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Abstract: In the present study, different contents, i.e., 1–3% of 0.5 M ammonium phosphate mono
basic (APMB), were used as corrosion inhibitor to reduce the corrosion of steel rebar. Electrochemical
impedance spectroscopy (EIS) results showed that up to 24 h of exposure, polarization resistance (Rp)
and passive/oxide film resistance (Ro) gradually decreased in simulated concrete pore (SCP) + 3.5 wt.%
NaCl solution owing to the reduction in pH of the solution. The steel rebar exposed in 2% inhibitor
containing SCP + 3.5 wt.% NaCl solution exhibited 90% inhibition efficiency after 1 h of exposure.
X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy confirmed the formation of
thermodynamically very stable and sparingly soluble goethite (α-FeOOH), maghemite (γ-Fe2O3),
and iron phosphate (FePO4) as passive/oxide film onto the steel rebar surface exposed to 2% inhibitor
containing SCP + 3.5 wt.% NaCl solution.

Keywords: steel; concrete pore solution; corrosion; inhibitor; electrochemical impedance spectroscopy;
Raman spectroscopy

1. Introduction

The steel rebar is prone to corrosion in chloride-contaminated concrete environment. Chloride (Cl−)
ions break down the passive film formed onto the steel rebar surface and cause pitting corrosion.
Thus, different measures are being taken, using different protective methods to protect the steel rebar
embedded in concrete from corrosion. Some of them are cathodic protection, polymeric coatings, use of
inhibitors, admixtures, etc. [1–4]. However, the corrosion inhibitors have gained significant popularity
owing to their easy availability and application as well as being used in a lower amount. In recent
years, the use of different inhibitors is a very emerging and successful method to mitigate the corrosion
of steel rebar inside the concrete [5,6]. Inhibitors delay the initiation as well as inhibit the propagation
of corrosion. Three major types of inhibitors, viz., organic, inorganic, and mixed types, are being used
in the concrete to reduce or delay the corrosion of the steel rebar.

Mainly, amino-based corrosion inhibitors are prevalent as organic inhibitors and commonly
applied in the concrete as well as chloride containing concrete pore solution [5,7–9]. It was reported

Materials 2020, 13, 3642; doi:10.3390/ma13163642 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-0896-1733
https://orcid.org/0000-0002-8006-4076
https://orcid.org/0000-0001-9205-3836
https://orcid.org/0000-0002-7924-1776
http://dx.doi.org/10.3390/ma13163642
http://www.mdpi.com/journal/materials
https://www.mdpi.com/1996-1944/13/16/3642?type=check_update&version=3


Materials 2020, 13, 3642 2 of 24

by Ryu et al. [7] that N, N′-Dimethyl ethanolamine inhibitor adsorbed onto the steel rebar surface
and significantly reduced the corrosion initiation when exposed to NaCl-contaminated saturated
calcium hydroxide solution. Alkanolamine- and amino-based inhibitors have migratory properties
and can be diffused from higher to lower concentration to mitigate the corrosion of rusted steel surface.
These migratory corrosion inhibitors are migrated from concrete to steel rebars surface and adsorbed
by the formation of covalent bonds [4,6,10].

A significant amount of research has been carried out on the inorganic corrosion inhibitors,
mostly nitrite-based, since a long time ago [4,11–16]. Calcium nitrite is an excellent inhibitor to reduce
the corrosion of steel rebar in chloride-contaminated concrete environment [2,17–20]. This inhibitor
works as anodic inhibitor and needs to be applied in significant amount, otherwise it causes adverse
effects on the steel and concrete [21,22]. Therefore, it is very crucial to fix the amount at a suitable
concentration before its application in the concrete. Lithium nitrite (LiNO2), i.e., nitrite-based inhibitor,
has shown around 64% inhibition efficiency in reduction of steel rebar corrosion when exposed to
NaCl-contaminated calcium hydroxide solution [4]. The nitrite-based inhibitors reduce the strength
of the concrete by forming cracks and are also toxic in nature; therefore, it has been restricted for the
use [17,23].

Due to the ecological reason, it is required to replace the nitrite-based inhibitors with eco-friendly
and phosphate-based corrosion inhibitors, which are economical and less toxic. Such types of
inhibitors have gained significant attention for the researchers to reduce the corrosion of steel
rebar. Bambusa arundinacea has been used as sustainable corrosion inhibitor with nitrite and amine to
study the corrosion mechanism of steel rebar in concrete environment [24]. Phosphate is one of the
green inhibitors that has been used to reduce the corrosion of metals and alloys [25]. Phosphates have
versatile applications in surface treatments and conversion coatings owing to nonconducting nature,
which improves the corrosion resistance of the metals and alloys as well as application is also easy [26].
However, it was also reported by Jeong et al. [27] and Lee et al. [28] that phosphate can be used as a
pore-sealing agent to reduce the porosity of Al coating deposited by arc thermal spray process and
improve the corrosion resistance properties at a longer duration of exposure.

Phosphate-based inhibitors can be considered as an alternative to avoid the use of nitrite-based
inhibitor. Generally, phosphate-based inhibitors work as migratory inhibitor [29]. Lee et al. [30] have
used sodium hexameta phosphate with sodium benzoate and benzotriazole as corrosion inhibitor
in SCP solution contaminated with 3.5% NaCl and they have found that as the amount of inhibitor
increased, the efficiency was gradually increased up to 96% in the presence of 5% inhibitor, owing to
the adsorption of inhibitor onto the steel surface. However, phosphate ions delay the onset of
localized corrosion in simulated pore solution [31,32]. Aluminum triphosphate effectively hindered
the pitting corrosion of the steel rebar in carbonated concrete pore solution attributed to the formation
of protective passive film [33]. Sodium biphosphate was reported to reduce the pitting corrosion in
chloride-contaminated carbonate concrete where 99% efficiency was observed over one month of
exposure, attributed to the formation of iron phosphate onto the steel rebar surface [34]. The phosphate
ions replaced the Cl− ions and adsorbed onto the steel rebar surface, therefore, reduction in corrosion
was observed in chloride-contaminated concrete environment [35]. Some authors have mentioned
that phosphate ions may act as anodic and cathodic as well as mixed inhibitor [36,37]. Na3PO4 was
reported to form a phosphate-based film that resulted in reduction of the steel rebar corrosion in
concrete pore solution (pH 12.5) contaminated with chloride ions [38,39].

Ammonium phosphate is one of the phosphate-based compounds, eco-friendly, economical,
and possesses versatile applications in agriculture, steel industries, and coating sectors. Lee et al. [40]
have used ammonium phosphate as pore-sealing agent in Al coating applied by arc thermal spray
coating process which improved the corrosion resistance by 10 times in simulated sea water. Addition of
0.1 M Ca(NO3)2 with ammonium phosphate has synergistic effect in reduction of Al coating [41].

Phosphate-based inhibitors need more research to understand the accurate mechanisms for the
mitigation of steel rebar corrosion and kinetics in concrete environment. From the literature search,
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it was found that there were no studies carried out in the past by researchers about the effect of
ammonium phosphate monobasic (NH4H2PO4: APMB) as inhibitor on kinetics and mechanism for
corrosion mitigation of steel rebar exposed in chloride-contaminated concrete pore solution. Therefore,
it was our prudent thought to study the effectiveness of APMB as inhibitor in corrosion mitigation of
the steel rebar exposed in 3.5% NaCl-contaminated SCP solution. This study focused on the corrosion
kinetics and mechanism of APMB inhibitor using open circuit potential, EIS, and potentiodynamic
polarization with exposure periods as well as formation and characteristics of passive film onto the
steel rebar surfaces by scanning electron microscopy (SEM), Raman spectroscopy, and XPS after 120 h
of exposure in SCP + 3.5 wt.% NaCl solution.

2. Materials and Methods

2.1. Materials

Analytical-grade ammonium phosphate monobasic (NH4H2PO4: APMB) was selected as inhibitor.
Firstly, 0.5 M APMB solution was prepared by dissolving 11.5 g of NH4H2PO4 salt in 200 mL distilled
water using an automatic magnetic stirrer (MS300HS, MTOPS, Seoul, Korea) at 800 rpm and 20 (±1) ◦C.
The pH of 0.5 M APMB solution was found to be 4.1 at 20 (±1) ◦C. Secondly, three different amounts,
i.e., 1, 2, and 3% of 0.5 M APMB solution, were chosen and then the pH was maintained up to 9 by
adding 1 M NaOH solution dropwise for each amount. The pH of the solutions was measured using
digital glass pH meter (TOADKK, HM41, Takadanobaba, Shinjuku-ku, Tokyo, Japan).

