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Abstract: In the present study, (Fe41Co7Cr15Mo14Y2C15B6)100−xCux (x = 0, 0.25 and 0.5 at.%)
amorphous alloys were prepared by copper-mold casting. To clarify the effect of the minor
addition of copper on the mechanism of nucleation and growth during the crystallization process,
an isokinetic analysis was performed. The activation energies (E) of the various crystallization
stages were calculated by using theoretical models including Kissinger–Akahira–Sunose (KAS),
Flynn–Wall–Ozawa (FWO), Augis–Bennett and Gao–Wang methods. In addition, Augis–Bennett,
Gao–Wang and Matusita methods were used to investigate the nucleation and growth mechanisms
and to determine other kinetic parameters including Avrami exponent (n), the rate constant (Kp)
and dimensionality of growth (m). The obtained results revealed that the activation energy—as
well as thermal stability—was changed with minor addition of copper. In addition, the obtained
Avrami exponent values were confirmed by Johnson–Mehl–Avrami–Kolmogorov (JMAK) method.
The research findings demonstrated that the value of Avrami exponent is changed with minor addition
of copper, so that the Avrami exponents of all crystallization stages, except the second peak for
copper-free amorphous alloy, were equal to integer values ranging from two to four, indicating that
the growth mechanisms were controlled by interface. Moreover, the kinetic parameters of n and b for
all peaks were increased by an increase in crystallization temperature, which can be attributed to the
increase in the nucleation rate.

Keywords: bulk metallic glasses (BMGs); crystallization kinetic; isokinetic analysis; nucleation and
growth; JMAK method

1. Introduction

In recent years, many attempts have been made to generate new amorphous alloys and bulk
metallic glasses (BMGs) with better properties and performance [1–3]. These efforts have led to
the design and development of advanced BMGs with special properties such as high strength and
hardness [4–7], relatively good corrosion resistance [8–10] and excellent magnetic properties [11–13].
Today, these materials play an important role in technological innovation because of wide range of
their applications [14–16]. Meanwhile, Fe-based BMGs have attracted the tremendous attention of
many researchers not only for their special properties, but also for their low cost [17–22].

Thermal stability and kinetic studies of crystallization process in the amorphous structures are
known as the attractive and practical subjects [23,24], so that kinetic studies have a special and crucial
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role in determining the production parameters in order to produce an alloy with desirable structure
and properties [25,26]. For instance, in BMGs with a maximum nucleation and the minimum growth
rates, crystallization process can take place partially by controlling the kinetic parameters and as a
result an amorphous matrix nanocomposite can be produced with excellent mechanical and magnetic
properties [27–29]. On the other hand, the presence of alloying elements can strongly control the size of
crystalline particles during annealing process [30–37]. For instance, Lesz et al. [32] studied the effect of
Ni addition on the thermal properties of a Fe-based amorphous alloy. They showed that the activation
energy of crystallization process was increased from 564 to 623 kJ/mol with the addition of this alloying
element; indication that an increase in the glass-forming ability (GFA).

Recently, Fe41Co7Cr15Mo14Y2C15B6 (at.%) BMG has been introduced with a high GFA
(super-cooled liquid region; (∆Tx = 94 K)), high hardness (1368.4 HV), and good strength (2217
MPa). In addition, the minor addition of copper improved the properties of this BMG due
to the change of its thermal stability [7,17,37]. Although, the triple kinetic parameters of the
crystallization process including the activation energy (E), pre-exponential factor (A) and reaction
model (f (α)) were determined [38], no comprehensive investigation has been done into the isokinetic
analysis of crystallization process of this BMG to determine more kinetic parameters and, therefore,
there exists a knowledge gap. In the present study, an isokinetic analysis is done to determine
the effect of presence of copper on the isokinetic parameters including Avrami exponent (n) and
dimensionality of growth (m) for partial crystallization process by using thermal analysis techniques.
For this purpose, other kinetic methods such as isoconversional Augis–Bennet [39], Gao–Wang [40],
Kissinger–Akahira–Sunose (KAS) [41] and Flynn–Wall–Ozawa (FWO) [42,43] methods and isokinetic
Johnson–Mehl–Avrami–Kolmogorov (JMAK) method [44–46] are used.

