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Abstract: Multilayer-like CrN and Cr1−xAlxN coatings with different Al contents were deposited
onto a stainless steel substrate using dynamic glancing angle deposition direct current magnetron
sputtering (DGLAD dcMS) in a N rich atmosphere to understand the role of Al on the growth of the
films and mechanical properties of the nitrides with a multilayer architecture. Chemical analysis
by means of energy dispersive analysis (EDS) and glow discharge optical emission spectroscopy
(GDOES) depth profiling revealed that while CrN samples were close to stoichiometric, the Cr1−xAlxN
coatings presented excess N between 70 and 80% at. An expressive change in texture was observed as
the CrN coating changed its preferred orientation from (111) to (200) with the addition of Al, followed
by a modification in morphology from grains with faceted pyramidal tops in CrN to dome-shaped
grains in Cr1−xAlxN coatings. Multilayer-like nanostructures of corrugated grains were produced
with a periodicity of approximately 30 nm using dynamic glancing angle deposition. The deposition
rate was drastically reduced with an increase of Al, meanwhile, the best mechanical performance was
achieved for the coating with a higher content of Al, with hardness up to 27 GPa and a higher value
of maximum resistance to plastic deformation.

Keywords: Cr-based coatings; multilayer; dcMS; DGLAD; stainless steel; surface modification

1. Introduction

In the last decades, transition metal (TM) nitride films have been a field of intense study in surface
science and technology. In this context, due to the versatility of manufacturing techniques, the properties
of several ceramic systems (TiN, AlN, VN, NbN, ZrN, HfN, and CrN) have been evaluated. The wide
variety of properties of this class of ceramic coatings has promoted their application and potential use
in various areas, such as wear and corrosion protection, production of optical and magnetic devices,
biomedical implants, and aesthetic layers, among others [1–4].

Reactive direct current magnetron sputtering (dcMS) is a prominent technique of thin-film
production. Basically, in this technique, ions or neutrals are sputtered from a precursor target by
a plasma of inert gas (Ar, mostly) entrapped in a magnetic field generated by a magnetron in the
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vicinity of the target. The sputtered species travel through the deposition chamber and condense
on a substrate surface in the presence of a reactive gas (N2, CH4, etc.) [5]. Recently, a variation of
conventional sputtering, namely dynamic glancing angle deposition (DGLAD), has been introduced,
with continuous motion of the substrate as the film grows, affecting the angle of incidence of the
sputtered material and changing the morphology of grains to a corrugated or undulated format [6,7].
It was reported that such oscillatory motion is capable of producing multilayer-like structures that can
be tuned by the period and range of oscillation [8].

Reactive magnetron sputtering is subject to several control variables that can impact chemical
composition, structure, and properties of the coating. Among these control variables, the reactive gas
flow rate is an important parameter because it can determine the stoichiometry of the film. Indeed,
reactive magnetron sputtering coatings with an excess of N can be manufactured under high N2 flow
rates [9–12]. Nitrogen-rich CrN coatings have already been reported by [13–15], and their results
showed that films with the N/TM ratio higher than 1 sometimes presented improved mechanical,
optical, and magnetic properties as compared with their stoichiometric counterparts, indicating that
N-rich TM nitrides could be an interesting choice in the engineering design of thin films.

TM nitride coatings have been improved even further by adding a ternary component to the
system, as is the case for (Ti, Al)N and (Cr, Al)N [16]. Cr-based coatings are known to act as an
important corrosion and oxidation barriers for metal substrates due to formation of Cr2O3 and other
Cr-based phases that can passivate the surface, as described in the literature [17–19]. The production of
ternary CrAlN has been reported to increase even more anticorrosive and oxidation protection, along
with hardness and wear resistance [20,21]. In [22], it was reported that Al addition on CrN structure
coatings affected their properties and the machining performance. In addition, nitrogen addition
improved the life of the film based on wear and turning tests.

Therefore, this study aims to understand the effects of the Al/Cr ratio on the growth and mechanical
properties of multilayer-like coatings of Cr-Al-N prepared by reactive magnetron sputtering with
excess N content by fixing a high N2 flow rate (50 sccm) in the reaction chamber and changing the
precursor target Al/Cr content. To our knowledge, this is the first work to address this subject.