The electrolytic solution, i.e., SCP solution to be used for electrochemical experiments, was prepared
by dissolving analytical grade of 8.33 g/L NaOH, 3.36 g/L KOH, and 2 g/L CaO in distilled water
using magnetic stirrer for 24 h at 20 (±1) ◦C [42,43]. Thereafter, the SCP solution was filtered using 5C
number (110 mm) Wattman paper to filter out the insoluble CaO and then 3.5 wt.% NaCl was added
into the filtered solution. This is called SCP + 3.5 wt.% NaCl solution. The pH of this solution was
12.65 at 20 (±1) ◦C.

Three different amounts, i.e., 1, 2, and 3 v/v% inhibitor (pH = 9 as discussed above), were added
into the SCP + 3.5 wt.% NaCl solution for electrochemical experiments. After addition of 1, 2. and 3%
inhibitor in SCP + 3.5 wt.% NaCl, the pH of resulting solutions was measured and found to be 12.65,
12.67. and 12.68 at 20 (±1) ◦C, respectively.

A 16 mm diameter of steel rebar was cut from 1000 mm length into 10 mm thickness to investigate
the effect of corrosion inhibitor in SCP + 3.5 wt.% NaCl solution. The elements and their amounts
(wt.%) in the steel rebar samples were C = 0.235, Si = 0.250, P = 0.014, S = 0.006, Ni = 0.028, Mn = 0.90,
Cr = 0.037, Mo = 0.009, Cu = 0.018, Sn = 0.002, and Fe the remainder. Before starting the electrochemical
studies, the steel rebars were pickled with 10 v/v% hydrochloric acid solutions to remove the black
oxide layers from the surface, washed with distilled water, rinsed thoroughly with ethanol, and dried.
Furthermore, the steel rebars were mechanically polished on emery papers (220 to 2400 grit size),
followed by cloth polishing using alumina (0.5-µm particle size) slurry to achieve the defect free
mirror finished surface. Finally, the polished samples were degreased with acetone and used for the
electrochemical studies.

2.2. Electrochemical Studies

The electrochemical experiments were performed by taking 0.78 cm2 exposure area of steel rebars
at prolonged duration, i.e., up to 120 h. It is very important to stabilize the open circuit potential
(OCP) of steel rebar prior to starting the electrochemical studies. Thus, the steel rebars were exposed in
SCP + 3.5 wt.% NaCl (bare) as well as different amounts, i.e., 1, 2, and 3%, APMB inhibitor added in
SCP + 3.5 wt.% NaCl solution for 30 min, as shown in Table 1. All experiments were performed at 20 ◦C
in triplicate sets of steel rebar samples and averages were recorded as results. The electrochemical
experiments were carried out by three electrode systems where steel rebar sample acted as working
electrode (WE), platinum wire as counter electrode (CE), and Hg/Hg2Cl2 (saturated calomel electrode:
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SCE) as reference electrode (RE). The WE and the RE were fixed at the minimum distance to minimize
the solution resistance. The exposure area of CE was greater than WE to provide the conducting path
and flow of electrical current inside the solution. The EIS experiments were conducted at OCP from
100 kHz to 0.01 Hz with 10 mV sinusoidal voltage. Potentiodynamic polarization experiments were
performed using a potentiostat (VersaSTAT, Princeton applied Research, Oak Ridge, TN, USA) at a
1 mV/s scan rate ranging from −0.4 V to +0.8 V vs. SCE. The data obtained with the potentiostat were
analyzed by fitting the experimental data in constant phase element (CPE) model using Metrohm
Autolab Nova 1.10 software.

Table 1. Details of the solutions used for experiments.

Serial No. Amount of APMB Inhibitor (v/v%) pH Solution

1. 0.00 12.65 SCP + 3.5 wt% NaCl
2. 1.00 12.65 SCP + 3.5 wt% NaCl + 1% APMB
3. 2.00 12.67 SCP + 3.5 wt% NaCl + 2% APMB
4. 3.00 12.68 SCP + 3.5 wt% NaCl + 3% APMB

2.3. Characterization

The steel rebar samples were kept for 120 h exposure in bare and 2% APMB-added solutions to
form proper passive film and, thereafter, morphologies were examined by SEM (MIRA3, TESCAN,
Brno, Czech Republic) equipped with energy-dispersive X-ray spectroscopy (EDS) at 15 kV.

The nature of passive film formed onto the steel rebar surfaces after 120 h of exposure in bare and
2% APMB inhibitor-added solutions were characterized by Raman spectroscopy (Horiba, LabRAM
HR, Villeneuve d’Ascq, France) using He-Cd diode laser beam with a 325-nm wavelength. During the
collection of Raman spectra, the laser power (1 mW) of the Raman instrument was kept low as much
as possible for 10 s. Samples were scanned from 200 cm−1 to 600 cm−1.

XPS (Scienta Omicron R3000, Taunusstein, Germany) was performed with Al Kα (1486.6 eV) X-ray
as source of radiation to understand the chemical states of the elements present in the passive film
formed onto the steel rebar surface after 120 h of exposure in bare and 2% APMB inhibitor-added
solutions. The collected XPS spectra were calibrated with C 1s peak of adventitious carbon (284.6 eV
binding energy). The high-resolution peaks for individual elements were deconvoluted and fitted with
Gaussian/Lorentzian function using CASA XPS software (Casa Software Ltd., Teignmouth, UK) after
the background correction using Shirley method.

3. Results

3.1. Electrochemical Studies

3.1.1. OCP Measurements with Exposure Periods

The OCP of steel rebar samples exposed in SCP + 3.5 wt.% NaCl (bare) as well as 1, 2, and 3%
inhibitor-added SCP + 3.5 wt.% NaCl solutions with different exposure periods are shown in Figure 1.
It can be seen from Figure 1 that the steel rebar samples exposed to the inhibitor-containing solutions
show nobler OCP compared to without inhibitor- (bare) containing solution owing to the formation of
protective passive film, which blocks the active sites of steel rebar from the attack of Cl− ions. Earlier
reports by Lee et al. [30] and Bastidas et al. [44] well corroborate our findings where the phosphate-based
corrosion inhibitors reduced the steel corrosion. In the present study, the steel rebar sample exposed
to the bare solution showed active OCP, owing to the presence of 3.5 wt.% NaCl, which induces the
localized corrosion, [45] whereas, with the steel rebars exposed to the various amounts of APMB
inhibitor-added solutions, the OCP shifted towards nobler direction, owing to the formation of passive
film [46]. The nature of phosphate-based inhibitor can be decided on the basis of concentration whether
it acts as cathodic or anodic [39]. However, the steel rebar sample exposed to the bare solution exhibited
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more active OCP compared to inhibitor-added SCP + 3.5 wt.% NaCl solutions with exposure periods.
In this case, Cl− ions locally attacked and induced the pitting corrosion, resulting in formation of
oxide film. The steel rebar exposed to 2% inhibitor-added SCP + 3.5 wt.% NaCl solution showed noble
OCP among all samples, but once the inhibitor concentration was lower or higher than 2%, the OCP
shifted towards active direction. The 1% inhibitor was not an optimum amount, where Cl− ions can
hinder the formation of passive film. Therefore, active OCP was observed. On the other hand, the steel
rebars exposed in 3% inhibitor-added solution showed active OCP with time compared to the sample
2% inhibitor, owing to the local acidification by anodic dissolution of iron and hydrolysis of ferric
chloride [46], which increased the conductivity of passive film. Moreover, the steel rebar exposed to 3%
inhibitor-added solution showed nobler OCP throughout the exposure periods compared to bare and
1% inhibitor. The steel rebar samples exposed to 1% and 3% inhibitor-containing solutions exhibited
gradual increment in OCP toward active direction from 1 h to 120 h. However, the steel rebar exposed
in 2% inhibitor-containing solution exhibited active OCP up to 24 h, but once the exposure periods
were increased, it shifted toward nobler direction, owing to the formation of protective passive film.
The OCP of the steel rebar exposed to 2% inhibitor-containing solution was nobler compared to others
in all exposure periods. This result indicated that 2% is the optimum amount of 0.5 M APMB inhibitor,
which led to forming phosphate layer for proper protection of steel sample exposed in SCP + 3.5 wt.%
NaCl solution [47].