2. Materials and Methods

Multicomponent alloys with nominal compositions of (Fe41Co7Cr15Mo14Y2C15B6)100−xCux

(x = 0, 0.25 and 0.5 at.%) were synthesized by using vacuum-arc melting under a controlled argon
atmosphere by using the high-purity raw materials (≥99.999%). Then, the master alloy ingots were
reverse-remelted at least four times to ensure the reproducibility in the results. Cylindrical samples
with a diameter of 2 mm and a length of 70 mm were produced by suction copper-mold casting.
Solid-state processes have been extensively studied by using thermal analysis techniques [47–49].
Therefore, the thermal stability and isokinetic analysis of the as-cast specimens were evaluated by
using a differential scanning calorimetry (DSC, NETZSCH DSC 404C, NETZSCH-Gerätebau GmbH,
Selb, Germany) at continuous heating rates of 5, 10 and 20 ◦C/min. In addition, the as-cast specimens
were heated in nonisothermal condition by DSC at a heating rate of 20 ◦C/min up to the maximum
temperature of each peak simultaneously with argon flow. Phase analysis of the as-cast and annealed
specimens was identified by X-ray diffraction method using a X’Pert MPD Philips diffractometer
with Co-kα radiation. Moreover, to validate the kinetic results, a microstructural observation and the
crystallites size distribution was performed by using a field emission scanning electron microscope
(FE-SEM, MIRA 3, TESCAN, Czech Republic) at an accelerate voltage of 15 kV and an optical microscopy
(OM, Olympus BX60M, Tokyo, Japan). To determine the crystallites size distribution, at least three
FE-SEM images from different positions of every specimen were randomly selected in order to obtain
a reliable distribution of the particle size. For this purpose, the microstructural image processing
software (MIP 4 student; Nahamin Pardazan Asia, Iran) was used.

3. Results

Figure 1 presents DSC curves of the investigated BMGs. As seen, there were four exothermic
peaks for each BMG and at every heating rate. In addition, it has been shown that with an increase in
heating rate, the critical temperatures such as glass transition temperature (Tg), onset crystallization
temperature (Tx) and crystallization peak temperature (Tp) shift to high temperatures, which is in good
agreement with the results obtained by the researchers [50–53]. The characteristic temperatures are
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listed in Table 1. As seen, all characteristic temperatures shifts to higher temperatures; indicating
that the crystallization process depends on the heating rate caused by the fact that crystallization is a
thermally activated process. In other words, the crystallization temperature of amorphous alloy exhibit
strong dependence on the heating rate, which can be attributed to thermally activated process [54–56].
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Figure 1. Differential scanning calorimetry (DSC) curves of the investigated bulk metallic glasses
(BMGs) at heating rates of (a) 5 ◦C/min; (b) 10 ◦C/min; (c) 20 ◦C/min.

Table 1. Effect of both copper minor addition and heating rates on the characteristics temperatures of
the investigated BMGs, extracted from DSC curves.

X (at.%) Heating Rate (◦C/min) Tg (◦C) Tx (◦C) Tm (◦C) Tl (◦C) Reference

0.00
5 472 595 1105 1156 This work
10 499 601 1108 1159 This work
20 516 610 1112 1165 [17]

0.25
5 507 597 1108 1153 This work
10 530 604 1111 1157 This work
20 545 609 1114 1162 [17]

0.50
5 512 601 1107 1154 This work
10 533 605 1109 1159 This work
20 552 612 1113 1163 [17]

On the other hand, as listed in Table 1, it can be seen that Tg shifts to higher temperatures by
minor addition of copper. As previously discussed in detail, the thermal stability and glass forming
ability (GFA) is increased by the minor addition of copper [17], which is in good agreement with that
of the obtained for Tg. Figure 2 depicts the X-ray diffraction patterns of the as-cast and the annealed
samples. As seen, the patterns of the all three as-cast BMGs exhibit a typical broad hump at 2θ = 50◦,
demonstrating a fully amorphous microstructure. However, the XRD patterns of the annealed
specimens consist of sharp Bragg peaks, which confirm the formation of crystalline precipitates during
the crystallization process. As seen in Figure 2, an increase in crystallization temperature leads to
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the crystalline phases including α-Fe, Fe23(B, C)6, and Mo3Co3C formed in this alloy up to ∼950 ◦C,
which confirms that the peaks of DSC curves are related to the crystallization process.
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BMGs and the annealed specimens up to the maximum temperature of each peak. (a) x = 0 at.%;
(b) x = 0.25 at.%; (c) x = 0.5 at.%.