2. Materials and Methods

2.1. Manufacturing of the Cr-Al-N Ceramic Coatings

The Cr-Al-N ceramic coatings investigated in the present study were manufactured in a
Plasma-HiPIMS 250 deposition plant (Plasma-LIITS, Campinas, Brazil) [8]. In this plant, both the
sputtering process and negative bias tension are provided by Pinnacle DC power supplies, MDX model,
from Advanced Energy. The chamber has two heating resistances mounted on opposite walls for
substrate heating, each one counting with a thermocouple for temperature monitoring. The substrate
holder also counts with a third thermocouple to improve temperature control. All coatings were
deposited on an AISI 304 stainless steel disc. Before deposition, the discs were ground with 2000 grit
sandpaper and polished using 6, 3, and 1 µm diamond suspension and colloidal silica, resulting
in a substrate mean roughness of 3 nm. Next, the discs were cleaned in an ultrasonic bath with
acetone for 5 min, and blow-dried. Then, inside the plant, sitting 65 mm apart from the targets,
the disc surfaces were pretreated by an ion etching process using Cr+ ions generated by plugging a
pure Cr target to a high power impulse magnetron sputtering (HiPIMS) power supply. The HiPIMS
configurations for the ion etching were as follows: 600 W of average power, frequency of 104 Hz,
ton of 50 µs, and 900 V. To improve the energy of the impinging Cr+ ions, a bias tension of −800 V was
applied to the substrate [23,24]. The whole process of ion etching took one hour with the purpose
of promoting substrate cleaning and shallow implantation of Cr beneath the substrate to improve
adhesion between the stainless steel and the coating. After the ion etching, the substrate received
a Cr base layer to improve adhesion between the coatings and the substrate. Alloy targets with
compositions 50% at Al/50% at Cr and 70% at Al/30% at Cr were used to produce two different sets of
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samples, and the Cr-Al-N coating manufactured for them were designated as 50/50 Cr1−xAlxN and
70/30 Cr1−xAlxN, respectively. A reference coating with composition equal to CrN was manufactured
from the Cr target. All targets were manufactured by A.M.P.E.R.E Alloys, France, and had a purity
of 99.95%. The deposition parameters used to obtain the ceramic coatings investigated in this study
are listed in Table 1. The substrates were oscillated in a dynamic glancing angle deposition (DGLAD)
setup, as described in previous work elsewhere [8], with a range and period of oscillation of −5◦/+5◦,
respectively, and period “t” of 12 s, to verify the effect of this novel technique in fast oscillation motion
(See Figure 1).

Table 1. Constant deposition parameters used to manufacture the CrN and Cr1−xAlxN ceramic coatings.

Substrate Temperature 400 ◦C

Ar Flow 40 sccm
N2 Flow 50 sccm

DC Power 900 W
Negative Bias −120 V

Working Pressure 0.266 Pa
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Figure 1. Schematic top view of the dynamic glancing angle deposition (DGLAD) apparatus responsible
for the oscillatory motion during sputtering (not in scale).

2.2. Coating Characterization

Top and cross-section images were acquired with the aid of a FEI Inspect-F50 (FEI, Eindhoven,
The Netherlands) scanning electron microscope (SEM) equipped with a windowless silicon drift
detector (SDD) for energy dispersive analysis (EDS) (Apollo X SDD, EDAX, Mahwah, NJ, USA).
X-ray diffraction (XRD) analyses in the θ–2θ geometry were carried out using a Rotaflex Ru200B
diffractometer (Rigaku, Tokyo, Japan) equipped with a rotative anode and Cu Kα radiation (1.5418 Å).

Coatings chemical compositions were evaluated by glow discharge optical emission spectroscopy
(GDOES) depth profile analysis. The measurements were carried out using a GDA 750 high-resolution
(HR) spectrometer (Spectruma Analytik GmbH, Hof, Germany) with a 2.5 mm diameter anode working
in DC excitation mode (constant voltage-constant current mode). Triplicates were measured for each
sample. The measurements were conducted under an inert Ar atmosphere (5.0 quality) and average
discharge pressure of 5× 10−2 hPa. The excitation parameters were 1000 V and 12 mA, with a sputtering
rate for measuring depth of at least 75 µm. Profiles of mass concentration (%) vs. depth from atomic
concentration (%) vs. depth were plotted using the WinGDOES.