Figure 1. OCP plot of steel rebars exposed in SCP + 3.5 wt.% NaCl (bare) solution and inhibitor-added
SCP + 3.5% NaCl solutions.

3.1.2. EIS Studies with Exposure Periods

The EIS analysis is an important technique to understand the underlying corrosion mechanism.
Thus, in the present study, EIS analysis was carried out to understand the effect of inhibitor in the
corrosion protection of steel rebar. The complex plane impedance and Bode plots of steel rebars after
1 h of exposure in bare and inhibitor-added SCP + 3.5 wt.% NaCl solutions are shown in Figure 2a,b,
respectively. From complex plane impedance plots (Figure 2a), it can be seen that the steel rebar
samples exposed to inhibitor-containing solutions exhibited higher magnitude in complex plane
impedance (Nyquist) plots compared to bare solution. However, the steel rebar sample exposed to 2%
inhibitor-added SCP + 3.5 wt.% NaCl solution exhibited highest in the magnitude of real and imaginary
component of complex plane impedance compared to other samples, attributed to the formation of
passive film onto the surface [10]. The Cl− ions attacked onto the steel rebar surface, which led to
the corrosion phenomena and, therefore, the magnitude in complex plane impedance of the sample
exposed to bare solution was the lowest among all samples. There is the possibility that, at longer
duration of exposure, the steel rebars in SCP + 3.5 wt.% NaCl solution (bare) induced the corrosion,
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owing to the high content of Cl− ions in the solution. This result corroborated our OCP observation
(Figure 1), where it was shifted toward active direction after 1 h of exposure. The complex plane
impedance of the steel rebars exposed to 1% and 3% inhibitor-added solution show almost identically
in real and imaginary component magnitude.

Figure 2. EIS (a) complex plane impedance and (b) modulus-frequency and phase-frequency Bode
plots of steel rebars after 1 h of exposure in SCP + 3.5 wt.% NaCl (bare) solution and inhibitor-added
SCP + 3.5 wt.% NaCl solutions.

The modulus-frequency and phase-frequency Bode plots of steel rebars after 1 h of exposure to
the bare and inhibitor-added solutions are shown in Figure 2b. The lowest impedance value is shown
by the steel rebar sample exposed to SCP + 3.5 wt.% NaCl (bare) solution, while the highest is shown
by the sample exposed to 2% inhibitor-added solution. Therefore, this result suggests that neither
1% nor 3% inhibitor additions were providing significant protection to the steel rebar from corrosion
exposed in SPC + 3.5 wt.% NaCl solution. The lowest impedance value was observed for the steel
rebars exposed in bare solution, owing to the initiation of corrosion where Cl− ions locally attacked on
the active sites of the steel rebar. The steel rebar exposed in 2% inhibitor-added solution formed the
passive oxide film and covered all over the surface, which stifled the attack of Cl− ions, whereas 1%
inhibitor was not substantial to form uniform film. Thus, the lower impedance was observed for
the steel rebar exposed in 1% inhibitor-added SCP + 3.5 wt.% NaCl solution. On the other hand,
for the steel rebar exposed in 3% inhibitor-added SCP + 3.5 wt.% NaCl solution, the localized pH at
the interface of the steel rebar/solution was reduced thereby, and lower impedance was observed at
0.01 Hz compared to 2% inhibitor after 1 h of exposure.

Phase-frequency Bode plots of steel rebars after 1 h of exposure to the bare and inhibitor-added
solutions exhibited two times constant (Figure 2b), which revealed that there would be one electrical
equivalent circuits (EEC) fitted. The first time constant in EEC from higher to middle frequency was
attributed to the steel/solution interface while another from middle to lower frequency was attributed to
the passive film/solution interface. The phase angle maxima of the steel rebar exposed to inhibitor-added
solutions were shifted toward higher angle in middle as well as lower studied frequencies, revealing the
formation of passive films, whereas the samples exposed without inhibitor (bare) showed shifting of
maxima in lower angle (Figure 2b). The phase angle maxima of the steel rebar sample exposed to
bare solution showed at −67◦ on 14 Hz and −13◦ on 0.03 Hz. The shifting of phase angle maxima at
−67◦ suggests that passive film is inhomogeneous, defective, and porous, which develop corrosion
products at longer duration of exposure. However, the steel rebar exposed to 1% inhibitor-containing
solution exhibited two phase angle maxima at −72◦ on 18 Hz and −38◦ on 0.08 Hz. The shifting of
phase angle maxima in middle to lower studied frequencies revealed the formation and strengthening
of passive film. Moreover, the steel rebars exposed in 2% inhibitor-added solution exhibited the phase
angle maxima at −75◦ from 30 Hz to 0.3 Hz. The broadening and asymmetrical peak for this sample
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suggested that passive film was uniform, homogenous, and protective. Thus, the impedance was
found to be highest among all samples after 1 h of exposure [4,5,11]. However, at the lowest studied
frequency, i.e., 0.01 Hz, the phase angle maxima were shifted at −18◦, which meant that steel surface
was being protected by passive film. The steel rebar exposed in 3% inhibitor-containing solution
showed two maxima at −66◦ and −54◦ on 32 Hz and 0.43 Hz, respectively. The shifting of phase angle
maxima on 32 Hz was attributed to the defective passive film, which was caused by acidification of
solution and led to form porous oxide film. This porous oxide film acted as a barrier for penetration of
aggressive ions from solution to steel rebar surface. However, due to the acidification, the corrosion
product started to dissolve. Therefore, it was utmost required to continue the EIS at longer duration.
In the subsequent paragraphs, the corrosion kinetics and mechanism of corrosion phenomena after
24 h and 120 h of exposure will be discussed.

The magnitude of complex plane impedance plots of the steel rebar samples exposed in
inhibitor-added SCP + 3.5 wt.% NaCl solution after 24 h of exposure was more decreased than
1 h exposure, whereas, in the case of bare solution, it was increased (Figure 3a). This result suggested
that, owing to the initiation of the corrosion process in bare solution at steel rebar/solution interface
after 1 h of exposure, corrosion/oxide film started to form, which stifled the ingress of Cl− ions and,
therefore, an increase in magnitude was observed (Figure 3a). The steel rebar samples exposed to the
inhibitor-containing SCP + 3.5 wt.% NaCl solutions exhibited higher in the magnitude of complex
plane impedance compared to bare solution, even after 24 h of exposure. It meant the passive film
formed onto the steel rebar surface but, due to the acidification of solution by APMB, it was not stable.
The steel rebars exposed in 2% and 3% inhibitor-containing solutions showed higher in the magnitude
of −Zimag after 24 h of exposure compared to 1 h, owing to the capacitive properties of the passive
film [11]. This result suggested that corrosion products or oxide film started to form. The magnitude
of complex plane impedance plots of steel rebars exposed in 2% inhibitor solution was the highest,
followed by 3%, 1% inhibitor-containing solution, and bare solution.

Figure 3. EIS (a) complex plane impedance and (b) modulus-frequency and phase-frequency Bode
plots of steel rebars after 24 h of exposure in SCP + 3.5 wt.% NaCl (bare) solution and inhibitor-added
SCP + 3.5 wt.% NaCl solutions.

The modulus-frequency Bode plots of the steel rebar samples after 24 h of exposure are shown in
Figure 3b. From this Figure, it is depicted that the impedance value at 0.01 Hz decreased in the case of
inhibitor-containing samples compared 1 h exposure while bare solution sample slightly increased,
owing to the formation of corrosion products. Due to the thickening of oxide film, impedance was
increased. However, it is not necessary that corrosion products are stable. Thus, it was required to
study the actual nature of corrosion products at longer duration of exposure. In the case of inhibitor,
there would be two types of effects dominating on steel rebar/solution interface for corrosion. One may
be due to the attack of Cl− ions and another for localized acidification of solution by H3PO4 released from
APMB. Cl− (from NaCl) and H+ (H3PO4) ions both participate in corrosion reaction. If passive/oxide
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film is weak, then initiation and propagation of corrosion reaction would occur. There is a possibility
that if phosphate ion is significant to transform the weak and loose oxides, i.e., Fe(OH)2 into protective
and stable oxide film, then corrosion products would reduce the corrosion reaction. The transformation
of Fe(OH)2 requires some time to form the protective oxide film. Thus, it was required to extend the
exposure periods beyond 24 h. The corrosion mechanism after 120 h of exposure is discussed in the
subsequent paragraphs.

