

Supplementary data

Structural Characterization and Comparison of Monovalent Cation-Exchanged Zeolite-W

Figure S1. Polyhedral representations of (a) Li-MER, (b) Na-MER, (c) Ag-MER, (d) K-MER, and (e) Rb-MER along the (001) direction. Grey sticks represent disordered Al/Si framework. Each colored beach ball represents an extra-framework cation. Equatorial, hatched, and striped red balls represent oxygens of WO(1)–WO(3), WO(4) and WO(5), respectively.

Figure S2. Comparison of channel opening area of *d8r* (black symbol) and *pau* (red symbol) along the (001) direction and sum of two areas.

Figure S3. Thermogravimetric analysis results of Li-, Na-, Ag-, and K-MER.

Material	Reagent	Conc. Used (M)	No. of Treatment s	Treatment Duration (days)	%H2O ^a	Rietveld	EDX ^b
Li-MER	LiCl, (99%)	sat.	3	1	19.7	Li6.9Al6.9Si25.0O 64.0·26H2O	Li6.8Al6.8Si25.2O64 · 26.0H2O
Na-MER	NaCl, (99%)	sat.	3	1	13.3	Na7.5Al7.0Si25.0 O64.0·20.0H2O	Na7.5Al7.0Si25.0O64 · 17.8H2O
Ag-MER	AgCl, (99%)	sat.	3	1	11.9	Ag7.0Al7.0Si25.0 O64.0·22.2H2O	Ag8.3Al7.0Si25.0O64 • 22.5H2O
K-MER ^c					11.8	K6.4Al6.5Si25.8O6 4.0· 15.3H2O	K6.1Al6.5Si25.8O64·1 6.0H2O
Rb-MER ^d					9.82	Rb6.4Al6.3Si25.7 O64.0·14.9H2O	

Table S1. Cation-exchange conditions of MERs and chemical composition from Rietveld refinement and stoichiometric analysis.

^a The water contents in wt%. Weight loss is measured by thermogravimetric analysis (TGA) up to ca. 800 °C; ^b Confirmed from chemical and energy-dispersive X-ray spectroscopy (EDS) and TG analysis; ^c Hydrothermal synthesis following method from Itabashi et al., 2008; ^d Results from Itabashi et al., 2008.

 Table 2. Chemical composition calculated from energy-dispersive spectroscopy (EDS) method.

Li-MER							
Measurement		1	2	3			
	Al	6.1(1)	6.2(1)	6.3(1)			
Atomic	Si	22.7(1)	23.0(1)	23.5(1)			
percent (%)	Κ	0	0	0			
	0	71.1(1)	70.8(1)	70.2(1)			
			Na-MER				
Measureme	ent	1	2	3			
	Al	5.7(1)	5.9(1)	5.4(1)			
Atomic	Si	20.4(1)	21.4(1)	19.3(1)			
percent (%)	Na	6.2(1)	6.1(1)	6.0(1)			
	0	67.5(1)	66.4(1)	69.2(1)			
	Ag-MER						
Measureme	Measurement		2	3			
	Al	5.3(1)	5.6(1)	5.4(1)			
Atomic	Si	18.6(1)	20.1(1)	19.4(1)			
percent (%)	Ag	6.0(1)	6.7(1)	6.5(1)			
	0	70.1(1)	67.6(1)	68.6(1)			
	K-MER						
Measurement		1	2	3	4	5	
	Al	6.48(5)	6.17(5)	6.25(5)	6.22(5)	6.26(5)	
Atomic	Si	25.25(5)	25.49(5)	24.61(5)	25.00(5)	25.34(5)	
percent (%)	K	5.37(5)	5.39(5)	7.03(5)	6.31(5)	5.56(5)	
	0	62.9(5)	62.94(5)	62.11(5)	62.48(5)	62.84(5)	

