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Abstract: To provide a simple numerical formulation based on fixed grids, a wavelet element method
for fluid–solid modelling is introduced in this work. Compared with the classical wavelet finite
element method, the presented method can potentially handle more complex shapes. Considering the
differences between the solid and fluid regions, a damping-like interface based on wavelet elements is
designed, in order to ensure consistency between the two parts. The inner regions are constructed with
the same wavelet function in space. In the time and spatial domains, a partitioned approach based on
Jacobi iteration is combined with the pseudo-parallel calculation method. Numerical convergence
analyses show that the method can serve as an alternative choice for fluid–solid coupling modelling.
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1. Introduction

In the context of structural health monitoring, as well as seismic and acoustic exploration,
the numerical modelling and analyses of fluid–solid interfaces and coupling have been considered
crucial issues, due to the complexity of the related physical phenomena. For waves propagating in
a single medium (i.e., fluid or solid), nearly all types of numerical methods can be used, such as
the finite difference method [1,2] and its derivative formulations [3], boundary element methods [4],
spectral element methods [5,6], pseudo-spectral element methods (i.e., time–domain spectral element
methods) [7], wavelet spectral methods [8–10], and mixed formulations based on spectral methods [11].
Although the performances of these numerical methods typically differ, due to the corresponding
superiorities or shortcomings, reasonable results can be usually obtained for the self-contained
establishment of modelling and solving methodologies. Fluid–solid interfaces lead to significant
numerical difficulties, as the correct implementation of physical matching conditions plays an important
role in the convergence of numerical algorithms. Modelling such an interface involves many issues
concerning the selection of grid techniques, simulation techniques, and time discretization.

In fluid–solid interaction problems, both the fluid domain and the solid domain are deformed.
For elastic and incompressible problems, the solid region is usually modelled by a fixed grid technique,
due to its small deformation, while the grid of the fluid part can be altered between moving and fixed
grids [12]. The arbitrary Lagrangian–Eulerian formulation [13] is a typical moving grid formulation,
in which the grid can move with arbitrary velocity; but not necessarily at the velocity of the fluid.
The movement of the grid involves interpolation from the old to the new grid, inevitably causing errors.
Moreover, the interaction between the fixed solid grid and the moving fluid grid is also complicated,
although the arbitrary Lagrangian–Eulerian formulation has the advantage that the wall shear stress
at the fluid–structure interface can be calculated accurately. To obtain a simpler formulation for the
fluid–solid coupling problem, a fixed grid is used for the fluid. The immersed boundary method
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developed by Peskin [14] limits the solid by acting like fibers containing a chain of solid nodes.
An immersed fiber can occupy no volume in the fluid domain in the original version. The numerical
properties of the immersed boundary method mean that it is straightforward to determine the type of
the boundary conditions for the fluid grid, if the fluid surrounds the structure, while some non-physical
boundary conditions are required for the interface. Another fixed grid technique is the fictitious
domain method. The distributed Lagrange multiplier fictitious domain method was proposed by
Glowinski et al. [15] for the interaction between solids and fluids. In the formulation of this method,
the solid region immersed in the fluid part is filled with the same fluid as the remainder of the fluid
domain. Additional Lagrange multipliers are used to impose the equality of speed for the fictitious
fluid and the solid part. To further simplify the formulation, the presented work used wavelet element
modelling for both solid and fluid parts, with a fixed boundary. With the same numerical formulation,
the interface can be designed and assembled.

Besides grid techniques (i.e., spatial discretization), simulation techniques and solving techniques
are other aspects to be considered. The fluid–solid interaction problem can be implemented in a
monolithic or partitioned formulation [16]. The monolithic approach solves the flow equations and the
structural equations simultaneously and, thus, the interaction can be considered during the solution
process. For a fixed grid, following the monolithic approach means using a set of larger matrices,
which contain the solid, fluid, and the coupling, which are constructed and involved in every time
step, while the stability of the calculation can be ensured in this process [17]. In contrast, partitioned
techniques allow for solving the flow equations separately from the structural equations, and vice
versa [18]. To transfer and update data during computation, the interface is important. The main
advantage of the partitioned approach is the reuse of reliable and optimized codes for flow equations
and structural equations. This property allows for the flexible assembly of algorithms. The large
family of finite element methods provides the possibility of addressing this issue. The wavelet element
method has been shown to be an efficient alternative tool for modelling wave motion [19], but the
absence of a Jacobian matrix, interface modelling, and the solving methodology for decoupling limits
its application for the considered issue. In addition, a large number of iterations in the time and space
domains requires efficient solving in every step. Thus, the inverse of the total stiffness should be
avoided, and an indirect path to solve the variable in both fluid and solid should be implemented.

In this work, we developed an isoparametric wavelet element formulation with Jacobian matrix,
which allows the method to potentially handle more complex shapes. With the consideration of
the balance between physical and geometric interpolation, a B-spline-based wavelet is used as the
interpolating/shape function. Different with the classical interpolating/shape function, the transform
matrix is introduced to avoid the use of wavelet coefficient and controlling point for B-spline-based
wavelets. The superiorities of B-spline in structural analysis and geometric approximation make the
corresponding wavelet element a promising selection for the inviscid fluid–solid coupling problem.
Considering the difference between solid and fluid regions, in terms of their degrees of freedom,
a damping-like interface based on wavelet elements is designed. The inner regions, both for the fluid
and the solid, are constructed using the same wavelet function in the spatial domain. A partitioned
approach based on Jacobi iteration [12] is used, combined with the pseudo-parallel calculation method
to address the “out of memory” problem.