The phase-frequency Bode plots of samples after 24 h of exposure are depicted in Figure 3b.
From this figure, it can be seen that the phase angle maxima are found to be at −69◦ on 6 Hz, with the
steel rebar exposed to bare solution. This phase angle maxima shift suggested that corrosion products
are thick and porous (due to capacitance) rather than compact and uniform. Due to the thick corrosion
products, the total impedance was found to be slightly higher after 24 h of exposure compared to 1 h.
This finding suggested that Cl− ions initially attacked and initiated the localized corrosion and resulted
in thick corrosion product onto the steel rebar/solution interface. There was another phase angle
maxima at −18◦ on 0.01 Hz due, to the steel substrate. This value was identical to that obtained after
1 h of exposure, which indicated that steel was not getting any other protection rather than corrosion
products. For the steel rebar samples exposed to 1% inhibitor-added solution, its phase angle maxima
shifted at −75◦ on 6 Hz and −24◦ on 0.1 Hz after 24 h of exposure, whereas after 1 h of exposure, it was
found at −72◦ on 18 Hz and −38◦ on 0.08 Hz. The shifting of phase angle maxima at higher angle in
low frequency, i.e., 0.08 Hz, revealed the corrosion protection of the steel rebar. On the other hand,
the steel rebar sample exposed in 2% inhibitor-added solution exhibited two time maxima at −79◦

and −34◦ on 1 Hz and 0.01 Hz, respectively. It is reported that if phase angle maxima shifted around
−80◦, then the passive film is homogenous and protective [30]. However, the steel rebar exposed in 3%
inhibitor-containing solution showed two distinct phase angle maxima at −67◦ and −59◦ on 6 Hz and
0.25 Hz, respectively.

EIS experiments were carried out up to 120 h of exposure, and the results are presented in Figure 4.
The complex plane impedance plots are depicted in Figure 4a after 120 h of exposure. The steel
rebar sample exposed in bare solution exhibited reduced magnitude in complex plane impedance,
owing to the porous oxide film. As discussed earlier, after 24 h of exposure, corrosion products
were porous, which are good reservoirs of moisture, oxygen, and aggressive ions that influence the
corrosion. Thus, reduced magnitude was observed after 120 h of exposure compared to 24 h. Besides,
the steel rebars exposed to 1% and 3% inhibitor-added solutions were also exhibiting reduction in
the magnitude of complex plane impedance, owing to the propagation of corrosion reaction. In the
case of steel rebar sample exposed to 1% inhibitor-added solution, the magnitude of impedance was
lower than bare, owing to the synergistic effect of Cl− (NaCl) and H+ (H3PO4) ions. Cl− ions induced
the corrosion by the localized attack, whereas H+ acidified the solution. In this case, the phosphate
ions were not significant to transform the unstable corrosion products into protective oxide film and
simultaneously the Cl− ions induce the deterioration of formed passive film. Thus, lower in the
magnitude was observed (Figure 4a). The 2% inhibitor might have been the optimum, which led to
forming the iron phosphate, and Cl− ions were not able to break the film. Thus, the highest magnitude
was observed. It can be seen that the complex plane impedance magnitude was higher compared
to 24 h of exposure, attributed to the formation of very protective passive/oxide film. On the other
hand, the steel rebar sample exposed in 3% inhibitor-added solution after 120 h showing lower in the
magnitude compared to 24 h was attributed to the reduction in localized pH, which acidifies the SCP
+ 3.5 wt.% NaCl solution. In this case, higher amount of H3PO4 would form, which would reduce
the pH significantly. Thus, at longer duration of exposure, complex plane impedance magnitude was
reduced. Even after 120 h of exposure, the magnitude of the sample in 3% inhibitor-added solution
was higher compared to 1% and bare, but lower than 2% inhibitor-added solution.

The modulus-frequency and phase-frequency Bode plots of the samples after 120 h of exposure
are shown in Figure 4b. From this figure, it is depicted that the steel rebar samples exposed to
2% inhibitor-added solution exhibited an increase in total impedance, attributed to the formation
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of protective passive/oxide film compared to 24 h of exposure, whereas, the steel rebar exposed in
bare, 1%, and 3% inhibitor-added solution showed decrease in its value at 0.01 Hz, owing to the
propagation of corrosion reaction. The decrease in impedance values of these samples was attributed
to the different reasons. In the case of steel rebar sample in bare solution, Cl− ion induced the
corrosion reaction, owing to the porous oxide film where moisture and oxygen were significant. In the
case of 1% inhibitor-added solution, Cl− and H+ ions both were participating in corrosion reaction.
Thus, lower impedance value was observed (Figure 4b). However, for 3% inhibitor-added solution,
there might be competition between Cl−, H+, and phosphate ions. Cl− and H+ ions induced the
corrosion reaction but at the same time, phosphate ion reacted with corrosion products, i.e., Fe(OH)2,

and transformed into protective corrosion products/oxide film, which diminished the effect of Cl− and
H+ ions. Thus, higher impedance was observed compared to bare and 1% inhibitor-added solution
after 120 h of exposure. Moreover, the lower impedance, compared to 24 h, was attributed to the effect
of Cl− and H+ ions.

Figure 4. EIS (a) complex plane impedance and (b) modulus-frequency and phase-frequency Bode
plots of steel rebars after 120 h of exposure in SCP + 3.5 wt.% NaCl (bare) solution and inhibitor-added
SCP + 3.5 wt.% NaCl solutions.

The phase-frequency Bode plots after 120 h of exposure corroborate with complex plane impedance
and modulus-frequency Bode where steel rebar sample exposed in bare solution exhibited a sharp
peak at −70◦ on 6 Hz, whereas at the lowest studied frequency, i.e., 0.01, Hz was found to be at −15◦.
At lowest frequency, phase angle was decreased compared to 24 h (−18◦ at 0.01 Hz). The presence
of a sharp, asymmetric peak at middle frequency and lower in phase angle maxima at 0.01 Hz,
implied the deterioration of steel rebar after 120 h of exposure. The steel rebar sample exposed in
1% inhibitor-added solution shows phase angle maxima shift at −75◦ on 3 Hz, which revealed the
deterioration of steel rebar surface, but the film was homogenous. Due to the deterioration of steel
surface, rather than formation of stable corrosion products, the impedance was decreased. Broadening
in phase angle maxima of the sample exposed in 2% inhibitor-added solution at −77◦ from 2 Hz
to 0.2 Hz and −36◦ on 0.01 Hz revealed the formation of homogenous, uniform, and protective
oxide/passive film, which stifled the attack of Cl− ions. Thus, the highest impedance was observed
after 120 h of exposure. However, 3% inhibitor exhibited phase angle maxima at −67◦ and −60◦ on
11 Hz and 0.1 Hz with broadening, respectively, which revealed that the passive film was uniform
and protective compared to the samples exposed in bare and 1% inhibitor-added solution. Moreover,
it can be seen at 0.01 Hz that phase angle was shifted towards lower angle, i.e., −21◦ compared to 24 h
i.e., −37◦. This result suggested that 3% inhibitor-containing solution induced the corrosion of steel
rebar surface, due to the acidification where steel rebar starts to deteriorate. Thus, total impedance
decreased compared to 24 h of exposure (Figure 4b).

The EIS results indicated that all samples exhibited two time constants, from high to middle and
middle to lower studied frequencies. Therefore, all EIS plots could be fitted into one EEC [31,32,46,48].
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The first time constant was associated with corrosion reaction at steel/solution interface in high to
middle frequencies, whereas second at passive or oxide film/solution interface in middle to low
frequencies (Figure 5). The first time constant in EEC was associated with solution resistance (Rs),
constant phase element (CPE1), and Rp. Due to the corrosion and heterogeneity of the steel surface,
instead of pure capacitance, CPE participated. The CPE1 and Rp were associated parallel to each other.
The second time constant in EEC, CPE2, and Ro or charge transfer were parallel to each other.

Figure 5. EEC of steel rebar samples exposed in SCP + 3.5 wt.% NaCl solution with and without inhibitor.

