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Abstract: Asbestos-containing pottery shards collected in the northeast of Corsica (Cap Corse) and
dating from the 19th century, or earlier, have been analyzed by SEM-EDS, XRPD, FTIR and Raman
microspectroscopy. Blue (crocidolite) and white (chrysotile) asbestos fiber bundles are observed in
cross-sections. Most of the asbestos is partly or totally dehydroxylated, and some transformation to
forsterite is observed to occur, indicative of a firing above 800 ◦C. Examination of freshly fractured
pieces shows a nonbrittle fracture with fiber pull-out, consistent with a composite material behavior,
which makes these ceramics the oldest fiber-reinforced ceramic matrix composite. Residues indicate
the use of this pottery as a crucible for gold extraction using cyanide.
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1. Introduction

The fracture of a ceramic gives rise to a brittle edge, and fracture initiation depends upon the
defects and their distribution in the matrix. It is thus difficult to design the shape and mechanical
strength of a ceramic object. However, the association of two brittle materials, i.e., a composite material,
can give rise to a nonbrittle material which can resist fracture [1–3]. Defects no longer determine
the ultimate strength of such a material, and it becomes possible to predict the strength that these
materials will be able to support [1]. The best fracture resistance is obtained by reinforcing a ceramic
matrix with long ceramic fibers, first with boron and carbon fibers, then with fibers having a more
complex composition and better thermochemical stability such as glass (silicate E-glass), SiC, Al2O3

or mullite (3Al2O3·2SiO2) [4]. Natural asbestos fibers have additionally been largely used during the
20th century for the reinforcement of cements—and for thermal insulation and fire-protection—until
their toxicity was considered too high in the 1980s. Most scholars believe that fiber-reinforced ceramic
matrix composites (CMCs) are an innovation of the 20th century, whereas asbestos-fiber-reinforced
pottery was actually produced centuries before in the north part of Corsica (Cap Corse).

The deliberate use of asbestos or similar minerals (serpentines) has been noted since the Middle
Ages, but some Neolithic pottery already contained asbestos. Chiva and Ojalvo [5] reported that
Alexandre Brongniart, the Head of the famous Sèvres Imperial Factory, known before and then as the
Royal Factory, from 1800 to 1847 and founder of the French National Ceramic Museum, first studied
asbestos-based pottery from Corsica in an unpublished manuscript [6]. This demonstrates the interest
of the founder of ceramic processing science in special ceramics. More recently, ethnological studies on
this asbestos-based pottery were published in French in specialized journals [6,7] and drew attention
from the ceramic composite community [8]. Archaeological excavations of different sites in Corsica
have shown that these asbestos-reinforced artefacts have been produced at least since the Middle
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Ages in the northeast part of the island, where there are numerous ophiolite and serpentine outcrops
(Castagnicia, Nebbio, Monte San Petrone and Cap areas (Canari)), which have been largely exploited
during the 20th century for applications in the building and insulation industries. The production of
this asbestos-based pottery continued up to the middle of the 20th century. Istria [7] identified at least
15 familial workshops active around 1900. Documents indicate that 3 volumes of “clay” were mixed
with 1 volume of “dried asbestos tow”.

Artefacts were used as food cooking utensils. The waterproofing of the porous body (the pottery
is not glazed) was accomplished by using sheep fat to plug the pores. Indeed, both the porosity and
the fiber reinforcement improve the mechanical toughness of the artefact. According to ethnographic
records, the production was conducted mainly by women potters in villages, and the firing took place
in bread ovens or in simple pits [7]. Historical records indicate that asbestos-rich pottery was used by
the Romans for cremation and that asbestos textiles were made. Hulthén [9] reported that artefacts
very rich in asbestos (50% to 90% volume) have been made in Finland and North Scandinavia from ca.
3900 BC to 200 AD and 1500 AD, respectively, for metal production (crucibles and molds). It is also
reported that asbestos fibers were added to plaster during the Middle Ages or before in Cyprus [10].