3.1. Isoconversional Methods

The isoconversional methods are often used to describe their kinetic parameters, evaluate the
results of thermal analysis data and provide more insight into the complex reaction mechanism [57,58].
The calculation of activation energy without having to determine the reaction model is one of the
advantages of these methods. The activation energy is used to describe the required energy of thermal
activation leading to atomic movement [59,60]. As know, the activation energy can be determined in
two different ways of local and apparent by using these methods.
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3.1.1. Local Activation Energy

Local activation energy (Eα) describes the dependence of the activation energy on degree of
conversion (α). Therefore, to estimate the activation energy at any degree of conversion is very
important for the crystallization proceeding. This can clarify the nucleation and growth activation
energies required for nonisothermal crystallization. In other words, the local activation energy can
be used to determine whether the reaction is single-step or multistep. In other words, changes of
activation energy for the reactions controlled by nucleation and growth mechanism (Avrami model)
indicate that nucleation and growth mechanisms are changing as the reaction progresses [61,62] and
this reaction is a single step reaction. Therefore, it is possible to provide a degree of complexity of the
transformation mechanism of the dependence of Eα on α. Hence, to investigate the effect of copper
addition on the nucleation and growth mechanisms of Fe41Co7Cr15Mo14Y2C15B6BMG, an isokinetic
analysis is performed. For this purpose, according to the data extracted from the DSC curves [17,49],
the degree of conversion versus temperature (T) can be obtained for the various crystallization stages,
and then the dependence of Eα on a wide range of α is calculated by using FWO [42,43] and KAS [41]
isoconversional methods. The KAS and FWO are derived from integral isoconversional methods based
on Equations (1) and (2), respectively:

ln(
β

T2 ) = constant−
Eα
RT

(1)

ln β = constant− 1.0516
Eα
RT

(2)

where Eα (kJ/mol) is the local activation energy; R (J/mol·K) is the universal gas constant; β (◦C/min) is
the heating rate; and T (K) is the absolute temperature. According to Equations (1) and (2), the Eα
values are calculated from the slopes of ln(β/T2) and ln(β) versus 1000/T, respectively.

Figure 3 displays the dependence of Eα vs. α for all crystallization stages of all three
(Fe41Co7Cr15Mo14Y2C15B6)100−xCux (x = 0, 0.25 and 0.5 at.%) alloys, which were obtained by using of
the KAS and FWO methods.

As can be seen, the local activation energies for all crystallization stages of copper-free specimen
and specimen containing 0.5 at.% copper was found to be practically independent on α in a very
wide conversion range, which means that these processes are one-step reactions, while the results
obtained for specimen containing 0.25 at.% copper show that the activation energies of the first, third,
and fourth stages of crystallization process change with the extent of conversion. The dependence of
Eα on α suggests that crystallization stages in this specimen undergo as multistep kinetics reactions.
Moreover, the average values of activation energies are presented in Table 2. As presented, the results
obtained by these two methods are in good agreement with each other. It is accepted that addition of
alloying elements (i.e., copper) can change the kinetic parameters of reaction such as activation energy
due to the formation of short range ordering (SRO) regions [63,64]. For instance, the average of the
local activation energy for the fourth stage of crystallization of the (Fe41Co7Cr15Mo14Y2C15B6)100−xCux

(where x = 0.5 at.%) is the highest activation energy value compared to the fourth stages of the other
two alloys. It is notable that the higher energy barrier, the slower reaction [65–69]. On the other hand,
the activation energies for the crystallization process of the investigated BMGs are more than the other
Fe-based BMGs [70–73].
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0.5 at.%) by using Kissinger–Akahira–Sunose (KAS) and Flynn–Wall–Ozawa (FWO) methods for peak
(a) I, (b) II, (c) III and (d) IV.