Based on EIS fitting, CPE coefficient (Qeff) can be calculated from imaginary impedance (Zj) when
CPE exponent (n) , 1, by Equation (1) [49]:

Qe f f = sin
(nπ

2

)
−1

Z j( f )(2π f )n (1)

where f is frequency. But, once n becomes 1, then Qeff becomes a capacitance (Ceff). Therefore,
Equation (1) can be written as:

Qe f f = Ce f f =
−1

Z j( f )(2π f )
(2)

However, it is not possible for n to become 1, owing to the heterogeneity of the steel rebar surface
during exposure in SCP + 3.5 wt.% NaCl solution, where corrosion reaction has started once exposed
in solution. Therefore, the blocking characteristics by corrosion products on steel surface between
the interfacial capacitance and CPE coefficient (Q) can be calculated by Brug’s equation [50] and
others [51,52]:

Ce f f = Q1/nR(1−n)/n
S (3)

The electrochemical parameters obtained from EIS plots’ fitting in suitable EEC (Figure 5) with
exposure periods are shown in Table 2 and Figure 6. From this table, it can be seen that Rs was found
in between 9.96 to 12.89 Ω·cm2 at different exposure periods with and without inhibitor. This result
suggests that the conductivity of the solution remained constant throughout the exposure periods
with and without inhibitor. The Rp value of the steel rebar sample in bare (without inhibitor) solution
was exhibiting the lowest, i.e., 1.98 kΩ·cm2, while Ceff was the highest, i.e., 36.85 µF·cm−2, after 1 h
of exposure (Figure 6) compared to inhibitor-added solutions, owing to the localized attack of Cl−

ion where initiation of corrosion phenomena started. At the same time, however, during initiation
of corrosion phenomena, corrosion products would deposit onto the steel rebar surface and increase
the Rp value. After 24 h of exposure, it was found to be 3.29 kΩ·cm2. As the exposure periods were
extended up to 120 h, the Rp value of the steel rebar samples exposed to bare solution was decreased
(Figure 6) compared to 24 h, owing to the formation of loose, nonprotective, and porous oxide film
onto the surface, which worked as a reservoir for collecting ions, oxygen, and moisture that enhanced
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the corrosion reaction. The Rp and Ceff of the steel rebar samples exposed in inhibitor-containing
solutions were higher and lower, respectively, than the sample of bare solution, in all exposure periods,
owing to the formation of corrosion products and adsorption of inhibitor onto the steel rebar surface.
The Rp values of steel rebar samples exposed in 1 and 3% inhibitor-containing solutions were gradually
decreased and Ceff was increased from 1 h to 120 h (Figure 6). In 1% inhibitor, phosphate ion was not
significant to form protective film and, simultaneously, Cl− ions locally attacked, which induced the
corrosion reaction. While in the case of 3% inhibitor, there was possibility for acidification where H+

ions (from H3PO4) hinder the formation of protective film and simultaneously started to deteriorate
the steel rebar surface. In the case of 2% inhibitor-added solution, Rp value was decreased from
11.02 kΩ·cm2 to 6.28 kΩ·cm2 for 1 h to 24 h, respectively, attributed to Cl− and H+ ions, which induced
the corrosion reaction. The formed corrosion products/oxide film up to 24 h required incubation periods
to react with phosphate ions and transform into protective passive/oxide film. Once the exposure
periods reached 120 h, the loosely bound oxide reacted with phosphate ions and then transformed the
nonprotective oxide into protective oxide. Thus, Rp was found to be highest, i.e., 7.28 kΩ·cm2, and Ceff
lowest, i.e., 30.77 µF·cm−2.

Table 2. Electrochemical parameters of samples exposed in SCP + 3.5 wt.% NaCl solution with and
without inhibitor.

Time (h) Sample ID

Electrochemical Parameters

Efficiency (%)Rs
(Ω·cm2)

CPE1
Ro

(kΩ·cm2)

CPE2
Q1 (1 × 10−5)
(Ω−1·cm−2·sn) n1

Q2 (1 × 10−5)
(Ω−1·cm−2·sn) n2

1

Bare 9.96 21.0 0.78 0.87 232.8 0.70 -
1% 9.80 14.2 0.82 4.61 54.4 0.74 81.13
2% 10.09 10.2 0.85 8.71 24.5 0.80 90.01
3% 11.78 13.1 0.82 5.24 50.7 0.75 83.40

24

Bare 11.48 16.6 0.80 2.16 182.4 0.73 -
1% 9.32 15.7 0.81 4.47 55.0 0.74 51.68
2% 11.64 12.3 0.83 6.45 42.4 0.78 66.51
3% 12.89 13.2 0.82 4.70 52.0 0.74 54.04

120

Bare 11.12 23.8 0.76 2.66 155.7 0.73 -
1% 10.54 22.0 0.77 2.26 175.4 0.68 −17.70
2% 12.59 11.7 0.83 7.09 34.8 0.79 62.48
3% 12.60 20.6 0.77 4.04 52.7 0.73 34.16

Figure 6. Rp and Ceff plots of steel rebars exposed in SCP + 3.5 wt.% NaCl solution with and without
inhibitor at different exposure periods.
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From Table 2, it can be seen that Q1 values of steel rebar samples up to 24 h of exposure in bare
solution were decreased but remained higher than inhibitor-added solutions, owing to the increase in
Rp value. Once the exposure period was extended up to 120 h, Q1 increased, owing to the heterogeneity
of the surface, attributed to the corrosion reaction. The n1 values revealed that steel surface was
heterogeneous, as its value was found to be 0.76 after 120 h of exposure. Q1 values of all rebar samples
exposed to inhibitor-added solutions were found to be lower up to 24 h of exposure than the bare
solution, which revealed that the surface was homogenous. This result correlates with the n1 values
where it is more than 0.8. It was reported by other researchers that, if n value is more than 0.8, then the
passive film formed onto the steel rebar surface is homogenous [48,53].

Once the steel rebar was exposed in SCP + 3.5 wt.% NaCl solution with and without inhibitor,
the corrosion reaction started at steel rebar/solution interface resulted in formation of passive/oxide
film. Thus, Ro or charge transfer resistance were involved in corrosion phenomena. From Table 2,
it was observed that Ro value of the steel rebar samples exposed in 1 and 3% inhibitor-added solution
gradually decreased, attributed to the synergistic effect of Cl− ions and acidification. In 1% inhibitor,
once the corrosion reaction started, Cl− ions locally attacked, which induced the corrosion reaction to
result in the formation of corrosion products as well as, in the meantime, H+ ions being entrapped in
the corrosion products, which acidified the SCP + 3.5 wt.% NaCl solution with exposure periods. In this
case, phosphate ions were not in a significant amount to react with corrosion products and transform
the nonprotective corrosion products into stable and protective. Thus, after 120 h of exposure, Ro was
found to be lower, i.e., 2.26 kΩ·cm2, than bare, i.e., 2.66 kΩ·cm2 (Table 2). Moreover, Q2 was higher
and n2 was lower than the steel rebar samples exposed to bare solution. The n2 values revealed that
corrosion products were heterogeneous and porous in nature. On the other hand, n2 of steel rebar
sample exposed in 3% inhibitor-added solution with exposure periods was decreased but remained
greater than sample in bare solution and below 2% inhibitor-added solution. It was attributed to the
positive effect of phosphate ions, which initially, i.e., up to 24 h of exposure to significant amount of
corrosion products, would have been formed, owing to the greater amount of H+ ions, which influenced
the corrosion reaction. Due to the acidification of solution, corrosion products started to dissolve
at longer duration, i.e., 120 h of exposure. Thus, Ro and n2 decreased and Q2 increased. This result
suggests that even after 120 h of exposure, corrosion product formed on steel rebar surface in 3%
inhibitor-added solution was protective compared to the sample in bare solution. The steel rebar
samples exposed in 2% inhibitor-added solution showed the highest Ro value in all exposure periods
compared to bare, 1, and 3% inhibitor-added solutions, owing to the formation of protective, adherent,
and stable corrosion products. Up to 24 h of exposure, Ro was decreased but once the exposure periods
were extended to 120 h, Ro value increased, owing to the transformation of corrosion products. Initially,
due to the Cl− ions, corrosion was induced. Thus, corrosion products formed, which again reacted with
an optimal amount of phosphate ions and transformed into very stable corrosion products. Therefore,
Q2 decreased. The n2 value around 0.8 indicated that, even after 120 h of exposure, corrosion products
were homogenous and protective, which enhanced the corrosion-resistance properties of steel rebar
exposed in SCP + 3.5 wt.% NaCl solution.