We present here the first study of four shards provided by the Corsican Archaeological
Office (DRAC).

2. Materials and Methods

2.1. Pottery Shards

The four shards have been selected for the variability of their color from a series of samples
collected by Corsican scholars in the northeast of Corsica during the 19th and 20th centuries (Table 1).
The exact provenances are not known. Figure 1 shows the samples (and cross-sections) and the main
spots analyzed by SEM-EDS, XRPD, FTIR and Raman microscopy. Coarse grains (up to 5 mm) are
mixed in a rather homogeneous matrix of a high open porosity (~30%).

Table 1. Oxide composition measured by SEM-EDS on spots indicated in Figure 1 for samples a to c.
Characteristic values in bold.

Oxide
Sample b Sample c Sample a Sample d

«0» «4» «3» «6» «1» «6» «8» «0» «1» «2» «6»

SiO2 50.73 42.79 50.41 56.78 54.91 55.68 42.21 55.52 55.39 61.24 4.68
Al2O3 3.47 11.01 7.63 1.88 1.63 14.13 28.29 3.19 1.92 4.88 1.26
CaO 17.87 2.43 6.44 9.74 12.81 6.34 20.08 11.47 13.06 11.57 0.82
MgO 19.74 23.23 15.84 23.53 21.99 8.02 1.93 22.54 20.03 11.72 3.45
K2O 0.35 0.97 0.29 0.15 0.18 0.23 0.09 0.20 0.13 0.05 0.09

Na2O 0.36 0.31 0.12 1.10 0.76 4.82 0.24 0.46 0.76 5.11 0.03
Fe2O3 6.44 17.75 18.12 6.14 7.18 8.78 6.45 4.54 5.03 4.81 88.20
TiO2 0.13 0.40 0.18 0.07 0.10 1.52 0.15 0.63 0.08 0.04 0.15
NiO 0.41 0.52 0.44 0.14 0.09 0.04 0.09 0.27 0.12 0.06 0.30

MnO2 0.14 0.09 0.17 0.15 0.18 0.24 0.16 0.37 0.08 0.09 0.19
SO3 0.14 0.05 0.03 0.22 0.05 0.16 0.18 0.70 0.26 0.20 0.06

Cr2O3 0.23 0.48 0.34 0.11 0.13 0.05 0.14 0.12 0.15 0.24 0.79
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Figure 1. Cross sections of the 4 shards analyzed (a–d, see Table 1). Raman analyzed spots are labeled.

2.2. Methods

The shards were simply cut with a low-speed diamond-rich bronze saw (Minitom, Struers,
Denmark) to obtain a flat cross-section. The surfaces and cross-sections were observed with an optical
microscope (BX51 Microscope, Olympus Corporation, Tokyo, Japan). Raman microspectroscopic
analysis was performed using two instruments: (i) a high-resolution HR800 LabRam spectrometer
(Horiba Scientific Jobin Yvon, Longjumeau, France) coupled to a BX Olympus microscope with different
long and short working distance objectives, equipped with an Ar+ ion laser (457 nm) and a Peltier
cooled CCD detector (resolution <2 cm−1), and (ii) a high-sensitivity LabRam Infinity (Dilor, Horiba
Jobin Yvon, Lille, France) spectrometer equipped with YAG 532 nm and He 633 nm lasers and a
similarly cooled CCD detector (resolution ~4 cm−1). The analysis was carried out with Olympus ×10,
×50 and ×100 ultralong working distance objectives in order to obtain a characterization of the main
phases. More than 20 spectra were collected for each sample with the two instruments. The laser
power of illumination at the sample ranged between 1 and 2 mW. Typical counting times ranged
between 1 and 30 min. Five to thirty accumulations were made in order to eliminate cosmic events and
to increase the signal-to-noise ratios. The Raman study assisted in the identification of representative
areas for additional local analyses.