3.1.2. Apparent Activation Energy

The activation energy at peak temperature (Tp) of each crystallization step is called apparent
activation energy (Ep). This kinetic parameter represents the value of activation energy when the
reaction is the fastest [74,75]. To calculate the apparent activation energy of investigated alloys,
Augis–Bennet [39] (Equation (3)) and Gao–Wang [40] (Equation (4)) methods were used, which were
developed based on Kissinger and Friedman methods, respectively:

ln
(
β

Tp

)
= −

Ep

RTp
+ ln A (3)

ln(
dα
dt

)
p
= −

Ep

RTp
+ const (4)

where Ep (kJ/mol) is the apparent activation energy at the peak temperature; T0 (K) is the onset
crystallization temperature; (dα/dt)p is the maximum crystallization rate at Tp.

Based on these equations, the value of Ep is evaluated from the slops of a plots of ln(β/Tp)
and ln(dα/dt)p vs. 1000/Tp, respectively. For instance, the curves of ln(β/Tp) vs. 1000/Tp curves
for all four crystallization stages of (Fe41Co7Cr15Mo14Y2C15B6)100−xCux(x = 0.25 at.% and 0.5 at.%)
are presented in Figure 4. In addition, Figure 5 indicates the curves of ln(dα/dt)p vs. 1000/Tp for
(Fe41Co7Cr15Mo14Y2C15B6)100−xCux (where x = 0.25 at.% and 0.5 at.%) BMGs.
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Table 2. Values of kinetic parameters including; activation energy (E), Avrami exponent (n) and the value of constant rate of maximum peak (Kp) by using different
methods for all crystallization peaks.

Peak Number X(at.%)
E (kJ/mol) Heating Rate

(◦C/min)
Kp n

Reference
FWO KAS Augis and Bennet Gao–Wang Gao–Wang Gao–Wang JMAK Augis and Bennet

I

0.00 546.0 ± 11.0 559.3 ± 11.5 578.3 ± 2.4 583.2 ± 2.4
5 0.449 1.66 1.88 ± 0.03 1.71 [37]

10 0.882 1.67 1.92 ± 0.03 1.82 [37]
20 1.735 1.72 1.95 ± 0.04 1.90 [37]

0.25 – – 525.9 ± 3.7 505.5 ± 4.3
5 0.451 1.98 – 2.09 This work

10 0.768 2.02 – 2.14 This work
20 1.512 2.17 – 2.23 This work

0.50 512.5 ± 3.4 524.1 ± 3.5 528.6 ± 5.2 525.6 ± 7.2
5 0.413 1.99 2.18 ± 0.02 1.88 This work

10 0.782 1.95 2.21 ± 0.02 1.97 This work
20 1.540 2.00 2.25 ± 0.03 2.12 This work

II

0.00 616.2 ± 4.5 632.3 ± 4.7 627.6 ± 3.3 636.6 ± 3.3
5 0.445 1.43 1.48 ± 0.08 1.45 [37]

10 0.875 1.45 1.49 ± 0.06 1.47 [37]
20 1.724 1.49 1.53 ± 0.08 1.49 [37]

0.25 578.0 ± 3.4 582.0 ± 3.7 615.8 ± 4.2 599.2 ± 5.1
5 0.355 1.82 1.79 ± 0.05 1.78 This work

10 0.712 1.84 1.80 ± 0.07 1.82 This work
20 1.354 1.86 1.83 ± 0.06 1.89 This work

0.50 601.6 ± 3.5 605.9 ± 3.5 638.2 ± 8.3 620.3 ± 3.8
5 0.432 1.77 1.82 ± 0.08 1.74 This work

10 0.723 1.83 1.95 ± 0.07 1.79 This work
20 1.421 1.88 2.01 ± 0.08 1.82 This work

III

0.00 513.5 ± 2.3 591.6 ± 2.4 588.7 ± 5.1 592.7 ± 5.1
5 0.378 1.98 1.88 ± 0.13 1.78 [37]

10 0.745 2.10 1.92 ± 0.12 1.82 [37]
20 1.460 2.30 1.90 ± 0.11 1.89 [37]