The efficiency (%) of inhibitor can be calculated by [31]

E f f iciency (%) =

[
1−

R0 (bare)

R0 (with inhibitor)

]
× 100 (4)

where R0 (bare) and R0 (with inhibitor) are passive/oxide film resistance or charge transfer resistance formed
onto the steel rebar surface of bare (without) and with inhibitor-added solution, respectively.

The efficiency (%) of steel rebar exposed in 1, 2, and 3% inhibitor-added SCP + 3.5 wt.% NaCl
solution was found to be 81.13, 90.01, and 83.40% after 1 h of exposure (Table 2), respectively. As the
exposure periods were increased, the efficiency values were decreased gradually. It could be seen
that the steel rebar sample exposed in 2% inhibitor-added solution maintained its efficiency greater
than 60% up to 120 h of exposure. Yuhai et al. [31] studied the effect of phosphate ion on corrosion
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inhibition of steel rebar exposed in simulated concrete pore solution with Cl− ion and they found that
a maximum 51.13% inhibition efficiency can be achieved after 24 h of exposure.

3.1.3. Potentiodynamic Polarization Studies after 120 h of Exposure

The potentiodynamic polarization plots of steel rebars exposed in SCP + 3.5 wt.% NaCl solution
with and without inhibitor are shown in Figure 7. From this figure, it can be seen that cathodic current
density of the steel rebar samples exposed to inhibitor-containing solutions was lower than bare,
owing to the formation of oxide film. It can be seen from Figure 7 that cathodic current densities
of the samples exposed in bare and 1% inhibitor-added solutions were higher compared to 2 and
3% inhibitor-added solutions, owing to the oxygen reduction reaction, which led to forming porous
oxide layer. The formation of porous oxide film onto the steel rebar surface exposed to bare solution
was attributed to the attack of Cl− ions that remained in oxide and later caused corrosion. While the
steel rebar sample was exposed to 1% inhibitor-added solution, Cl− and H+ (from H3PO4) as well as
phosphate ions were present. Cl− ions remained in corrosion products and H+ induced the dissolution
of corrosion products, while phosphate ions allowed to transform some oxides into stable ones.
However, due to the presence of Cl– and H+ ions, it would not be stable. Thus, anodic current density
was highest (Figure 7). On the other hand, the steel rebar samples exposed in 2 and 3% inhibitor-added
solutions showed almost identical cathodic current density but lower than bare and 1% inhibitor-added
solution, owing to formation of stable and protective corrosion products. Moreover, 2 and 3% inhibitor
contained a significant amount of phosphate ions, which transformed the porous oxide film into a
stable one.

Figure 7. Potentiodynamic polarization curves of steel rebar samples after 120 h of exposure in
SCP + 3.5 wt.% NaCl solution with and without inhibitor.

The anodic current density of the steel rebar samples exposed in 2% inhibitor-added solution was
the lowest followed by bare, 3, and 1% inhibitor-added solutions. In the case of 2% inhibitor-added
solution, the phosphate ions might have been optimal, which would significantly lead to oxidize
and transform the nonprotective, loose, and porous oxide film into stable and protective. The 3%
inhibitor-added solution contained the highest amount of H+ and phosphate ions, which initially
allowed forming of the protective oxide film. However, during cathodic scanning, H+ ions were
released in solution, which led to dissolving the oxide film. Due to the release of a higher amount of H+

ions in 3% inhibitor-containing solution, anodic current density was higher compared to the sample
exposed in bare solution. It can be seen from Figure 7 that samples in bare and 2% inhibitor-added
solutions exhibited many breakdown OCP, which indicated that during anodic scanning many times
passive film was formed and broken down and, therefore, zig-zag plots were observed. It was attributed
to the instantaneous formation of semi-conducting passive film and breakdown by Cl− ions. There was
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an abrupt increment in current density after corrosion potential (Ecorr) for the samples exposed in 1
and 3% inhibitor-added solutions, which revealed the occurrence of pitting corrosion (Figure 7).

It can be seen from Figure 7 that Ecorr of the steel rebar exposed in 2% inhibitor-added and bare
solutions shifted towards nobler, while the samples in 1 and 3% inhibitor-added solutions were on
active direction. The Ecorr of the steel rebar exposed to 2% inhibitor-added solution was shifting toward
nobler direction attributed, to the transformation of nonprotective, loosely bound oxide into protective,
adherent, and stable oxide film.

3.2. Characterization of Passive/Oxide Film

3.2.1. SEM

From the electrochemical studies, it was observed that the steel rebar exposed in 2% inhibitor-added
solution performed best among all samples. Therefore, it was important to characterize the passive/oxide
film formed on the steel rebar surface exposed in 2% inhibitor-containing solution along with bare
solution for comparison after 120 h of exposure in SCP + 3.5 wt.% NaCl solution. SEM results of the
rebars exposed to bare and 2% inhibitor-added solutions are shown in Figure 8a,b, respectively, at 1000×.
It can be seen that the steel rebar exposed in bare solution exhibited defective and porous oxide film
with crystal morphology (Figure 8a), which might be owing to the presence of NaCl coming from the
solution medium. The oxide film was unevenly distributed, which resulted in a higher corrosion rate,
attributed to the accumulation of NaCl compared to the steel rebar exposed in 2% inhibitor-added
solution. SEM image corroborates EIS results where Rp and Ro were lower for the sample exposed
in bare solution compared to 2% inhibitor-added solution. Agglomeration was observed at some
places onto the steel rebar surface, owing to localized corrosion (Figure 8a). There was no uniform
morphology in oxide/passive film, which can be seen in Figure 8a where agglomerated (mark 1 in
Figure 8a) and plain (mark 2 in Figure 8a) surfaces are observed. At the plain surface, Cl− ions’
concentration would be lower, while at agglomerated surface Cl− ions’ would be higher. Thus, there is
possibility that Cl− ions can be diffused from higher (mark 1 in Figure 8a) to lower (mark 2 in Figure 8a)
concentrations, which later induces the corrosion reaction, resulting in the formation of agglomerated
morphology. On the other hand, the steel rebar exposed in 2% inhibitor-added solution shows dendritic
growth of passive film, which can propagate at a longer duration of exposure and cover all over
the surface (Figure 8b). This dendritic growth inhibited the corrosion reaction onto the steel rebar
surface. Thus, highest Rp and Ro were observed. It was observed by Nihali et al. [47] that such type
of morphology appears, owing to the phosphate layer after adding of Na3PO4 in alkaline solution.
However, it is very important to know the elemental composition of oxide films. Thus, EDS was
performed at plain and agglomerated surface as marks 1 and 2 in Figure 8.

Figure 8. SEM images of steel rebar samples after 120 h of exposure in (a) bare (SCP + 3.5 wt.% NaCl)
and (b) 2% inhibitor-added SCP + 3.5 wt.%% NaCl solution, at 1000×.
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The chemical compositions of oxide films are shown in Table 3. The agglomerated surface (point 1,
Figure 8a) shows high amount of Cl (40.10 wt.%) and Na (55.76 wt.%). This result suggests that the
agglomerated part mostly contained NaCl, which covered the surface and induced the corrosion
reaction. Na content was the highest as the SCP solution containing NaOH as well as 3.5 wt.% NaCl.
Ca and K were not in significant amounts and they came from SCP, where KOH and CaO were added.
On the other hand, once the EDS was performed at point 2 (plain surface) in Figure 8a, Na, K, Ca,
and Cl contents were found in much lower amounts. There were no N or P on the rebar surface exposed
to bare solution, owing to the absence of inhibitor. It can be seen at point 2 that mostly O and Fe are
observed, which reveals that it was iron oxide/hydroxide. This result suggests that Cl− ions attacked
on localized point onto the steel rebar surface and induced the corrosion process. Thus, lower Rp and
Ro were observed. The EDS analysis for the sample exposed to the 2% inhibitor-containing solution at
point 1 (dendrite) of Figure 8b shows the presence of 1.16 wt.% P, which confirms the formation of iron
phosphate, as observed by Simesco and Idrissi [54]. The occurrence of Cl, Na, K, and Ca are owing to
the composition of SCP solution and NaCl. O (2.37 wt.%) was higher compared to the sample exposed
in bare solution, which revealed that 2% inhibitor may form some iron oxide/hydroxide as well as
iron phosphate. The EDS was taken at point 2 (plain surface) of Figure 8b, which shows the reduced
amount of P. This result suggests that the dendritic structure did not grow completely, and contained
iron phosphate. Even though, at this point, P was observed, which at later exposure periods may grow
and form protective oxide film. Thus, it is very important to characterize the passive film by another
analytical technique. In subsequent paragraphs, the nature of passive film is discussed with the help of
Raman spectroscopy and XPS.