Atomic force microscopy (AFM) measurements (area of 30 × 30 µm) in tapping mode were
performed using a NanosurfFlex (Nanosurf, Liestal, Switzerland) to measure the coating surface
finishing after deposition. The hardness of the coatings and elastic modulus were determined using
instrumented nanoindentation tests at maximum normal forces of 50 mN with a PB1000 (Nanovea,
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Irvine, CA, USA) mechanical tester equipped with a Berkovich diamond tip. The indenter was
calibrated using a fused silica standard. The Oliver and Pharr equations were used to calculate the
hardness values [25]. At least 7 measurements were performed on top of each coating to determine an
average value.

The sin2 ψ method with 7 ψ tilts was accomplished to measure residual stresses, for each sample
(with sin2 ψ ranging from 0 to 0.9) [26]. Due to their high multiplicity, the (422), (511), and (333)
diffraction lines of fcc-Cr1−xAlx N were used for averaging the d hkl-sin2 ψ profiles in the stress
analyses. A Panalytical MRD-XL (Panalytical, Almelo, The Netherlands) diffractometer equipped with
Mo-Kα radiation (0.7093 Å) was used for all measurements.

The scanning transmission electron microscopy (STEM) images were produced using a JEOL
JEM-2100 microscope (JEOL, Tokyo, Japan) equipped with a thermionic emission LaB6 electron gun,
available at LNNano, Campinas, Brazil.

3. Results and Discussion

Investigations were conducted to understand the impact of fast substrate oscillation during dcMS
depositions and also the effect of Al addition to coatings produced under N-rich atmospheres in
different aspects of the resulting nitrides, to indicate whether or not they were suitable for hard coating
applications. This section is subdivided concerning the impact of such modifications in different
aspects of the coatings.

3.1. Chemical Composition and Microstructure

EDS chemical analysis accomplished with a windowless SDD in the CrN coating revealed that
its chemical composition was 49 ± 2 at.% N and 51 ± 2 at.% Cr, which is close to stoichiometry.
The GDOES was used to evaluate the chemical composition (in-depth profiling) of the Cr1−xAlxN
coatings manufactured with different Al/Cr precursor ratios, see Figure 2. In both Cr1−xAlxN coatings
deposited, a high nitrogen content (~70–80%) was observed, which emphasizes its non-stoichiometric
character. The manufactured coatings also had a higher concentration of Cr than Al even when
produced using the 70/30 target.
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Figure 2. Glow discharge optical emission spectroscopy (GDOES) chemical depth profiling of the
Cr1−xAlxN coatings.

Gas flow rates from 50 to 40 sccm of N2 and Ar, respectively, which have been proven to be
adequate for deposition of stoichiometric CrN, produced N rich Cr1−xAlxN coatings. This could
possibly be explained by the significantly higher sputtering yield of Cr as compared with Al [27].
Additionally, [28] attributed this lower sputtering yield of Al to the poisoning of the target surface
by an AlN layer on the surface of the target. This becomes particularly relevant for large N2 partial
pressures. Such a layer is promoted by the higher amount of Al in the 70/30 target and results in less
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material arriving from the target to the substrate. The preferential sputtering of Cr due to formation of
AlN could possibly explain the small content of Al in coatings produced using the 70/30 nominal target.

A 50% increase in relative Cr content is observed from the 70/30 Cr1−xAlxN to the 50/50 Cr1−xAlxN
coating. It is important to observe that at the same pace that Cr content increases, the atomic N
concentration changes from around 80% in the 70/30 Cr1−xAlxN to 75% in the 50/50 Cr1−xAlxN.
The difference in nitrogen concentration could also be an effect of the lower sputtering yield of the
targets containing more Al (formation of the AlN layer). Therefore, with a lower flux of metallic
particles arriving at the substrate from the target, the coating tends to be nitrogen richer. Nevertheless,
in Figure 2, a broad Cr peak can be observed at approximately 12 µm for the 70/30 Cr1−xAlxN coating.
This corresponds to the metallic Cr interlayer deposited previously on the nitride layer. In the case
of the 50/50 Cr1−xAlxN coating, a double peak is noticed. This indicates that Cr could have been
implanted in the substrate as a result of the pretreatment of the surface of the substrate with Cr+ ion.