2. Formulation of the Inspected Problem

2.1. The Strong Form (Physical Models)

In order to simplify the analysis and to highlight the performance of the presented numerical
process, in this paper, the fluid part is considered inviscid and incompressible, while the solid part
is considered elastic and isotropic. The strong form (the partial differential equation) of the wave
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motion equation in the solid region can be written, in vector form, as Equations (1)–(3) based on
Lame parameters:

ρs
..
u = ∇ · σ+ fs, (1)

σ = Dε = λtr(ε)I + 2µε, (2)

ε =
1
2

[
∇u + (∇u)T

]
, (3)

where vector u denotes the displacement of the solid. For the two-dimensional case, u is expressed by
[ux, uy]T. The symbols σ and ε denote the stress and strain tensors, respectively. The symbols λ and µ
are the Lame parameters, and ρs is the mass density of the solid waveguide, referring to the inertial
force of the inspected region. The matrix I is the identity tensor. The vector fs defines the general
external force in the solid region. The function tr(·) is employed to obtain the trace of the bracketed
term. The fluid region, where only the acoustic wave propagates, is governed by the conservation and
dynamics equations:

ρ f
.
v +∇p = 0, (4)

.
p + ρc2

∇ · v = 0, (5)

where the vector v denotes the velocity of the fluid, the constant c =
√

k/ρ f is the velocity of the

acoustic wave, and k is the bulk modulus of fluid. The mass density of fluid is defined by ρf.
As the fluid is irrotational, the variable v is replaced by the gradient of the potential function ϕ.

Substituting the relationship v = ∇ϕ into Equations (4) and (5), a second order system which only
involves the potential function variable can be obtained:

1
c2

..
ϕ = ∇2ϕ. (6)

The above equations independently define the dynamic properties in the solid and fluid. To couple
the two waveguides together, we need to find the connection between u and v. To address this problem,
Komatitsch et al. [18] proposed a fluid–solid interface method. From Equation (4), it can be obtained
as follows:

−ρ f∇
.
ϕ = ∇p⇒ −ρ f

.
ϕ = p. (7)

Considering Equation (7) and the continuity of traction on the interface (the boundary between
solid and fluid), τ = σ · n (where n denotes the unit normal to the interface), we obtain the following:

τ = ρ f
.
ϕ · n. (8)

The continuity of the normal component of speed is expressed as:

n · ∇ϕ = n ·
.
u. (9)

Note that v = ∇ϕ. Equation (9) constructs the energy transport path between solid and fluid.
In the present model, it should be noticed that the shear force is considered in the solid region

but absent in the fluid region. The present interface fully ignores the viscosity on the acoustic wave
propagation, which is not an accurate model as the equilibrium condition on the interface is not satisfied
due to neglection of shear stress. The balance of tangential element of the stress on the interface is
ignored. A more precise interface containing the shear effect should be considered to achieve more
accurate results in practice.

2.2. The Weak Form (Numerical Models)

In finite element methods, problems are solved using their corresponding weak forms. By dotting
the partial differential equation with the trial function (or interpolating function) ψ = [ψx(x, y), ψy(x,
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y)]T for the solid region, and ψ(x, y) for the fluid region, and integrating by parts over the field of
interest, we obtain Equation (10) for the solid region:∫

Ωs

ψρs
..
udΩ +

∫
Ωs

∇ψD∇udΩ −
∫

Γ
ψρ f n

.
ϕdΓ =

∫
Ωs

ψ fsdΩ, (10)

and Equation (11) for the fluid region:∫
Ω f

1
c2ψ

..
ϕdΩ +

∫
Ω f

∇ψ∇ϕdΩ +

∫
Γ
ψn

.
udΓ = 0, (11)

where the inspected solid and fluid regions are denoted by Ωs and Ωf, respectively, and the interface
between them is defined by the symbol Γ. In the above equations, we consider a wave source, f s, in the
solid region, which can be implemented into the fluid region. Based on the interface components
in Equations (10) and (11), the solid and the fluid system are coupled. In numerical formulation,
the Dirichlet–Neumann decomposition method is used to connect the coupled regions:

ϕ =

√
.
u2

x +
.
u2

y (from solid to fluid), (12)

by which the velocities in the solid part can be converted to the velocity of the fluid. By

.
u =

{
nx∇ϕ, ny∇ϕ

}T
(from fluid to solid), (13)

the velocity vector in the solid can be calculated from the variables in the fluid part.

2.3. Wavelet Element Spatial Discretization

Numerical solution of the wave propagation in solid–fluid coupling problems involves the
discretization of spatial and temporal domains. We chose the mth-order j scale B-spline wavelets
on the interval (BSWI) interpolating function ψ j

m,k(ξ) for spatial discretization. The region Ω, either
for the solid or fluid, is divided into a set of non-overlapping sub-domains, Ωe, following which
each sub-domain is mapped onto a unit interval, considering the dimension of the problem being
analyzed. According to the mth-order 0 scale B-spline functions and the corresponding wavelets given
by Goswami [20], the j scale mth-order BSWI scaling functions ψ j

m,k(ξ), denoted by BSWImj, can be
derived as:

ψ
j
m,k(ξ) =


ψ l

m,k(2
j−lξ), k = −m + 1, . . . ,−1

ψ l
m,2 j−m−k

(1− 2 j−lξ), k = 2 j
−m + 1, . . . , 2 j

− 1

ψ l
m,0(2

j−lξ− 2−lk), k = 0, . . . , 2 j
−m

(0 boundary scaling functions)
(1 boundary scaling functions)
(inner scaling functions)

.