Table 3. EDS analysis of samples in SCP + 3.5 wt.% NaCl solution after 120 h of exposure.

Solution Figure Point
Element (wt.%)

O N P Cl Na K Ca Fe

Bare 8a
1 0.54

(±0.02) - - 40.1
(±2.40)

55.76
(±1.95)

1.34
(±0.08)

0.29
(±0.02)

1.97
(±0.09)

2 2.1
(±0.05) - - 0.18

(±0.01)
0.35

(±0.02)
0.24

(±0.02)
0.23

(±0.02)
96.90

(±7.27)

2%
inhibitor

8b
1 2.37

(±0.10) 0 1.16
(±0.080)

2.87
(±0.15)

3.21
(±0.14)

2.6
(±0.16)

1.37
(±0.05)

86.42
(±5.27)

2 1.73
(±0.04)

1.1
(±0.04)

0.16
(±0.01)

0.23
(±0.01)

0.48
(±0.013)

0.22
(±0.01)

0.2
(±0.01)

95.88
(±4.99)

3.2.2. Raman Spectroscopy

The characterization of passive film formed on steel surface after 120 h of exposure in SCP + 3.5
wt.% NaCl (bare) and 2% inhibitor-containing solution was performed by Raman spectroscopy and
results are shown in Figure 9a,b, respectively. It was found that the steel rebars exposed to the bare,
as well as 2% inhibitor-containing solutions, showed α-FeOOH (goethite) and β-FeOOH (akaganeite).
The attribution of the goethite in the sample exposed to the bare solution was found to be at 205,
234, 245, 288, and 297 cm−1 Raman shift [55,56] (Figure 9a), whereas samples in 2% inhibitor-added
solution were found to be 206, 226, 238, 248, 282, 290, 370, 397, and 425 cm−1 [55,56] (Figure 9b).
The presence of goethite corroborated the finding of Yohai et al. [31]. They found goethite in bare as
well as phosphate-containing samples. The number of peaks and intensity of the samples exposed to
the inhibitor-containing solution (Figure 9b) were higher compared to the samples exposed to bare
solution, which suggests that goethite is more prominent in inhibitor-containing sample compared
to bare, which controls the corrosion of the steel rebar exposed in SCP + 3.5 wt.% NaCl solution
after 120 h of exposure. Akaganeite is a chloride-bearing iron oxide-hydroxide that is formed in a
chloride-contaminated environment where Cl– ions are present in its crystal structure. The akaganeite
is found at 308, 314, and 410 cm−1 [55] in bare (Figure 9a), whereas in the presence of inhibitor, it is
found at 316 and 413 cm−1 [55] (Figure 9b). The shifting in peak position of the samples exposed to
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the inhibitor-containing solutions owed to the presence of many phases. The presence of γ-FeOOH
(lepidocrocite) at 338 cm−1 [57] and 349 cm−1 [55] in the sample exposed to the bare solution (Figure 9a)
was owing to the initiation of corrosion reaction in SCP + 3.5 wt.% NaCl solution. However, the sample
in 2% inhibitor-containing solution showed other extra phases, which were γ-Fe2O3 (maghemite)
at 343 cm−1 and 352 cm−1 [55] (Figure 9b) as well as FePO4 at 303, 330, 442, and 487 cm−1 [58,59]
(Figure 9b). The formation of maghemite and FePO4 will be described in Discussion section. However,
maghemite and FePO4 are thermodynamically very stable and sparingly soluble. Thus, the steel
sample exposed to the 2% inhibitor-containing solution showed highest Rp and Ro and lowest corrosion
compared to other samples.

Figure 9. Raman spectra of passive/oxide films formed onto the rebar samples after 120 h of exposure
in (a) bare (SCP + 3.5 wt.% NaCl) and (b) 2% inhibitor-added SCP + 3.5 wt.% NaCl solution.

3.2.3. XPS Analysis

The XPS of passive/oxide film formed on the surface of steel rebars exposed to the bare and 2%
inhibitor-containing solution after 120 h of exposure are shown in Figures 10 and 11 to confirm the
observations of Raman spectroscopy, respectively. The spectrum of Fe2p3/2 in bare sample is noisy and
poorly defined (Figure 10a), owing to the formation of unstable and porous thick corrosion products,
i.e., Fe(OH)2, which hinder getting a clear spectrum [31,60]. There are three Fe2p3/2 peaks fitted at
706.34 eV, 709.44 eV [61,62], and 712.24 eV [63,64] for metallic iron (Fe), Fe(II), and Fe(III) [61,65]
in Figure 10a, respectively. From this figure, it can be seen that broadening in peaks of metallic Fe
and Fe(II), i.e., Fe(0)/Fe(II) was higher, owing to the bare surface and formation of porous Fe(OH)2,
respectively [66], which influenced the corrosion reaction in chloride-contaminated SCP solution.
However, Fe(OH)2 was not found in Raman spectroscopy due to its instability or transformation
into other phases. There is another possibility that Fe(OH)2 is very thin and cannot be detected by
Raman spectroscopy, owing to the limitation of this instrument. However, XPS can detect up to
10 nm thickness of oxide or film [61]. Thus, it was observed by XPS. This result corroborated SEM
(Figure 8a), where plain surface was observed. The plain surface was owing to the metallic Fe and
initial corrosion reaction, which formed Fe(OH)2. It is reported that, if Fe(II)/Fe(III) content is higher
(as broadening observed in Figure 10a for Fe(II)), then more oxygen vacancies are formed in passive
film [67]. The binding-energy value of Fe(II) at 709.44 eV was attributed to the FeO/Fe(OH)2 [60],
which is very unstable and transforms into Fe(III). The presence of Fe(III) at 712.24 eV in the sample
exposed to the bare solution might have been owing to the formation of FeOOH, i.e., lepidocrocite,
akageneite, and goethite [64], as also evidenced in Raman spectroscopy (Figure 9a).
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Figure 10. XPS spectra of oxide film (a) Fe2p3/2 and (b) O1s formed on steel rebar surface after 120 h of
exposure in SCP + 3.5 wt.% NaCl solution.

Figure 11. XPS spectra of oxide film (a) Fe2p3/2, (b) O1s, and (c) P2p formed on steel rebar surface after
120 h of exposure in 2% inhibitor-added SCP + 3.5 wt.% NaCl solution.

The fitting of two peaks in O1s at 531.18 eV and 532.38 eV were attributed to the O2− and OH−,
respectively. There was shifting in 1 eV toward higher binding energy in O1s compared to reported
values [31], owing to the formation of different oxides/hydroxides such as goethite, lepidocrocite,
and akageneite, which cause interference and shifting of binding energy.

XPS results of the steel rebar exposed in 2% inhibitor-containing solution are shown in Figure 11.
The Fe2p3/2 peak was deconvoluted into three peaks at 706.9 eV [61,62], 708.8 eV, and 711 eV for
metallic iron (Fe), Fe(II), and Fe(III), respectively [31] in Figure 11a. Metallic Fe and Fe(II) at 706.9 eV
and 708.8 eV were attributed to the plain surface, as observed in Figure 8b, and initiation of corrosion
phenomena where Fe(OH)2 formed in SCP + 3.5 wt.% NaCl solution. It was observed that once the 2%
inhibitor was added in solution, the Fe(III)/Fe(II) content in passive film increased (broadening in peaks)
compared to Fe(II) (Figure 11a), which induced forming protective passive film in SCP + 3.5 wt.%
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NaCl solution [33,67]. The addition of 2% inhibitor increased the thickness of passive film in steel
rebar surface. Therefore, the metallic Fe content decreased (Figure 11a). The broadening in Fe(III) was
attributed to the involvement of different protective iron oxide/hydroxide such as goethite, maghemite,
and iron phosphate. The binding energy value of Fe2p3/2 at 711 eV was attributed to the presence of
γ-Fe2O3 (maghemite), as reported earlier [68–70]. The detection of maghemite by XPS correlated with
the results of Raman spectroscopy (Figure 9b).