0.25 – – 586.0 ± 7.2 575.9 ± 6.7
5 0.295 2.71 – 2.84 This work

10 0.462 2.83 – 2.88 This work
20 0.955 3.21 – 3.12 This work

0.50 467.4 ± 4.6 474.8 ± 4.6 514.2 ± 6.5 501.4 ± 5.1
5 0.319 2.91 3.08 ± 0.12 2.79 This work

10 0.55 2.93 3.16 ± 0.12 2.87 This work
20 1.492 3.37 3.22 ± 0.13 3.12 This work

IV

0.00 826.5 ± 9.5 808.0 ± 9.5 929.2 ± 6.3 935.2 ± 6.3
5 0.412 3.31 3.71 ± 0.07 3.61 [37]

10 0.810 3.85 3.85 ± 0.07 3.74 [37]
20 1.600 4.20 3.91 ± 0.06 3.82 [37]

0.25 – – 1072.7 ± 8.2 1062.6 ± 7.3
5 0.565 2.83 – 2.97 This work

10 0.954 2.93 – 3.07 This work
20 1.566 4.09 – 3.12 This work

0.50 1063.9 ± 5.7 1068.7 ± 3.4 1096.0 ± 3.8 1078.9 ± 6.9
5 0.552 3.98 4.29 ± 0.06 3.85 This work

10 1.091 4.01 4.35 ± 0.08 4.12 This work
20 1.576 4.22 4.39 ± 0.08 4.15 This work
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Figure 5. Plots of ln(dα/dt)p vs. 1000/Tp for all crystallization stages of
(Fe41Co7Cr15Mo14Y2C15B6)100−xCux amorphous alloys; where x= (a) 0.25 at.%; (b) 0.5 at.%.

The values of Ep obtained by these methods are listed in Table 2. As can be seen, the average of
local activation energy for every single-step stage is in a good agreement with its apparent activation
energy, while the apparent activation energy values are significantly different from the local activation
energy in the multistep stage.

3.2. Nucleation and Growth Mechanisms

Generally, crystallization processes are controlled by nucleation and growth phenomena [76–78].
Therefore, understanding the mechanisms of nucleation and growth during the crystallization process
is essential to control the microstructure and its dependent mechanical and magnetic properties [61,79].
Among the kinetic parameters related to the nucleation and growth mechanisms, the calculation of n,
m, and Kp can be necessary to do a comprehensive kinetic analysis.
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3.2.1. Avrami Exponent and the Rate Constant

Augis–Bennet [39] and Gao–Wang [40] methods are commonly used to obtain the kinetic
parameters including n and Kp. The n value can be calculated by using Equation (5), which was
developed by Augis & Bennett method.

n = 2.5
T2

p

∆T
(

Ep
R

) (5)

where ∆T is the full width of the exothermic peak at the half maximum intensity of crystallization peak.
Moreover, the kinetic parameters such as Kp and n can be obtained by using the Gao–Wang method by
using Equations (6) and (7), respectively.

Kp =
βEp

RT2
p

(6)

(
dα
dt

)
p
= 0.37nKp (7)

As seen, to calculate the n values by using Gao–Wang method (Equation (7)), the Kp parameter
should be calculated (Equation (6)).

The Avrami exponent and Kp for every crystallization stage of the investigated BMGs is listed in
Table 2. Considering the n values calculated by these two methods, it can be concluded that the values
of Avrami exponent change by minor addition of copper.

Moreover, to verify accuracy of the obtained results, the isokinetic JMAK method was used [44–46],
which can be expressed as:

n(α) =
R∂ln(−ln(1− α))

Eα∂( 1
Tα )

(8)

In order to obtain the local Avrami exponent (n(α)) under nonisothermal crystallization kinetic
analysis by using JMAK method, the plots of ln(−ln(1−α)) vs. 1000/Tα are needed and then the n(α)
can be obtained by using Equation (8). For instance, the plots of ln(−ln(1−α)) vs. 1000/Tα for all
four crystallization stages of (Fe41Co7Cr15Mo14Y2C15B6)100−0.25Cu0.25 amorphous alloy in different
heating rates are indicated in Figure 6. In addition, Figure 7 shows the plots of n(α) vs. α for all
four crystallization stages of (Fe41Co7Cr15Mo14Y2C15B6)100−0.25Cu0.25 amorphous alloy in different
heating rates.