(14)
Based on Equation (14), the interpolating functions, in horizontal and vertical directions, are

defined as:
ψξ =

{
ψ

j
m,−m+1(ξ) ψ

j
m,−m+2(ξ) . . . ψ

j
m,2 j−1

(ξ)
}
,

ψη =
{
ψ

j
m,−m+1(η) ψ

j
m,−m+2(η) . . . ψ

j
m,2 j−1

(η)
}
,

(15)

where ξ and η are restricted to the interval [0, 1], respectively, depicting the normalized x and y
co-ordinates. The two-dimensional interpolating function is formulated based on the Kronecker
product between the two vectors in Equation (15); namely, Ψ = ψξ ⊗ψη. In the classical finite element
method, the unknown field function u is approximated by the interpolating function N and node
vectors ue as:

ue(ξ, η, t) =
n+1∑

i

n+1∑
j

Ni(ξ)N j(η)ue(ξi, η j, t) = Nue. (16)



Materials 2020, 13, 3699 5 of 21

Note that the wavelet coefficients can be obtained when the interpolating function N is replaced
by Ψ. The physical meaning of the wavelet coefficients is not evident, due to the overlap in support,
and the boundary condition is not easy to implement. Therefore, an additional matrix T is required
to transform the wavelet coefficients into the physical domain, in which the interpolating function
N yields:

ΨT = N, (17)

where the transform matrix is T =
{
ψT
ξ

(
ξ1),ψT

ξ

(
ξ2) . . . ψ

T
ξ(ξn+1)

}−T
⊗

{
ψT
η

(
η1),ψT

η

(
η2) . . . ψ

T
η(ηn+1)

}−T
.

Equations (10) and (11) can be rewritten as:


∑
e

∫
Ωe

s
(ΨTue)TρsΨT

..
uedΩ +

∑
e

∫
Ωe

s
∇(ΨTue)TD∇ΨTuedΩ −

∑
e

∫
Γe (ΨTue)Tρ f nΨT

.
ϕ

edΓ =
∑
e

∫
Ωe

s
(ΨTue)TfsdΩ∑

e

∫
Ωe

f

1
c2 (ΨTϕe)TϕeΨT

..
ϕ

edΩ +
∑
e

∫
Ωe

f
∇(ΨTϕe)T

∇ΨTϕedΩ +
∑
e

∫
Γe (ΨTϕe)Tn

.
uedΓ = 0

, (18)

where the superscript e depicts “elemental”. Equilibrium is also satisfied in each element. Based on the
Hamilton principle, we further obtain the wavelet element method in matrix form:

∑
e

Me
s

..
ue

+
∑
e

Ke
sue
−

∑
e

Ce
s

.
ϕ

e
=

∑
e

fs
e∑

e
Me

f
..
ϕ

e
+

∑
e

Ke
fϕ

e +
∑
e

Ce
f

.
ue

= 0
. (19)

Assembling the elementary matrices together, we further obtain: Ms
..
u + Ksu−Cs

.
ϕ = fs

M f
..
ϕ+ K fϕ+ C f

.
u = 0 , (20)

where M is the mass matrix and K is the stiffness matrix. The pseudo-damping C is the coupling
matrix of the interface, which acts on the first order temporal derivatives of u and ϕ. It differs from the
real damping, in that the energy is not dissipated in the layer but transported to the coupled region
instead. The interface is integrated into the finite element formulation as a pseudo-damping layer,
which couples the solid and fluid parts. The explicit forms of the corresponding global matrices for the
two-dimensional case are:

Ms =
∑

e

n+1∑
i

n+1∑
j

wiw j(ΨT)TρsΨTdet(J), (21)

M f =
∑

e

n+1∑
i

n+1∑
j

wiw j(ΨT)T 1
c2 ΨTdet(J), (22)

Ks =
∑

e

n+1∑
i

n+1∑
j

wiw j∇(ΨT)TD∇ΨTdet(J), (23)

K f =
∑

e

n+1∑
i

n+1∑
j

wiw j∇(ΨT)T
∇ΨTdet(J), (24)

Cs =
∑

e

n+1∑
i

n+1∑
j

wiw j(ΨT)Tρ f nΨTdet(J), (25)

C f =
∑

e

n+1∑
i

n+1∑
j

wiw j(ΨT)TnΨTdet(J), (26)
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where J is the Jacobian matrix which transforms the normal region to a curved region, and the constants
wi and wj are the weights referring to the Gaussian integral. As an isoparametric method, the shape
function related to J is also defined by the same BSWI used for interpolation. Here, we give the explicit
expression of the Jacobian matrix based on BSWI43 (the scale j = 3, and fourth order) element.

The even order spline is usually used in structural analysis; thus, the fourth-order spline is selected.
In order to ensure the existence of inner wavelet, scale j and order m should yield:

2 j > 2m− 1. (27)

Then scale j is fixed at 3.
The BSWI40 is given by [20], then the BSWI43 functionψξ = { ψ3

4,−3(ξ) ψ
3
4,−2(ξ) . . . ψ

3
4,7(ξ)} can be

derived from Equation (14) as:

ψ3
4,−3(ξ) =

 1− 3× (23ξ) + 3× (23ξ)
2
− (23ξ)

3
ξ ⊂ [0, 1/8]

0, ξ[0, 1/8]
, (28)

ψ3
4,−2(ξ) =


3× (23ξ) − 9

2 × (2
3ξ)

2
+ 7

6 × (2
3ξ)

3
ξ ⊂ [0, 1/8]

2− 3× (23ξ) + 3
2 × (2

3ξ)
2
−

1
4 × (2

3ξ)
3

ξ ⊂ [1/8, 1/4]
0 ξ[0, 1/4]

, (29)

ψ3
4,−1(ξ) =


3
2 (2

3ξ)
2
−

11
12 (2

3ξ)
3

ξ ⊂ [0, 1/8]
−

3
2 + 9

2 (2
3ξ) − 3× (23ξ)

2
+ 7

12 (2
3ξ)