		Li-MER	Na-MER	Ag-MER	K-MER	Rb-MER ^b
Space		14/200000	14/1001000	IA/manana	14/100100	14/11/11/11/11
group		14/mmm	14/mmm	14/11/11/11	14/mmm	14/mmm
wRp(%),		1 91 8 80	1.83 0.36	2 50 0 67	2.08.3.01	
χ^2		1.91, 0.00	1.00, 0.00	2.00, 0.07	2.00, 0.01	
Chemi	ical	Li6.9Al6.9Si25	Na7.5Al7.0Si	Ag7.0Al7.0Si	K6.42Al6.5Si2	Rb6.4Al6.3Si25.7
compos	ition	.0O64.0·26.0	25.0O64.0·20.0	25.0O64.0·22.2	5.8O64.0·15.3	O _{64.0} ·14.9H ₂ O
		H ₂ O	H ₂ O	H ₂ O	H ₂ O	
Cell	a	14.1613(4)	14.1432(9)	14.1334(9)	14.1927(4)	14.1798(3)
(A)	C	9.9493(4)	10.0275(7)	10.0403(10)	9.9560(5)	9.9308(2)
Cell	17	1005 25(14)	2005 81(25)	2005 5((28)	200E 4((1E)	100(7(/7)
(Å3)	v	1995.25(14)	2005.81(25)	2005.56(28)	2005.46(15)	1996.76(7)
(A [*])				0 116571/2		
Si(1)	х	0.11125(19)	0.11030(7)	0.1103/1(2 7)	0.11051(10)	0.11046(14)
320	y	0.25592(18)	0.25401(18)	0.25892(11)	0.25261(16)	0.25940(14)
	z	0.16212(18)	0.15681(18)	0.15376(13)	0.15966(15)	0.115637(14)
	Осси ^с	0.9815	0.9844	0.9844	0.9855	1.0
	$U_{iso}{}^{\mathrm{d}}$	0.0216(16)	0.013(4)	0.0140(24)	0.0232(14)	
O(1)	х	0.1194(6)	0.1189(5)	0.15375(22)	0.2823(5)	0.3046(4)
16l	у	0.2750(7)	0.2878(7)	0.2758(4)	0.1200(5)	0.1243(3)
	Z	0.0	0.0	0.0	0.0	0.0
O(2)	х	0.0	0.0	0.0	0.0	0.0
16n	у	0.2509(6)	0.26579(27)	0.25700(20)	0.2657(4)	0.2510(6)
	Z	0.2054(8)	0.2072(4)	0.1557(4)	0.2069(6)	0.1969(5)
O(3)	х	0.15347(32)	0.14234(21)	0.15702(12)	0.14141(22)	0.1561(4)
16m	у	0.15347(32)	0.14234(21)	0.15702(12)	0.14141(22)	0.1561(4)
	Z	0.2089(8)	0.1697(10)	0.2096(6)	0.1778(7)	0.1991(5)
O(4)	х	0.1579(4)	0.18004(15)	0.15460(16)	0.18462(31)	0.1540(4)
16k	у	0.6579(4)	0.68004(15)	0.65460(16)	0.68463(31)	0.6540(4)
	Z	0.25	0.25	0.25	0.25	0.25
M(1)	х	0.07(35)	0.0770(19)	0.0901(10)	0.1689(9)	0.592(2)
8j	У	0.5	0.5	0.5	0.5	0.1714(2)
	Z	0.0	0.0	0.0	0.0	0.5
	Occu ^c	0.3625	0.4375	0.375	0.5	0.592(2)
	U_{iso} d	0.062(5)	0.042(9)	0.244(6)	0.038(5)	
M(2)	х	0.0	0.0	0.0	0.0	0.0
4e	У	0.0	0.0	0.0	0.0	0.0
	z	0.259(5)	0.2528(16)	0.2342(7)	0.2382(4)	0.2603(4)
	Occu ^c	1.0	1.0	1.0	0.606(11)	0.418(4)
WO(1)	х	0.0	0.0	0.0	0.0	0.0
2b	У	0.0	0.0	0.0	0.0	0.0
	z	0.5	0.5	0.5	0.5	0.5
	Осси	1.0	1.0	1.0	0.657(24)	1.0
WO(2)	х	0.0	0.0	0.0	0.0	0.0
Za	У	0.0	0.0	0.0	0.0	0.0
	Z	0.0	0.0	0.00	0.0	0.0
MO(2)	Occu	1.0	1.0	0.09(7)	1.0	1.0
(5)Uvv	X	0.0	0.0	0.0	0.0	0.0
4u	у	0.5	0.5	0.3	0.5	0.5
		1 501(32)	0.23	1.0	1.0	1.0
WO(4)	V V	0.1/61/6)	0.44(4)	0.16964(12)	0.1840/12\	0.1850/0)
8h	A V	0.1461(6)	0.1365(15)	0.16964(13)	0.1040(12)	0.1039(9)

Table 3. Refined cell parameters and atomic coordinates of M-MER at ambient conditions ($M = Li^+$, Na⁺, Ag⁺, K⁺ and Rb⁺)^a.