In addition, the thickness of the coating can be estimated from the depth profile, since N and Al
are meant to be present only in the nitride layer, with the base layer being richer in Cr. One can notice
that there is a continuous non-abrupt interface between the two layers and that the Al richer 70/30
coating is roughly 2 microns thinner than the 50/50 coating, although both were deposited under the
same deposition parameters.

Figure 3 shows the XRD diffractograms measured from CrN and Cr1−xAlxN coatings. Coatings
containing Al presented sharp peaks related to the (200) plane of the CrN B1 cubic structure, in contrast
to previous studies [14,22], in which no AlN or Al peaks were observed, even for the coating with a
higher Al/Cr ratio. It was also evident that no other nitrides or oxides were formed, since the CrN
cubic structure with Al solid solution was the only phase identified. In agreement with the reference
position (dotted line) [29], (200) peaks were dislocated to smaller 2θ angles, which indicated shrinkage
of the interplanar spacing (d). This was an effect of the presence of in-plane compressive residual
stresses in the coatings [26]. In addition, the presence of Al contributed to the contraction of the lattice
parameters, causing shifting in the CrN peak positions to lower than 2θ.
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Figure 3. θ–2θ XRD measurements from coatings showing strong dependency on Al presence. Peaks
position is related to the B1-CrN structure (ICDD 00-001-0065 reference).

The XRD diffractogram measured from the CrN reference coating (see Figure 3) also indicated the
formation of solely cubic B1-CrN with strong texture related to the (111) plane. The evident difference
in texture between the Cr1−xAlxN and CrN can be explained by the lower sputtering yield of the alloy
Cr-Al targets as compared with the Cr target. In the case of the former, while growing in an N-rich
atmosphere, the film receives an arriving flow of predominantly N2 molecules and much smaller flux
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of Cr or Al neutrals or ions. Therefore, the formation of planes with higher N contents is expected
in the surface, at the expense of metal-rich planes, which is the case of (200), in the CrN B1 structure.
The lower deposition rate also favors the preferred orientation that minimizes surface energy [12],
which is (200) in the case of CrN, making it even more favorable as the preferential orientation [30].

In addition, the CrN coating receives a higher flux of metal from the Cr pure target during growth
as compared with Cr1−xAlxN, even for the same N2 flow rate, and develops texture of the type (111),
which is a metal richer plane and also minimizes strain energy generated by the higher deposition
rate [12,31].

3.2. Coating Morphology

FEG-SEM cross-section images are shown in Figure 4. The CrN coating presents a structure
characteristic of Zone II of a structure zone model (SZM) [31], with a homogeneously dense structure
through its entire thickness. The 50/50 Cr1−xAlxN coating exhibits a less homogeneous structure,
with thinner columns at the bottom of the film and “v” shaped grains at the top, which is characterized
as a T Zone in the same SZM. The 70/30 Cr1−xAlxN coating, which is Al-richer, displays a similar
morphology to that of the 50/50 condition, in a zone of dense but “v” shaped columnar grains.
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Figure 4. SEM images acquired from the cross-section view of the Cr-Al-N ceramic coatings. All images
are in the same scale.

The average coating thickness follows the trend observed in the GDOES results, i.e., samples with
higher contents of Al are the samples with the lower average deposition rate. The lower deposition
rates visible in Figure 5 for coatings with a higher Al/Cr ratio also can be explained by the higher
sputtering yield of Cr as compared with Al or Cr-Al alloys in reactive sputtering.
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Figure 5. Deposition rate as a function of the Al/Cr ratio.
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The top SEM images and the AFM surface profile map are presented in Figure 6. All three coatings
show dense surfaces with few pores or voids and densification increasing with Al content. The CrN
surface presents a faceted pyramidal shape with some lateral facets, which is typical of nitride films
grown with (111) preferential orientation [12,32]. As the Al was added, the grains’ top morphology
change to round domes, which is also expected for a B1-type crystal textured in the (200) preferential
orientation to decrease the overall surface tension [32]. These observations on the surface shape of
grains confirm the texture change behavior observed in Figure 3.
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ceramic coatings. All images are in the same scale.