3
ξ ⊂ [1/8, 1/4]

9
2 −

9
2 (2

3ξ) + 3
2 (2

3ξ)
2
−

1
6 (2

3ξ)
3

ξ ⊂ [1/4, 3/8]
0 ξ[0, 3/8]

, (30)

ψ3
4,0(ξ) =



1
6 (2

3ξ)
3

ξ ⊂ [0, 1/8]
2
3 − 2× (23ξ) + 2× (23ξ)

2
−

1
2 × (2

3ξ)
3

ξ ⊂ [1/8, 1/4]
−

22
3 + 10× (23ξ) − 4× (23ξ)

2
+ 1

2 × (2
3ξ)

3
ξ ⊂ [1/4, 3/8]

32
3 − 8× (23ξ) + 2× (23ξ)

2
−

1
3 × (2

3ξ)
3

ξ ⊂ [3/8, 1/2]
0 ξ[0, 1/2]

, (31)

ψ3
4,1(ξ) = ψ3

4,0(ξ−
1
8 ), ψ

3
4,2(ξ) = ψ3

4,0(ξ−
1
4 ), ψ

3
4,3(ξ) = ψ3

4,0(ξ−
3
8 ),

ψ3
4,4(ξ) = ψ3

4,0(ξ−
1
2 ),

(32)

and
ψ3

4,5(ξ) = ψ3
4,−1(1− ξ), ψ

3
4,6(ξ) = ψ3

4,−2(1− ξ), ψ
3
4,7(ξ) = ψ3

4,−3(1− ξ). (33)

Similarly, we can obtain ψη = { ψ3
4,−3(η) ψ

3
4,−2(η) . . . ψ

3
4,7(η)} and Ψ = ψξ ⊗ψη. The present

element is constructed as the isoparametric element, thus Ψ is also used as the shape function.
The direct interpolating by wavelet function induces the solution in the forms of wavelet coefficient
a like:

Ψa = F(x, y), (34)

where F(x, y) depicts the unknow function to be interpolated. Thus, T matrix is employed to connect
wavelet coefficient a with physical region u as:

Tu = a, (35)
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where T =
{
ψT
ξ

(
ξ1), ψT

ξ

(
ξ2) . . . ψ

T
ξ(ξn+1)

}−T
⊗

{
ψT
η

(
η1), ψT

η

(
η2) . . . ψ

T
η (ηn+1)

}−T
, and the ξi, ηi can

be flexibly selected in the interval [0, 1]. As we mentioned, the interpolating function/shape function
can be replaced by ΨT = N by aid of the T matrix. The Jacobian matrix:

J =

 ∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

 =
 ∂Ψ

∂ξ
∂Ψ
∂ξ

∂Ψ
∂η

∂Ψ
∂η

Td. (36)

Here the location is denoted by d = (x, y)T to distinguish with deflection u. The main entries of J
matrix are calculated by:

∂Ψ

∂ξ
=
∂ψξ
∂ξ
⊗ψη,

∂Ψ

∂η
= ψξ ⊗

∂ψη

∂η
. (37)

The main components of
∂ψξ

∂ξ are:

∂ψ3
4,−3(ξ)

∂ξ
=

 −24 + 48× (23ξ) − 24× (23ξ)
2

ξ ⊂ [0, 1/8]
0, ξ[0, 1/8]

, (38)

∂ψ3
4,−2(ξ)

∂ξ
=


24− 72× (23ξ) + 28× (23ξ)

2
ξ ⊂ [0, 1/8]

−24 + 24× (23ξ) − 6× (23ξ)
2

ξ ⊂ [1/8, 1/4]
0 ξ[0, 1/4]

, (39)

∂ψ3
4,−1(ξ)

∂ξ
=


24× (23ξ) − 22× (23ξ)

2
ξ ⊂ [0, 1/8]

36− 48× (23ξ) + 14× (23ξ)
2

ξ ⊂ [1/8, 1/4]
−36 + 24× (23ξ) − 4× (23ξ)

2
ξ ⊂ [1/4, 3/8]

0 ξ[0, 3/8]

, (40)

∂ψ3
4,0(ξ)

∂ξ
=



4× (23ξ)
2

ξ ⊂ [0, 1/8]
−16 + 32× (23ξ) − 12× (23ξ)

2
ξ ⊂ [1/8, 1/4]

80− 64× (23ξ) + 12× (23ξ)
2

ξ ⊂ [1/4, 3/8]
−64 + 32× (23ξ) − 8× (23ξ)

2
ξ ⊂ [3/8, 1/2]

0 ξ[0, 1/2]

, (41)

∂
∂ξ
ψ3

4,1(ξ) =
∂
∂ξ
ψ3

4,0(ξ−
1
8
),

∂
∂ξ
ψ3

4,2(ξ) =
∂
∂ξ
ψ3

4,0(ξ−
1
4
), (42)

∂
∂ξ
ψ3

4,3(ξ) =
∂
∂ξ
ψ3

4,0(ξ−
3
8
),

∂
∂ξ
ψ3

4,4(ξ) =
∂
∂ξ
ψ3

4,0(ξ−
1
2
), (43)

and
∂
∂ξψ

3
4,5(ξ) =

∂
∂ξψ

3
4,−1(1− ξ),

∂
∂ξψ

3
4,6(ξ) =

∂
∂ξψ

3
4,−2(1− ξ),

∂
∂ξψ

3
4,7(ξ) =

∂
∂ξψ

3
4,−3(1− ξ).

