) − γT1m2∆T

+2πm
(
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)
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Φ+ 3π2
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g32 =
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−γ23
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2πm3
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γ21m2
−γ23
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(A9)

in which

Φ = εA∗10 =

(
λ∗

G10

)
−

G20

G10

(
λ∗

G10

)2

−C33

(
λ∗
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)3

+ · · · (A10)

where

λ∗ = 4
π

(
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(
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