FTIR ATR spectra were recorded on powdered samples with an Alpha (Bruker Optics, Ettlingen,
Germany) instrument equipped with Diamond ATR accessory; 30 accumulations were made for
each spectrum.

The elemental composition was obtained with a 5410 LV SEM-EDX (JEOL, Tokyo, Japan) using an
acceleration voltage of 20 kV. The sample was wrapped with carbon-rich tape with a small window for
the area to be studied. Quantitative elemental analysis (oxide) was conducted done using the ZAF
calculation method as implemented in the Iridium Ultra software (IXRF Systems, Austin, TX, USA).
The validity of measurements was monitored by applying the same procedure to “Corning Museum B,
C and D” and American “National Bureau of Standards (NBS 620)” certified glass-reference samples,
as usual [11]: the error was estimated to be below 10%, except for aluminum.
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X-ray powder diffraction (XRPD) patterns were recorded on powders prepared in an agate mortar
with a SmartLab diffractometer manufactured by Rigaku (Rigaku Corp., Tokyo, Japan). CuKα radiation
was used. The diffractometer was equipped with a Kβ filter and a D/teX Ultra 250 detector. Data were
collected between 5 and 70◦ 2θ at every 0.01◦ in the Bragg Brentano geometry. The scan speed was
5◦/min and the slit configuration was as follows: incident slit, 0.5◦; length limiting slit, 10 mm; receiving
slit #1, 20 mm; and receiving slit #2, 20 mm. All specimens were rotated during data collection with
a speed of 60 rpm. PDXL 2 software (version 2.8.3.0), Rigaku Corp., Tokyo, Japan) was used for the
powder diffraction data analysis [12]. The analyzed surface area (20 × 20 mm2) and the fine powdering
allowed one to record spectra representative of all the phases which occur in more than ca. 1%.

3. Results

3.1. Compositions

Table 1 shows the representative compositions measured by SEM-EDS on about a 50 × 50 µm2

area. Silica content ranges between 50 and 55 wt %, except for in three spots with lower values (40 and
5 wt %) and one spot with a much higher content (~60 wt %). The low-silica spot corresponds to
a grain made of iron oxide (Fe2O3 = 88 wt %). The alumina content is low (~2–7 wt %), except for
in three spots (~13 and 28 wt %). Aluminum arises mainly from clays, since the level of aluminum
content in asbestos is low or even nil. The main characteristic is the high content of MgO (~20 wt %),
except for in two spots with low content (8 and 12 wt %) and one spot with a very low content (~2 wt %,
but also alumina-rich). The CaO content ranges between ~3 and 20 wt %. Small percentage contents
of NiO and Cr2O3 are measured (~0.1 to 0.5 wt %). Obviously, the areas analyzed correspond to
different magnesium silicates and to two other phases, namely iron oxide (sample d, spot 6) and
calcium aluminosilicate (sample a, spot 8). Vibrational spectroscopic and XRPD analyses will allow the
identification of the mineral phases in amounts more than ca. 1%.

3.2. Evidence of Asbestos Fibers

Visual and optical microscopic examination can easily detect the presence of long fibers: see in
particular, in Figure 1, the right-hand side of sample d (close to the scale) and the top left-hand side of
sample b (above the o mark). The beautiful and flat sections obtained by sawing with a diamond saw
testify to the good mechanical resistance of the objects, in accordance with the time necessary to saw
the shards. This good mechanical strength indicates good sintering. The presence of these fibers is
much more obvious on the SEM images (Figure 2). A preferential orientation of the fibers is observed
perpendicular to the section of the pottery. This is consistent with a shaping on a potter′s wheel, which
orients the bundles of fibers by the turning movement and pressure of the hands. The diameters of the
individual fibers range between about 100 nm and 1 µm, and the length can reach a few centimeters.
The fibers form heaps and clumps, and big grains are visible (see, e.g., Figure 1a, spots 3, 4, 8 and 6).
The red color of the body, especially on the periphery, indicates that firing has been undertaken
under an oxidizing atmosphere. The porosity of the body is high, as expected for terracotta fired at a
low temperature, i.e., at a temperature inferior to the formation of a large amount of a liquid phase,
which would typically be 1050 ◦C for CaO and MgO aluminosilicates [13].