As shown in Figure 7, n(α) is constant over a wide range of α at the second peak
of (Fe41Co7Cr15Mo14Y2C15B6)100−0.25Cu0.25 BMG and the all four crystallization stages of
(Fe41Co7Cr15Mo14Y2C15B6)100−0.5Cu0.5 BMG. It is accepted that variation of n(α) vs. α shows a
multistep reaction, while this kinetic parameter is constant for single-step reaction. Figure 8
displays the plots of Eα and n(α) vs. α for the first and second crystallization stages of the
(Fe41Co7Cr15Mo14Y2C15B6)100−0.25Cu0.25 amorphous alloy.

As shown in Figure 8a, the n(α) and Eα change as the reaction progresses, indicating that
this reaction is a multistep reaction, while as shown in Figure 8b, the Eα and n(α) for the second
crystallization stage are constant in a wide range of α, indicating that this reaction is a single-step
reaction. The average values of n(α) for all three heating rates are listed in Table 2.
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In the crystallization process, the activation energy is related to overcome the potential barrier
for nucleation and growth, which can determine the rate of crystallization process [80–82]. Therefore,
with a decrease in the activation energy, the number of nucleation sites increases and then the diffusion
process becomes easier [83]. Therefore, it can lead to more progress in crystallization and increases
Avrami exponent.
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3.2.2. Relationship between n & m Parameters

The growth dimension (m) is calculated using the Matusita equation [79,80] based on the following
equation:

ln(β) = −1.052
m
n

E
RT
−

1
n

ln(− ln(1− α)) + const. (9)

where, the ratio of m/n can be obtained by plotting the ln(β) vs. 1000/T. For this purpose, the activation
energy obtained by the Gao–Wang method is used in Equation (9). The n(α) value of JMAK method
was used to determine the growth dimension (m). The values of m for every crystallization stage of the
investigated BMGs are presented in Table 3.

Table 3. Nonisothermal crystallization kinetics data for nucleation and growth mechanism.

Peak Number X
(at.%)

Avrami
Exponent (n)

Dimensionality
of Growth (m)

Growth
Index (p)

Nucleation
Index (b) Reference

I
0.00 2 2 1 0 [37]
0.25 2 2 1 0 This work
0.50 2 2 1 0 This work

II
0.00 1.5 1 1 0 [37]
0.25 2 2 1 0 This work
0.50 2 2 1 0 This work

III
0.00 2 2 1 0 [37]
0.25 3 3 1 0 This work
0.50 3 3 1 0 This work

IV
0.00 4 3 1 1 [37]
0.25 3 2 1 1 This work
0.50 4 3 1 1 This work

In addition, the Ranganathan–Heimendahl equation [81,82] can be used to investigate the
relationship between nucleation and growth mechanism, which is presented as followed:

n = pm + b (10)

where b is a nucleation index, which b = 0 and b = 1 indicate the nucleation rate will be zero and
constant, respectively. However, the nucleation rate will be decreasing and increasing for 0 < b < 1 and
b > 1, respectively. The p parameter referred to the growth index and the value of this parameter can
be considered as 0.5 and 1 for diffusion and interfaced controlled growth, respectively [83,84].

The obtained values of b and p for the all crystallization stages of the investigated BMGs are listed
in Table 3. As presented, the value of Avrami exponent changes with minor addition of copper, so that
the Avrami exponents of all crystallization stages except the second peak for copper-free BMG are
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equal to integer values ranging from 2 to 4. As seen, the value of p parameter is equal to 1 for all four
crystallization stages of the investigated BMGs. It means that these stages have an interface-controlled
growth mechanism. In addition, the value of nucleation index related to the first, second and third
crystallization stages for all investigated BMGs are equal to 0, while for the fourth crystallization peaks
of three BMGs are equal 1, which indicating that the nucleation rate is increased in this stage.