(44)

∂ψη

∂η is obtained in the same manner, and the J matrix can be calculated according to Equation (37).
The interpolating results of a quarter circle idealized by one BSWI43 element is presented in

Figure 1. The element contains 11 × 11 inner nodes as shown in Figure 1a. Figure 1b,c present the
distribution and values of error independently. The scattered points in Figure 1c illustrate the value of
every arrow in Figure 1b. It is seen the interpolating error is limited to an acceptable level; with the use
of more elements in modelling, the error can be further restrained.
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Figure 1. B-spline wavelets on the interval (BSWI)43 interpolation for a quarter circle: (a) BSWI
interpolation, (b) the quiver figure for error, (c) the value of error.

2.4. Temporal Discretization and Partitioned Approach

The central difference time integration scheme for temporal discretization is Equation (45):
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(45)

The subscripts related to the time t and time step ∆t define the varying times in the numerical
calculation. Two difficulties are implicated in solving the above equations directly: (1) the large
dimension of the stiffness matrix and (2) the iteration between two mediums in different time steps.

To simulate wave propagation accurately, the grid should satisfy the rule that at least 10 nodes are
required for each wavelength [21–23]. This requirement usually involves a large dimensional grid for
high-frequency wave motion. On the other hand, a dense grid further compels the use of a tiny ∆t
(usually less than 1 × 10−6 s for ultrasound wave simulation) in the central difference time integration
scheme, in order to ensure convergence. In each time step, the matrix calculation and the inverse
computation should be iteratively solved. Therefore, Equation (45) is difficult to solve on the level of
the global matrix. We chose the pseudo-parallel method (as shown in Table 1) to address this problem.

Secondly, the iteration between fluid and solid is also a key issue for partitioned approaches.
Considering the last terms on the right-hand side of Equation (45): (a) in the solid region, in order
to estimate the displacement field ut+∆t , the distribution of the potential function ϕt+∆t is required.
However, ϕt+∆t is unknown for the current step; and (b) we can obtain ϕt+∆t from the fluid region to
solve the issue. In the fluid region, the analogous obstacle is that ut+∆t is unknown. This problem can
be addressed by using the partitioned approach based on Jacobi iteration [12], as shown in Table 2.

Based on the definition in Equation (45), the algorithms in Tables 1 and 2 are proposed.
The presented method is a hybrid of the pseudo-parallel method and the partitioned approach,
where these two methods are employed to address the memory requirement and iteration problems,
respectively. It can be observed that the global stiffness matrix K, a semi-full matrix, is not used in the
calculation; instead, it is established on an elementary level by the equations f̂

e
s = Ke

sut and f̂
e,p
f = Ke

fϕt.

Thereafter, the matrix assembly is accomplished by f̂s =
∑
e

f̂
e
s and f̂ f =

∑
e

f̂
e
f on a vector level. Based on

the above processes, the memory requirement problem is addressed, as the direct multiplication and
inversion of global matrices are avoided. Although the mass matrix M and interface matrix C are
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assembled in our process, the mass matrix M is a diagonal matrix, which can be treated as a vector, and
its inverse can be easily calculated (using the reciprocal of each entry). The interface matrix C is similar
to M but sparser. The presented calculations are all accomplished in only one grid system, where the
absence of a staggered grid guarantees the simplicity of the structure of the developed algorithm.

Table 1. Main Algorithm.

Main Algorithm

#1 Loop over elements e
Calculate the elemental matrices Ks

e, Ms
e, Cs

e and Kf
e, Mf

e, Cf
e

Assemble mass matrices Ms, Mf, interface matrices Cs, Cf, and vector ft
Store all elemental stiffness matrices Ks

e and Kf
e

#1 End of the loop over element e

Calculate the auxiliary vectors M0
s , M1

s , M2
s , C0

s and M0
f , M1

f , M2
f , C0

f
Apply the initial condition
Initialization, let uu

t+∆t = ut−∆t , ϕu
t+∆t = ϕt−∆t

#2 Loop over t
While ‖uu

t+∆t − up
t+∆t ‖2 ≥ es or ‖ϕu

t+∆t −ϕ
p
t+∆t ‖2 ≥ e f

Invoke “The partitioned approach based on Jacobi iteration”
End
#2 End of the loop over instant t
Output u = uu, ϕ = ϕu

The superscript “u” represents the “updating step”. The superscript “p” represents the “predicting step”.

Table 2. The partitioned approach based on Jacobi iteration.

The Partitioned Approach Based on Jacobi Iteration

Calculate
ˆ
f
e

s = Ke
sut and f̂

e,p
f = Ke

fϕt

Assemble vectors f̂s =
∑
e

f̂
e
s and f̂ f =

∑
e

f̂
e
f

Calculate force vectors R̃
p
s = ft − f̂s + M1

s ut −M2
s ut−∆t + C0

s (ϕt−∆t + ϕu
t+∆t )

and
−

R
p

f = −f̂ f + M1
fϕt −M2

fϕt−∆t + C0
f (ut−∆t − uu

t+∆t)

Predict the vectors up
t+∆t = (M0

s )
−1 −R

p

s

and ϕp
t+∆t = (M0

f )
−1 −R

p

f

Calculate force vectors R̃
u
s = ft − f̂s + M1

s ut −M2
s ut−∆t + C0

s (ϕt−∆t + ϕ
p
t+∆t )

and
−

R
u

f = −f̂ f + M1
fϕt −M2

fϕt−∆t + C0
f (ut−∆t − up

t+∆t)

Update the vectors uu
t+∆t = (M0

s )
−1 −R

p

s and ϕu
t+∆t = (M0

f )
−1 −R

p

f

Relaxation (alternative): uu
t+∆t = ωuu

t+∆t + (1−ω)up
t+∆t

ϕu
t+∆t = ωϕu

t+∆t + (1−ω)ϕp
t+∆t

The superscript “u” represents the “updating step”. The superscript “p” represents the “predicting step”. ω denotes
the relaxation parameter, see Section 4.