161 e	Z	0.5	0.5	0.5	0.5	0.5
	Осси	1.0	0.787(24)	1.0	0.5	0.430(4)
 WO(5)	х	0.5	0.5	0.5		
8j	у	0.2705(8)	0.2490(19)	0.33022(13)		
	Z	0.0	0.0	0.0		
	Осси	1.0	1.0	1.0		

^a Esd's are in parentheses. WO denote oxygen site of H₂O molecules; ^b Model from Itabashi et al., 2008; ^c Occupancies were calculated by the result from EDS; ^d Isotropic displacement factors (Uiso) were refined by grouping the framework atoms and the extra-framework species, respectively; ^eWyckoff position of 16l belongs to K- and Rb-MER.

Table 4. Selected interatomic distances (Å) and angles (°) for M-MER at ambient conditions (M = Li⁺, Na⁺, Ag⁺, K⁺, and Rb⁺)^a.

	Li-MER	Na-MER	Ag-MER	K-MER	Rb-MER ^b
Si–O(1) ^c	1.6395(12)	1.64813(29)	1.6481(4)	1.6502(7)	1.330
Si–O(2) ^c	1.6349(13)	1.64815(28)	1.6479(4)	1.6480(7)	1.946
Si–O(3) ^c	1.6368(13)	1.64813(28)	1.6479(4)	1.6479(8)	1.823
Si–O(4) ^c	1.6402(13)	1.64806(27)	1.6482(4)	1.6458(7)	1.916
Mean ^d	1.6378(1)	1.64811(1)	1.6480(1)	1.6479(1)	1.753(1)
Si–O(1)–Si	159.4(6)	145.1(4)	139.02(25)	148.8(4)	119.456
Si–O(2)–Si	149.0(6)	142.35(23)	177.68(21)	144.25(31)	124.978
Si-O(3)-Si	124.5(5)	121.39(34)	119.38(15)	119.85(32)	109.975
Si-O(4)-Si	152.1(6)	177.36(27)	145.83(18)	172.1(5)	153.949
Channel opening area of <i>pau</i> unit along (010) direction	18.68	17.62	21.91	18.03	16.68
M(1)–O(1)	3(1)	3 059(13)	3 295(6)	3 166(7)	2 850
M(1) = O(2)	0(1)	0.009(10)	0.290(0)	3.062(6)	3 205
M(1)–WO(3)	2.7(18)	2.733(11)	2.815(6)	0.002(0)	0.200
M(1)–WO(4)	()		(0)	2.364(17)	2.59
M(1)–WO(5)					
M(2)–O(3)	3.114(8)	2.967(8)	3.1482(23)	2.901(5)	3.130
M(2)-WO(1)	2.39(5)	2.478(16)	2.668(7)	2.607(4)	2.380
M(2)-WO(2)	2.58(5)	2.535(16)	2.352(7)	2.371(4)	2.585
WO(1)-WO(4)		2.729(30)		2.837(16)	2.741
WO(1)-WO(5)			2.3995(18)		
WO(3)-O(4)			3.0902(31)		3.088
WO(4)-O(1)			2.613(4)		
WO(4)–O(3)			2.926(6)		
WO(4)-WO(4)					2.633
WO(4)-WO(5)	2.382(6)	2.520(17)	2.3976(18)		
Bond Valence sum	0.100	0.426	0.051	1.40	0.642
M(1)	0.102	0.426	0.251	1.48	0.642
M(2)	0.179	0.515	0.511	1.429	1.736

^a Esd's are in parentheses, and WO denotes oxygen site of water molecules; ^b Model from Itabashi et al., 2008; ^c Interatomic distance was restrained by Al/Si ratio from EDS result; ^d Standard deviations computed using $\sigma = 1/n [\sum_{i=1}^{n} \sigma_i^2]^{1/2}$.