In both Al-containing coatings, it was possible to see round morphological defects of a few microns
distributed along the surface. These defects are inherent in the sputtering process and unavoidable to
some level [33,34]. We observed that CrN presented finer grains and the addition of Al increased grain
size. This was possibly due to the modification in growth morphology related to the change in texture.
The 50/50 coating presented apparent larger grains with bigger domes, which are also visible in the
cross-section images in Figure 4.

The effects of grain size and the presence of morphological defects have an impact on surface
roughness. As illustrated in the surface maps in Figure 6 and presented in Table 2, CrN demonstrates
lower roughness than the Al-containing coatings, with an increase of almost 40% in roughness as Al
is added. This is due to the smaller dome size and an apparent absence of morphological defects,
as observed in Figure 6. The 70/30 coating has a smoother surface than the 50/50 condition, due also to
their difference in dome size.

The effect of dynamic glancing angle deposition is demonstrated in Figure 7 for the 70/30 coating.
As a result of the oscillatory motion of the substrate during sputtering within the range of +5◦/−5◦ and
period of 12 s, the columnar grains present a corrugated morphology at the boundaries (as exemplified
in brackets in Figure 7). These corrugated zig-zag columnar grains are associated with in-grain
misorientation due to differences in the angle of sputtering flux [6,8,35]. Figure 7 displays corrugated
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structures with periodicity ten-fold smaller, in the order of 30 nm, indicating that even fast oscillatory
motions, with period as small as 12 s, are able to create such grain morphology. It was demonstrated
by [8,31], and [36] that for coatings prepared by DGLAD, the properties were dependent on the period
of oscillation, such as crystallite size, texture, and hardness. Therefore, these thin undulated features
enhanced the performance of the coatings.

Table 2. Values of mean arithmetic roughness and H3/Er2.

Coatings Mean Arithmetic Roughness Ra (nm) H3/Er2 (GPa)

CrN 35.3 0.08117
50/50 129.2 0.07398
70/30 76.9 0.17868

Materials 2020, 13, x FOR PEER REVIEW 8 of 12 

Figure 7. Bright field scanning transmission electron microscopy (STEM) image showing the 

corrugated nature of grain boundaries as a result of DGLAD growth in the 70/30 coating. 

3.3. Mechanical Properties 

The presence of residual stresses was confirmed by the XRD measurements performed using the 

sin2 ψ technique, see Figure 8. It shows the compressive stresses of hundreds of MPa as a result of the 

deposition process. On the one hand, the smallest compressive residual stresses were measured on 

the CrN coating. On the other hand, higher stress levels were measured on the 50/50 Cr1−xAlxN 

coating, which was slightly more significant than those observed for the 70/30 Cr1−xAlxN coating. 

Since all depositions were carried out using the same temperature conditions, power supply, bias, 

and chamber pressure, the same substrate heat was expected for all processes. Therefore, the 

difference in the chemical composition of the precursor target must be the only factor influencing the 

residual stresses on the films. The more significant compressive state of the Cr1−xAlxN coatings 

indicates that beyond the octahedral interstices normally occupied by nitrogen in a stoichiometric 

cubic CrN structure, the tetrahedral interstices in the lattice are also being occupied by the excess N, 

causing it to be strained [9]. 

Figure 8. Hardness, elastic modulus, and residual stress as a function of the Al/Cr ratio. 

Figure 8 presents the hardness and elastic modulus values measured by nanoindentation. In 

general, both hardness and elastic modulus increased with Al addition in the CrN coating. In this 

way, the highest Al/Cr ratio presented the highest hardness, with an improvement of around 37% as 

CrN 50/50 70/30

0

5

10

15

20

25

30

35

40

45

50

Sample

H
a

rd
n

e
ss

 (
G

P
a

)

0

100

200

300

400

500

600

 E
la

st
ic

 m
o
d

u
lu

s 
(G

P
a

)

-1600

-1400

-1200

-1000

-800

-600

-400

-200

R
e

si
d

u
a

l s
tr

e
ss

e
s 

(M
P

a
)

Figure 7. Bright field scanning transmission electron microscopy (STEM) image showing the corrugated
nature of grain boundaries as a result of DGLAD growth in the 70/30 coating.