3. Numerical Examples

Numerical validations were organized in the following manner:

(1) Cases A–C were designed for different regions (i.e., from rectangular to solid circle) and different
interfaces (i.e., from straight to curved).

(2) Two sub-cases were set in each case (e.g., Case A-1 and Case A-2 for Case A). These two sub-cases
were used to simulate wave propagation from solid to fluid and fluid to solid, respectively.

(3) Cases A–C only present some qualitative comparisons with the theoretical wavefront in snapshots.
Quantitative analyses are given at the end of this section, in terms of convergence analysis.
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(4) Considering the similarity of Cases A–C, convergence analysis was only conducted for Case C,
the most complex case among them.

3.1. Case A: Rectangular with a Straight Interface

In order to demonstrate the performance of the presented method, a simple fluid–solid coupling
example is conducted in this section. The inspected regions are treated as the plane strain problem and
the material parameters are given in Table 3. In the following analysis, the primary wave (P-wave) and
the secondary wave (S-wave) appear. The P-wave is a compressional wave which can move through
both solid and fluid. The particles in the medium that the P-wave passes through are pushed and
pulled by wave propagation. It travels faster than the S-wave. The S-wave can only move through
the solid, not through any liquid medium (as it is a kind of shear wave). Particles are moved back
and forth perpendicularly to the direction of wave motion. Due to the assumption of the present fluid
medium, only the P-wave exists (1468.63 m/s) in the fluid part. The excitation is shown in Figure 2,
which was defined by a modulated wave with the carrier frequency f 1 = 75 kHz and the modulation
frequency f 2 = 75 kHz:

S = 0.5 sin(2π f1t)[1− cos(2π f2t)]. (46)

Table 3. Parameters of the regular regions.

Medium Modulus/GPa Density/kg·m−3 Poisson’s Ratio cp/m·s−1 cs/m·s−1

Solid 70.0 2700 0.33 6197.82 3121.75
Fluid - 1020 - 1468.63 -Materials 2020, 13, x FOR PEER REVIEW 11 of 22 
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Figure 2. The excitation used in simulations.

The wave propagation is illustrated by contours in the following parts. In the solid region,

the contours represent the displacement defined by
√

u2
x + u2

y, while the contours in the fluid part are

drawn based on
∣∣∣ϕ∣∣∣. These contours are all normalized, for the sake of expression.

The solid part, with dimensions 0.125 m × 0.25 m, was divided by 10 × 20 BSWI elements—20,301
nodes and 40,602 dofs (degrees of freedom)—and the fluid part, with dimensions 0.125 m × 0.25 m,
was also meshed by 10 × 20 BSWI elements—20,301 nodes and 20,301 dofs. It should be noted that the
BSWI elements used in this paper had 121 nodes per element, thus having 121 dofs and 242 dofs for
fluid and solid, respectively. The number of dofs seemed to be not large enough, compared with some
commercial software; however, it becomes further multiplied when time iteration (as shown in Tables 1
and 2) is considered. For each time step, enough memory was required to compute 60,903 dofs. Usually,
more than 5000 steps are used in a typical simulation. The situation can be further compounded when
a more complex shape and interface are investigated.
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3.1.1. Case A-1: Wave Travels from Solid to Fluid

Figure 3 presents four snapshots, from 10 to 50 µs, induced by a fixed source located at 0.191 m
and 0.125 m in the solid region. The grey auxiliary curves present the theoretical wavefronts of the
P-wave Cp, the S-wave Cs, and the secondary wavefronts. The auxiliary solid line located in the middle
of the region depicts the interface. The symbol Cpp depicts the P-wave in fluid induced by the P-wave
in the solid, and Csp depicts the P-wave in fluid induced by the S-wave in the solid. In the same manner,
we can define the secondary wavefront Cps, which is presented in Figure 4. One can observe, from
Figure 3, that the developed results qualitatively agreed with the wavefronts, either for the main modes
Cp and Cs, or the secondary waves Cpp and Csp. The interface transformed the P- and S-waves in the
solid region to the corresponding secondary P-waves in fluid, where the wavefronts are also clear.
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3.1.2. Case A-2: Wave Travels from Fluid to Solid

To bilaterally validate the effectiveness of the interface, the source was then moved to the fluid
region for verification. The grid was kept the same. In Figure 4, the source was further implemented in
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the fluid region (at 0.083 m and 0.125 m), and the snapshots were recorded from 25 to 50 µs. Likewise,
the numerical P-wave wavefront in fluid qualitatively agreed with the theoretical wavefront. When the
wave passed through the interface, two wave modes were generated in the solid region (i.e., Cpp and
Cps). The wavefronts of these two secondary waves also qualitatively agreed with the theoretical
wavefronts. The above results validate the effectiveness of the present method in normalized regions.

3.2. Case B: Rectangular with a Curved Interface

Curved interfaces and boundaries are further investigated in this section. The material is presented
in Table 4. The grid of Case B, a rectangular region divided by a curve, is shown in Figure 5. The left
part was meshed by 560 wavelet elements (56,481 nodes) and the right part was meshed by 336 wavelet
elements (34,001 nodes). Compared with the uniform grid for solid and fluid used in Figures 3
and 4, the mesh in Figure 5 was intentionally designed with different dimensions. As mentioned,
the verification was hoped to be bidirectional. Thus, the left grid was used to model the solid region in
Case B-1 (as shown in Figure 6), and then to model the fluid region in Case B-2 (as shown in Figure 7).

Table 4. Parameters of the curved regions.