3.3. Microstructural Observations

As listed in Table 3, the nucleation rate (b) for the first, second and third crystallization stages
are calculated equal to 0 due to the presence of pre-existing clusters. For instance, these pre-existing
clusters in the as-cast copper-free BMG are presented in Figure 9. The clusters exist in this sample are
shown with red arrows. Also, Figure 10 displays FE-SEM micrographs of the nanocrystalline phases
formed in the amorphous matrix of (Fe41Co7Cr15Mo14Y2C15B6)100−xCux(x = 0, 0.25 and 0.5 at.%) alloys
annealed at temperature ranges of the first, third and fourth crystallization stages, respectively. As seen
in Figure 1a, the plate precipitates are formed in the copper-free amorphous alloy by annealing up to
temperature range of the first crystallization peak, which indicates a two-dimensional growth (m = 2).
Therefore, microstructural observations confirm the accuracy of the results obtained by kinetic analysis
(the Matusita equation). In addition, in Figure 10b,c, the formed spherical precipitates are shown in the
BMGs of containing 0.25 at.% and 0.5 at.% copper annealed at the temperature ranges of the third and
fourth crystallization peaks, respectively. As listed in Table 3, the growth dimensions for these samples
are calculated equal to 3. Therefore, the formation of spherical crystalline precipitates in these samples
is expected.
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Figure 10. FE-SEM micrographs of the nanocrystalline phases formed in the amorphous matrix of
(Fe41Co7Cr15Mo14Y2C15B6)100−xCux. (a) x = 0 at.% annealed up to temperature range of the first
crystallization stage; (b) x = 0.25 at.% annealed up to temperature range of the third crystallization
stage; (c) x = 0.5 at.% annealed up to temperature range of the fourth crystallization stage.

Moreover, Figure 11 illustrates the size distribution of the formed nanocrystallites in the annealed
specimens during the partial annealing. According to this figure, it is confirmed that the average size
of nanocrystallites is increased with an increase in the annealing temperature. In other words, the size
of nanocrystallites depends on the annealing temperature. On the other hand, it is shown that the size
of nanocrystals in the same annealing temperature decreases in the presence of 0.25 at.% Cu compared
with the Cu-free specimens and the alloy containing 0.5 at.% Cu. This results indicates that the optimal
size of nanocrystallites can be formed in the presence of 0.25 at.% Cu, which can be due to the effect of
Cu presence on the mechanism of nucleation and growth of crystalline phases. This phenomenon can
improve its mechanical properties, which are discussed in detail elsewhere [7].
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Figure 11. Size distribution of nanocrystallites formed in the specimens of
(Fe41Co7Cr15Mo14Y2C15B6)100−xCux BMGs. (a) x = 0 at.%; (b) x = 0.25 at.%; (c) x = 0.5 at.%
annealed up to the maximum temperature of the second (II), third (III) and fourth (IV) peaks of
crystallization, respectively.

4. Conclusions

In this study, the effect of copper presence on the mechanisms of nucleation and growth for
Fe41Co7Cr15Mo14Y2C15B6BMG was investigated by using various isoconversional and isokinetic
methods. Activation energies of the investigated BMGs in various crystallization stages were measured
by various kinetic methods such as; FWO, KAS, Augis–Bennett and Gao–Wang methods. Activation
energies for three BMGs were obtained in the range of about 470 to 1100 kJ/mol. In addition, the kinetic
parameter including n, Kp and m were determined by using Augis–Bennett, Gao–Wang, Matusita
and JMAK methods. The results revealed that the value of Avrami exponent is changed with minor
addition of copper, so that the Avrami exponents of all crystallization stages except the second peak for
copper-free amorphous alloy were equal to integer values ranging from two to four. Furthermore,
the value of p parameter is equal to one for all four crystallization stages of three BMGs. Hence, it is
confirmed that all peak of crystallization were controlled by the interface. In addition, the results
showed that the n and b values of investigated BMGs for the fourth peaks of crystallization increased,
indicating the nucleation rate is increased in this stage. Microstructural study confirmed the calculated
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kinetic results, so that plate and spherical crystalline precipitates was observed for the samples with
two- and three-dimensional growth (m = 2 and 3), respectively.
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