Figures 3 and 4 show representative FTIR ATR spectra collected on powdered fragments of
the shards. Spectrum df has been recorded on a fiber bundle extracted from sample d. The bands,
for instance, the Si-O stretching and bending modes at ~960 (1015 and 1080) and 620 cm−1 (Figure 3),
are characteristic of asbestos and similar compounds (amphiboles and pyroxenes) [14–21]. From this
first analysis, it can be seen that the samples b and d on the one hand and the samples a and c on
the other hand are rather similar, but sample d appears to be more heterogeneous. The narrow O-H
stretching modes at ~3670 cm−1 (Figure 4) are very specific and fit well with asbestos. On the contrary,
the broad O-H band peaking at ~3400 cm−1 with a d shoulder at 3200 cm−1 is assignable to water traces
adsorbed at the pore surface, as observed for many ceramics.
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Differences between samples are evident; for instance, the spectrum of sample c looks to be richer
in asbestos fibers, in accordance with the XRPD results (Figure 5, see further). These differences could
arise from the use of different raw materials and/or different relative amounts of fibers and clay used in
the preparation and also from different degrees of reaction/transformation under heating.
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Figure 5. XRPD patterns for samples c (top) and d (bottom). XRPD patterns of indexed phases:
antigorite (PDF# 00–007-0417), heated actinolite (PDF# 01-089-5367), quartz (PDF# 00-001-0649),
chlorite–serpentine (NR) (PDF# 00-052-1044), crocidolite (riebeckite) (PDF# 00-027-1415), tremolite
(PDF# 01-086-1319), orthopyroxene (PDF# 01-076-3331), diopside (PDF# 00-017-0318) and talc 1A
(PDF# 01-082-8123) are presented in the form of straight intensity lines at the pattern bottom [21–29].
See Appendix A for XRPD patterns of samples a and b.

3.3. Tentative Identification of Minerals

There is a large variety of fibrous silicates and silicates built with silicate chains, isolated
(inosilicates) or connected to form layers (phyllosilicates). Serpentinite minerals (corresponding rock:
serpentine), of an “idealized” formula Mg3Si2O5(OH)4, are hydrous phyllosilicates. Many polymorphs
are identified; the most frequent minerals are antigorite, chrysotile and lizardite. Five types of
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amphiboles, belonging to the inosilicate group but with rather similar composition (with orthorhombic
or monoclinic unit-cells), are common and often associated with serpentinites: crocidolite
(Na2(Fe,Mg)3Fe2Si8O22(OH)2), amosite ((Mg,Fe)7Si8O22(OH)2), tremolite (Ca2Mg5Si8O22(OH)2),
actinolite (Ca2(Mg,Fe)5Si8O22(OH)2) and anthophyllite ((Mg,Fe)7Si8O22(OH)2). All these phases
contain silicon, calcium and iron as main elements, as can be seen in the compositions given in Table 1.
Nephrite (Ca2(Mg,Fe)5Si8O22(OH)2), a rock rich in amphibole, is used as jade. Pyroxenes, e.g., diopside
(CaMg(SiO3)2), also belong to the inosilicate group but exhibit a simpler composition, without the
OH group. Orthopyroxenes have a more complex formula: (Mg,Fe)2Si2O6. Jadeite, the second form
of jade, has a composition close to NaAlSi2O6. Due to the similarity of the XRPD patterns of the
serpentinites and amphibole polymorphs [22–30], Raman spectroscopy is advantageous for mineral
identification [31–41]. The identification of specific minerals remains difficult, especially when their
structures are degraded by firing in the kiln.