Medium Modulus/GPa Density/kg·m−3 Poisson’s Ratio cp/m·s−1 cs/m·s−1

Solid 25.6 2500 0.21 3395.10 2057.00
Fluid - 1020 - 1468.63 -
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3.2.1. Case B-1: Wave Travels from Solid to Fluid

Figure 6 presents the wave propagation from solid to fluid. The left part was treated as solid
and, thus, had 112,962 dofs; while the grid on the right of the interface was used to simulate the fluid,
with 34,001 dofs. The source was fixed at 0.275 m and 0.125 m in the solid region. Due to the complexity
of the theoretical secondary wavefronts, we only present the main modes in the following simulations.
Figure 6a shows the overall view of the P-wave and S-wave, whose wavefronts qualitatively agreed
with the theoretical ones. In Figure 6b, the P-wave passes through the interface and a clear secondary
P-wave in the fluid region is generated after 37.5 µs. Figure 6c presents the transition from S-wave to
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the corresponding secondary P-wave in the fluid part after 50 µs. It can be seen that the snapshot is
complex and blurred, due to reflections.
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3.2.2. Case B-2: Wave Travels from Fluid to Solid

In the following simulation, shown in Figure 7, we exchange the solid and fluid grids, such that the
left part was defined as fluid, with 56,481 dofs; while the right part was defined as solid, with 68,002 dofs.
The source was still fixed at 0.275 m and 0.125 m, but was in the fluid region. Figure 7a illustrates the
original P-wave. Figure 7b,c show the generation of the secondary waves when the original P-wave
passes through the interface. As the source is near the focus of the interface, the reflection from the
interface is nearly straight. The plane wave travels to the left and its shape remains as a line before
200 µs, as shown in Figure 7d–f.

3.3. Case C: Solid Circle with a Curved Interface

In Case C (Figure 8), a circular region with a curved interface was considered. The annulus was
defined as the fluid region (960 elements, 160,800 dofs), while the inner circle was defined as the solid
region (400 elements, 80,802 dofs). The grid in Figure 8a is not optimized, in view of the finite element
method, as some elements nearly degenerate to triangles, as shown in Figure 8b. This means that
the Jacobi matrix is nearly singular here. Furthermore, the dimension of the elements in the inner
part of Figure 8a are not uniform, which involves the potential instability in temporal discretization
and solution. Figure 8c presents an alternative grid mode for the inner region, with more uniform
dimension and shape. However, in this section, we chose the worse grid for validation, based on the
idea that, if the method performs well on a bad grid, it could perform well on better meshes.
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Figure 8. Grids investigated with curved interfaces: (a) the solid circular region divided by a curved
interface, (b) detailed view of non-optimal mesh area, and (c) an alternative grid mode for the
inner region.

3.3.1. Case C-1: Wave Travels from Solid to Fluid

Figure 9 shows the wave propagating from solid to fluid in the inspected region. Figure 9a,b
present the early development of the wave. The agreement between the theoretical wavefront and the
numerical wavefront validated the effectiveness of the method in the solid region. In the snapshot at
25 µs (Figure 9b), the P-waves in fluid induced by the P- and S-waves in solid are concentrated near
the interface. In Figure 9c–e, the secondary P-waves in fluid induced by the P- and S-waves in solid
can be observed and distinguished. In addition, the presented result maintained the symmetry of the
wavefield, as can be seen in Figure 9f.
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3.3.2. Case C-2: Wave Travels from Fluid to Solid

Then, the source is further replaced at −0.0833 m and 0 m in the fluid region. The corresponding
snapshots are given in Figure 10. We can see that creep waves were generated, due to the shape of the
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interface. The creep wave travelled along the interface, following it in a curved manner (as shown
in Figure 10d–f). Induced by the creep wave, wave motions occurred in the area shadowed by the
solid region.
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3.4. Convergence Analysis in Space

Convergence analyses were conducted on Case C for three types of grid:

(1) Grid-1, the densest mesh composed of 1920 elements (321,600 dofs) for the fluid part and 800 solid
elements (161,604 dofs) for the solid part.

(2) Grid-2, the grid used in Section 3.3, which was composed of 960 elements (160,800 dofs) for the
fluid part and 400 solid elements (80,802 dofs) for the solid part.

(3) Grid-3, a denser mesh composed of 648 elements (66,744 dofs) for the fluid part and 324 solid
elements (66,746 dofs) for the solid part.

(4) Grid-4, a sparse mesh composed of 392 elements (40,448 dofs) for the fluid part and 196 solid
elements (40,490 dofs) for the solid part.

It should be mentioned that the grids were similar in structure, but had different densities.
First, convergence analyses were conducted on Case C-1, in which the wave travelled from the

solid part to the fluid part. The wave source was located at −0.0360 m and 0 m, and assigned vibrations
along X-direction. The receiver was located at −0.0625 m and 0 m in the solid region. The fluctuation
of the wave source determined that the X-direction responses at the receiver were dominated by the
P-wave (as shown in Figure 11), and that the Y-direction here was dominated by the S-wave (as shown
in Figure 12).
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Figure 11. Responses in X-direction at −0.0625 m and 0 m in the solid region: (a) global view and
(b,c) local views. The highlighted part defines the theoretical wavefront and duration of the P-wave.
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Figure 12. Responses in Y-direction at −0.0625 m and 0 m in the solid region: (a) global view and
(b,c) local views. The highlighted part defines the theoretical wavefront and duration of S-wave.

In order to illustrate the P- and S-waves clearly, the X- and Y-directional responses are shown in
Figures 11 and 12, respectively. The highlighted part in Figure 11 defines the theoretical wavefront
and duration of P-wave. It can be observed that the presented results, for all grids, agreed with the
theoretical wavefront. A similar conclusion can be obtained from Figure 12 for the S-wave, in which
the highlighted part defines the corresponding parameters for S-wave. Meanwhile, the fluctuation in
the fluid at (−0.0700 m, 0 m) is presented in Figure 13, in order to demonstrate the convergence of the
method. It can be seen that the different grids achieved convergence in the fluid part.