O1s was fitted with three peaks at 531.12 eV, 532.44 eV, and 533.32 eV, attributed to the O2−, OH−,
and PO4

3− ions (Figure 11b), respectively. The shifting in higher binding energy of OH− and PO4
3−

was attributed to the presence of goethite and iron phosphate, respectively. Phosphate ions react with
Fe and form iron phosphates. Therefore, shifting in binding energy of O1s was observed.

The XPS peak that appeared for phosphorous was deconvoluted (Figure 11c) into two peaks at
133.4 eV and 134.2 eV for P2p3/2 and P2p1/2, respectively. Presence of P2p revealed the presence of
phosphate and it was due to the formation of FePO4, as observed earlier [71]. The formation of FePO4

on the sample surface was also observed by Raman spectroscopy (Figure 9b), which corroborated the
XPS results.

4. Discussion

During the initial period of exposure, i.e., after 1 h, there would be interaction of solution and Cl−

ion with iron (Fe) to initiate the corrosion process by following reactions [7,72]:

Fe→ Fe2+ + 2e− (anodic) (5)

1
2

O2 + H2O + 2e− → 2OH− (cathodic) (6)

Overall reaction may be written as:

Fe +
1
2

O2 + H2O→ Fe(OH)2 (7)

However, it is well known that Fe(OH)2 is very unstable, owing to the Fe2+ oxidation state as well
as being amphoteric in nature. It was detected by XPS (Figures 10 and 11) and again reacted with Cl−

ions in solution (SCP + 3.5 wt.%NaCl) and formed acidic ferrous chloride (Equation (9)) [73]:

Fe(OH)2 + 2Cl− → FeOCl−−2 + H2O (8)

FeOCl−−2 + H2O→ FeCl2 + 2OH− (9)

Again, FeCl2 reacted with H2O and forms Fe(OH)2 as well as HCl (Equation (10)). Due to the
release of HCl, the solution became acidic and induced the anodic dissolution of steel rebar [73].

FeCl2 + 2H2O→ Fe(OH)2 + 2HCl (10)

Ultimately, Fe(OH)2 would form during initiation of corrosion (Equations (7) and (10)) and, in the
meantime, oxygen diffuses at steel/solution interface and transforms the Fe(OH)2 into FeO.OH.

2Fe(OH)2 +
1
2

O2 → 2FeO.OH + H2O (11)

The above corrosion reactions occur on steel rebar surface exposed in bare as well as
inhibitor-containing SCP + 3.5 wt.% NaCl solutions. It was reported by other researchers that
FeO.OH is α-FeOOH (goethite), which controls the corrosion of steel rebar [74,75]. Keiser et al. found
that FeO.OH is very adherent and stable to control the deterioration of steel rebar than other iron
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oxides [76]. However, in the case of inhibitor, FeO.OH transforms into Fe2O3 (Equation (12)), which is
maghemite (γ-Fe2O3), as observed by Raman spectroscopy (Figure 9b) and XPS (Figure 11a).

2FeO.OH→ Fe2O3 + H2O (12)

In the meantime, hydrolysis of APMB (NH4H2PO4) inhibitor may occur, which locally reduces
the pH of solution, owing to the formation of H3PO4 (Equation (13)) during electrochemical reaction at
steel rebar/solution interface [40]. However, initially it was observed that once the inhibitor was added,
the pH of SCP + 3.5 wt.% NaCl solution increased due to the liberation of NH4OH (Equation (13)).
But once the exposure periods were increased, the pH of the solution reduced because of the formation
of H3PO4 inside the solution.

NH4H2PO4 + H2O→ H3PO4 + NH4OH (13)

H3PO4 reduced the pH, owing to the strong acidic nature, resulting in lower total impedance
(Figure 4b), which was observed for higher amounts of inhibitors i.e., 3% inhibitor. Thus, at longer
duration of exposure, Rp and Ro decreased (Figure 6, Table 1). Moreover, for the sample in 2%
inhibitor-added solution, the Rp and Ro initially decreased up to 24 h but once the proper reaction
occurred, their values increased up to 120 h (Figure 6, Table 1). The highest Rp and Ro of steel rebar
exposed in 2% APMB inhibitor-added solution might have been owing to the reaction of Fe(OH)2

(Equations (7) and (10)) with APMB [77] where a proper amount of H3PO4 formed. H3PO4 led to
forming the iron phosphate (Equations (14)–(16)), whereas in 1% inhibitor, there was no significant
amount of phosphate ions to react with iron (Fe) and form iron phosphate (FePO4). However, in the
case of 3% inhibitor, a significant amount of phosphoric acid was released, which locally reduced the pH
of solution, started to dissolve the Fe(OH)2, and induced the corrosion reaction at steel rebar/solution
interface. After 120 h of exposure, pH was measured for 1, 2, and 3% inhibitor-added solutions
and these were found to be reduced from 12.65, 12.67, and 12.68 (measured during preparation of
solution) to 12.42, 12.50, and 12.08 at 20 ◦C, respectively. However, bare solution maintained its pH,
i.e., 12.60, even after 120 h of exposure of steel rebar. This result suggests that there was no occurrence
of atmospheric carbonation rather than the effect of inhibitor in reduction of pH. This result suggests
that once the amount of inhibitor increased, the pH of resulting solution became acidic, owing to the
acidification by H3PO4 (Equation (13)). Therefore, it was concluded that 2% inhibitor is the optimal
amount of 0.5 M APMB to form the protective oxide/passive film, i.e., FePO4, which was observed by
Raman spectroscopy (Figure 9b) and XPS (Figure 11b).

Fe(OH)2 + 2H3PO4 → Fe(H2PO4)2 + 2H2O (14)
↓

(primary iron phosphate)

Fe(H2PO4)2 → FeHPO4 + H3PO4 (15)
↓

(secondary iron phosphate)

4FeHPO4 + O2 → 4FePO4 + 2H2O (16)
↓

(tertiary iron phosphate)
Fe(OH)2 reacted with H3PO4 released from APMB inhibitor (Equation (13)) during exposure in

solution and formed primary iron phosphate, i.e., Fe(H2PO4)2 (Equation (14)), and secondary iron
phosphate, i.e., FeHPO4 (Equation (15)). These phosphates are very unstable and soluble in alkaline
environment, which might have been transformed into tertiary iron phosphate, i.e., FePO4 (Equation (16)),
by reacting with oxygen. FePO4 is very stable and insoluble in alkaline as well as slightly
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acidic conditions [78]. Thus, APMB inhibitor-containing steel rebar exhibited higher impedance,
which reduced the corrosion reaction. Therefore, it can be said that 2% inhibitor is the optimal amount
to form proper passive film onto the steel rebar surface.

5. Conclusions

From the above results and discussion, the following conclusions can be drawn:
OCP of steel rebar exposed in inhibitor-containing solution is nobler compared to bare (without

inhibitor) solution but gradually shifted toward active direction with exposure period, owing to the
acidification of the solution. However, OCP of the rebar sample exposed to 2% inhibitor-added solution
shifted toward active direction up to 24 h of exposure thereafter. Ennobling in OCP was observed
owing to the formation of protective passive film.

(1) EIS results corroborated with the OCP where initially up to 24 h of exposure, Rp and Ro gradually
decreased but, once the exposure period reache up to 120 h, their values increased, which revealed
the formation of passive film onto the steel rebar in 2% inhibitor-containing solution.

(2) The steel rebar exposed in 2% inhibitor-added SCP + 3.5 wt.% NaCl solution showed 90%
inhibition efficiency after 1 h of exposure but its value decreased to 62.48% once the exposure
periods were extended up to 120 h.

(3) Potentiodynamic studies revealed that the steel rebar exposed to 2% inhibitor-added solution
exhibited lower in cathodic and anodic current density compared to the rebar exposed to bare
solution after 120 h of exposure.

(4) SEM results of the steel rebar exposed to 2% inhibitor-containing solution show dendritic growth
of the oxides on the surface after 120 h of exposure while the steel rebar exposed to the bare
solution exhibited agglomeration of oxide products on the surface.

(5) Raman spectroscopy and XPS confirmed the formation of thermodynamically stable and sparingly
soluble goethite, maghemite, and iron phosphate (FePO4) as passive/oxide film onto the surface
of steel rebar exposed to 2% inhibitor-containing solution. Thus, corrosion rate reduced at longer
duration of exposure in SCP + 3.5 wt.% NaCl solution.
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