Inosilicates are built with [SiO3]2− entities forming long chains. The amphibole structure
is composed of the [Si4O11(OH)]7− anion (i.e., four of the above entities, but also hydroxylated).
The Raman spectrum of these phases, characterized by a short Si-O-Si bridge between adjacent
tetrahedra, shows a well-defined stretching mode varying from 650 to 690 cm−1 (see further), or even
up to 700 cm−1 for jadeite in which aluminum replaces part of the silicon framework.

The main forms are serpentine, lizardite and chrysotile (called “white asbestos”), which have
been used mostly in modern building and automotive applications [41] due to the high quality of the
fibers (in terms of length, small diameter, etc.); the other main form is antigorite. Magnesium ions
can be replaced by other elements such as iron, nickel, titanium and chromium. Crocidolite is called
“blue asbestos” and has been selected for thermal insulation [42].

With the aid of the PDXL 2 software, it is possible to identify a larger amount of tremolite and
minor amounts of diopside, actinolite, talc (all magnesium-based aluminosilicates) and quartz in
sample c (Figure 5 top). It is also possible to identify large amounts of antigorite and chlorite–serpentine
and minor amounts of (heated) actinolite, crocidolite (riebeckite), talc and quartz in sample d (Figure 5
bottom). Talc (Mg3Si4O10(OH)2) results from the degradation of amphiboles and pyroxenes and belongs
to the phyllosilicate group, like the serpentinites. XRPD patterns of samples a and b (Appendix A,
Figures A1 and A2) are rather similar except for the identification of albite (sodium feldspar, belonging
to the tectosilicate group) in both samples in place of orthopyroxene in sample c. Actinolite and quartz
are also found in all samples. Antigorite and chlorite–serpentine are found in samples a, b and d,
while albite is found only in samples a and b. Crocidolite is found in samples b and d, while tremolite
is found in samples b and c. Diopside and orthopyroxene are found in samples b and c, while talc is
found in samples c and d. Minor abundant mineral phases noticed in the Raman spectra (see further)
were not detected in the XRPD patterns. From the XRPD patterns, their content could be estimated to
be less than 3% each.

Two types of raw material sets are recognized, one used for samples a and b and the other used
for samples c and d. It should be noted that quantitative analysis of the collected XRPD patterns is not
completely reliable due to the preferential orientation of the fibrous phase in relation to the shaping of
the pottery.

However, it is obvious that the major component in sample a is antigorite; sample b is primarily
composed of actinolite and/or tremolite and/or crocidolite (actinolite, tremolite and crocidolite are
difficult to distinguish in complex XRPD patterns like this one), antigorite and chlorite–serpentine;
sample c is primarily composed of actinolite and/or tremolite (actinolite and tremolite are difficult to
distinguish in complex XRPD patterns like this one); and sample d is primarily composed of actinolite
and/or crocidolite (actinolite and crocidolite are hard to distinguish in complex XRPD patterns like
this one), antigorite and chlorite–serpentine. Other mineral phases noticed on the XRPD patterns of
samples a–d could be treated as moderately abundant.

Figure 6 shows representative Raman spectra recorded from the white fiber yarns located at the
top left of sample b (spectrum #0) and on the section of a large grain (#4).
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(Si-O-Si stretching mode) and differences in the νO-H patterns (3300–3800 cm−1) are obvious.
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Figure 8. Representative Raman spectra recorded on some spots of samples a (left) and d (right)
(see Figure 1).

For instance, the Si-O-Si bridge mode shifts from ca. 658 cm−1 in amosite (“brown asbestos”,
used in cement and pipe insulation [42]) or 664 cm−1 in crocidolite (blue asbestos) to 692 cm−1 in
chrysotile (white asbestos) [22,25,26]. The differentiation from the infrared spectrum is less clear-cut
due to the broader bandwidth of the IR modes and because the global analysis superimposes the
contribution of other phases (Figure 3). The bandwidth of the main Raman Si-O-Si stretching mode
also shows various bandwidths, from very narrow (Figure 7) to rather broad (Figures 6 and 9).