Further analysis was conducted on Case C-2, in which the wave travelled from fluid to solid.
The source was located at −0.0833 m and 0 m, and the receiver was assigned at −0.125 m and 0 m in
the fluid and at 0 m and 0.0625 m in the solid. Figures 14 and 15 show the convergence in the fluid part
and solid part, respectively. For a better illustration of the creep wave, the response in the solid part is

presented in the form of
√

u2
x + u2

y, keeping consistency with the snapshots shown in Figure 10. It can
be observed that the present method also converged for Case C-2.
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Figure 13. Responses at −0.0700 m and 0 m in the fluid region: (a) global view and (b,c) local views.
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Figure 14. Responses at −0.125 m and 0 m in the fluid region: (a) global view and (b,c) local views.
The highlighted part defines the theoretical wavefront and duration of the P-wave.
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3.5. Convergence Analysis in Time Domain

Besides the convergence analysis on space, the convergence analysis in time domain is also
conducted in this section based on Gird-2. In the premise of avoiding the numerical diffusion in central
difference time integration scheme, we vary the time step for presentation. Time steps are selected
as 0.01 µs, 0.005 µs, and 0.0025 µs, denoted by “Step-1” to “Step-3”, respectively. Figure 16 presents



Materials 2020, 13, 3699 18 of 21

the results in solid and fluid. Compared with the convergence in space, the influence induced by the
change of time step is tiny if it satisfies the convergency requirement of central difference convergence.Materials 2020, 13, x FOR PEER REVIEW 19 of 22 
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These relaxation methods can be integrated into the present method (see Table 2). To 
demonstrate the performance of these methods, the 1st–250th time steps of Case B-1 were selected. 
The convergence criteria es and ef (see Table 1) were used as inputs and the average number of 
iterations (denoted by “i” in Table 5) was defined as the output. 
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Figure 16. Convergence analysis in time domain: (a,b) in solid region, (c,d) in fluid region. (b,d) are
the local views of (a,b).

4. Discussions about Relaxation

As presented in Table 1, the relaxation method was not used; however, this does not mean
that relaxation is not required in the present method. Thus, a discussion of the convergence of the
partitioned approach is given in this section. The general formulation can be described by:

ωkϕk+1 + (1−ωk)ϕk
→ ϕk+1. (47)

The weighting constant ω is also called the relaxation parameter. The simplest method is to choose
a fixed parameter ω for all time steps, in which the relaxation parameter has to be small enough to
keep the iteration from diverging, but as large as possible to avoid unnecessary iterations. In addition,
non-relaxation results can be obtained by setting ω = 1. Besides the fixed method, some self-adaptive
relaxation methods are also available, such as Aitken relaxation [24]. The relaxation parameter is
calculated by Equations (48) and (49) in the Aitken relaxation method:

rk+1 = ϕk+1
−ϕk, (48)

ωk = −ωk (rk)
T
(rk+1

− rk)

(rk+1 − rk)
T
(rk+1 − rk)

. (49)
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These relaxation methods can be integrated into the present method (see Table 2). To demonstrate
the performance of these methods, the 1st–250th time steps of Case B-1 were selected. The convergence
criteria es and ef (see Table 1) were used as inputs and the average number of iterations (denoted by “i”
in Table 5) was defined as the output.

Table 5. Convergence comparisons of relaxation.

Convergence Criterion Average Number of Iterations

es ef ω = 1 ω = 0.98 ω = 0.90 ω = 0.60 Aitken

1 × 10−10 1 × 10−10 1 1 1 1 1
1 × 10−13 1 × 10−13 4 12 19 44 2.328
1 × 10−14 1 × 10−14 9 15 20 47 7.360
1 × 10−15 1 × 10−15 16 18 21 49 16.892

It is clear that Aitken relaxation performed best among the inspected methods. From the
convergence behavior of Aitken relaxation shown in Figure 17, one can observe that the iteration steps
became stable swiftly after 100 steps, which is nearly the end instant of the wave source. These results
demonstrate the adaptability of the Aitken method. By contrast, the average number of iterations for
fixed relaxation methods were all linear with the value shown in Table 4 and, hence, are not presented
here. For a simple problem such as that considered in this paper, even the non-relaxation method
(ω = 1) can achieve a satisfying iteration speed, while under-relaxations converge slowly.
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5. Conclusions

In this work, the inviscid fluid–solid coupling problem was solved by an iterative model using
the wavelet element method and a partitioned approach. Based on the use of the Jacobian matrix in
the wavelet element method, problems relating to curved boundaries can be solved. The interface was
integrated into the model as a pseudo-damping layer, which can conduct transformations between
force vectors in the solid region and pressure in the inviscid fluid region. As validated by our results,
the presented method can serve as an alternative choice for the issue under consideration, both for
normal regions and the curved region.

This work focused on inviscid fluid, but the problems relating to the influence of viscosity on the
interface and numerical format (e.g., the implementation of boundary conditions and the iteration
method used) can be further considered and investigated. To achieve efficient computation, fixed
grid technology was used for the fluid region, by use of a Cartesian grid. As a result, the flow solver
may be simple and fast; however, it sacrifices accuracy near the interface, due to the interpolations
used. The use of a finite element method in both solid and fluid regions makes the formulation simple;
however, the accuracy depends on the ratio between the fluid and solid grid size. Due to the effects
of temporal iteration and numerical oscillation on convergence behavior, the sizes of elements are
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determined by the highest frequency domain considered, which may necessitate a memory- and
time-related computational burden.
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