3.3. Mechanical Properties

The presence of residual stresses was confirmed by the XRD measurements performed using the
sin2 ψ technique, see Figure 8. It shows the compressive stresses of hundreds of MPa as a result of
the deposition process. On the one hand, the smallest compressive residual stresses were measured
on the CrN coating. On the other hand, higher stress levels were measured on the 50/50 Cr1−xAlxN
coating, which was slightly more significant than those observed for the 70/30 Cr1−xAlxN coating.
Since all depositions were carried out using the same temperature conditions, power supply, bias, and
chamber pressure, the same substrate heat was expected for all processes. Therefore, the difference
in the chemical composition of the precursor target must be the only factor influencing the residual
stresses on the films. The more significant compressive state of the Cr1−xAlxN coatings indicates
that beyond the octahedral interstices normally occupied by nitrogen in a stoichiometric cubic CrN
structure, the tetrahedral interstices in the lattice are also being occupied by the excess N, causing it to
be strained [9].
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Figure 8. Hardness, elastic modulus, and residual stress as a function of the Al/Cr ratio.

Figure 8 presents the hardness and elastic modulus values measured by nanoindentation.
In general, both hardness and elastic modulus increased with Al addition in the CrN coating. In this
way, the highest Al/Cr ratio presented the highest hardness, with an improvement of around 37% as
compared with the Al-free CrN reference. The behaviors are both in agreement with previous literature
and can be explained by the solid solution hardening mechanism of Al in the CrN lattice [21,37,38].
For the sake of comparison, the bare AISI 304 substrate surface hardness was measured to be
3.4 ± 0.2 GPa, indicating that an expressive improvement in surface mechanical properties is achieved
even for the Al free coating.

H3/Er2 is often related to resistance to plastic deformation [39]. Although the reduced elastic
modulus (Er) does not take into account plasticity effects [40], it is a simple way to predict the coatings’
toughness and response to wear that requires no special sample preparation, especially for monolayer
ceramic films. The H3/Er2 results are presented in Table 2. The film produced in the 50/50 Cr1−xAlxN
condition presented the lowest value of H3/Er2, which could be an effect of the higher value residual
stresses, as presented in Figure 8.

4. Conclusions

CrN and Cr1−xAlxN coatings with different Al contents were successfully manufactured using
the DGLAD dcMS technique under an N-richer atmosphere. The DGLAD technique produced a
multilayer-like architecture by growing corrugated grains with periodicity around 30 nm, indicating
the capacity of this technique to tune the architecture of grains even at small scales. It was observed
that the chemical depth profile was not influenced by the multilayer-like structure and, for the same
deposition conditions, the CrN coating presented a chemical composition close to stoichiometric,
whereas the Cr1−xAlxN films exhibited excess N, up to almost 80%, caused by a decrease in metal flux
to the substrate as the Al-containing suffered poisoning, i.e., formation of the phase AlN on the surface
of target. The deviation between the target precursor chemistry and the composition of the resulting
coatings could also have been an effect of the target poisoning and a decrease in metal flux during
deposition. The nitrogen enrichment changed the preferential growth orientation from (111) in CrN
to (200) in Cr1−xAlxN. This change in texture caused the surface morphology of the coatings to go
from a pyramid shape to a round dome form. The Al-richest coating presented the best mechanical
performance, with higher hardness and resistance to plastic deformation as a result of solution
hardening caused by Al. In this study, the presented results indicate that the combination of DGLAD
and dcMS produce coatings with competitive mechanical properties as compared with techniques
described in the literature, even in conditions of non-stoichiometry, and can serve as prospects for
current industrial applications of hard coatings. A systematic variation of the substrate oscillation
amplitude during dcMS appears to be a fundamental parameter to optimize grain misorientation
within the coatings and further enhance the mechanical and tribological performance of single films
with multilayer-like architecture.
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