Chrysotile (white asbestos) consists of long, flexible fibers, the best quality from the point of view
considering the fiber’s mechanical properties (the smaller the fiber diameter, the higher the radius
of curvature) and the tolerance of the fiber to folding; the fiber quality of blue and brown asbestos is
generally lower, and anthophyllite and tremolite are not really as fibrous as amphibole asbestos [38].
The identification of blue and white asbestos in these archaeological potteries indicates that a selection
of the best quality available has been made by the potter to optimize the mechanical behavior of the
cooking wares.

Important differences are observed in the Raman signature recorded in many places of the samples,
especially on coarse grains (Figures 6–9). The carbon doublet (ca. 1360–1600 cm−1) is observed in all
samples, especially in samples a (Figure 7) and c (Figure 8). This carbon can arise from different origins:
(i) the transformation of organic residues during the use of the utensils, (ii) the use of carbon-rich clays
(clays with organic (humic) acids exhibit a high plasticity) and/or (iii) the firing was undertaken under
reducing conditions.

The spectrum characteristic of garnet (strong stretching Si-O mode at ca. 900 cm−1 [43]) is observed
in sample a, spot 6, supporting the rather high level of aluminum found there.
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Figure 9. Representative Raman spectra recorded in the 2900–3950 cm−1 range on samples a and d
(A, above, see Figure 1). Examples of untransformed grain core are given on the top spectra. Maximum
intensity is measured in the center of the biggest grains visible on the cross-section. Details for the
spectrum of sample a are given on the bottom (B).
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3.4. OH Groups, Water and Clays

Modes characteristic of O-H vibrations are only detected in grain cores (Figure 9), which is ascribed
the de-hydroxylation induced by the firing: the bulk temperature of a grain is fixed by the internal
reaction until the reaction front has reached its core. Therefore, the pristine materials are preserved
in the center of the bigger and more thermally stable grains. The relative intensity of the different
components and their peak positions are different from those reported in the literature, with some band
wavenumbers being rather close to those of antigorite (3650–3750 cm−1) and chrysotile (3700 cm−1).
Both phases are identified on the XRPD spectra (Figures 4, A1 and A2). Table 2 summarizes the
phases identified.

The FTIR spectra of asbestos in the O-H and H2O stretching range (3000–4000 cm−1) only show
narrow peaks characteristic of O-H vibrations [43]. In our case, strong and broad ~3200 and 3400 cm−1

bands are dominant, which are typical of water adsorbed on porous oxides [44] and of more or less
dehydrated clays [45]. As the volume analyzed by Raman scattering is much more precise, we will
discuss the proton species by mainly considering the Raman spectra.

Ethnological studies [7] reports that 3 volumes of clays were mixed with 1 volume of asbestos
during the manufacture. Both the XRPD and Raman techniques show no evidence of clay minerals.
However, the Raman signature of clays is always difficult to record, and the firing must have degraded
the clays sufficiently to make the X-ray diffraction not efficient. The presence of a clay-based product,
thermally degraded, is only indirectly identified by IR spectroscopy with the broad signature of
adsorbed water at high wavenumber (Figure 4) and by the broad Si-O stretching component at about
970 cm−1 (Figure 3), with the latter feature not being observed in the fiber bundle spectrum (Figure 3df).

Surprisingly, the signature of quartz (strong narrow Si-O bending peak at ~465 cm−1), a very
common mineral of a pottery body, is not easily detected by Raman scattering, although it is present
as a minor phase in the XRPD (Figures 5, A1 and A2). On the contrary, feldspar (main Si-O bending
mode at ~505 cm−1) is observed in many places by Raman scattering (see, e.g., Figure 8).The signature
of partially substituted hematite (peaks at ~225, 290, 405, 605 and 1300 cm−1 [41] in Figure 8) is also
frequently identified in the spectra, in agreement with the high content of iron oxide measured (Table 1;
for instance, the approximate percentage of Fe2O3 for spot 6).
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Table 2. (a) Phases identified by XRPD (estimation of the relative amounts: +, low; ++++, high). (b) Phases identified by Raman spectroscopy. Characteristic peaks are
indicated (cm−1); see Figures 5–8 and Figures A1–A4 in the Appendix A).

(a)

Samples/
Phases

Actinolite
(Heated) Antigorite Crocidolite

(Blue Asbestos) Tremolite Chlorite–
Serpentine Quartz Albite Diopside Ortho-

pyroxene Talc

a ++ ++++ ++ ++ +

c ++ ++++ + + ++ +

d +++ ++++ ++ ++ + +

b ++++ +++ ++ + ++ ++ + + +

(b)

Samples/
Phases

Antigorite
Chrysotile
Serpentine

Crocidolite
Amphibole

(Blue Asbestos)

Amosite
Amphibole Quartz Feldspar Diopside Pyroxene Talc Forsterite

690 ~664 658 460 503 668
1015

680
1007 820–850

a ++ + + +

b +++ +++

c +++ + +

d +++ ++ + ++

Other phases: hematite (d); carbon (a,c).
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3.5. Heating-Induced Effects and Remarks on Preparation Procedure

Most of the spectra exhibiting a serpentinite-like signature show a rather broad ca. 680 cm−1 peak
(full width at half height between 50 and 100 cm−1, as in Figure 5 (sp4) and Figure 8 (sp3)), although
the FWHH of the pristine fiber is less (close to ~30 cm−1 (Figure 7 [32])). The broadening indicates a
distribution of Si-O-Si bond lengths that could have arisen from the degradation of the pristine structure
upon heating. The large number of phases identified by XRPD and the variety of Raman spectra
observed are consistent with a firing taking place at low temperature, with a resultant degradation of the
pristine mineral occurring without the clear formation of neophases. Trittschack et al. [18–20] observed
the intensity decrease of the O-H stretching mode at ~3600–3700 cm−1 over 450 ◦C (de-hydroxylation)
and then the formation of forsterite at a temperature over ~500 ◦C, with the characteristic doublet seen
at ~820–850 cm−1.

Complete de-hydroxylation requires heating above ~700 ◦C. Comparison of the IR patterns in
Figure 3 shows that the lowest OH content, based on the intensity of the 3670 cm−1 narrow band,
is measured for the c and d samples, and the lowest water content is also found for these samples
(measured by the lower intensity of the 3200 cm−1 broad band). The 3400 cm−1 component may arise
from the clay-based matrix [45] being more or less transformed by the firing. We can expect that the
lowest water content is related to a lower porosity and hence to the higher firing temperature, with the
mean composition of the shards being rather similar in a first approach. Indeed, the sample d spectrum
measured at spot 2 shows a strong and broad ~1010 cm−1 band, consistent with a silicate amorphous
phase formed in the reaction. Furthermore, for this sample, it was not possible to observe the fiber
bundles by optical and scanning electron microscopy, which is most likely due to the higher degree of
reaction between phases.

Figure 9 compares the spectra recorded from the periphery to the center of two large grains in
samples a and d. Only in the center is a nice spectrum obtained, and the spectra recorded from the
center to the periphery become progressively very noisy due to the degradation that becomes more and
more important when approaching the surface of the grain. The firing conditions (temperature, heating
rate, levels, etc.) therefore limit degradation, and the fibers are generally preserved, as evidenced by
the pull-out over lengths on the order of several millimeters. This testifies to an empirical mastery of
the manufacture of CMC.

Observation of a black core or side for all samples (Figure 1), as well as the carbon doublet
(1370–1600 cm−1) in many places, is consistent with a heating process under reducing conditions;
reducing conditions promote the formation of a liquid phase at lower temperatures in iron-rich
pottery [13].

3.6. Evidence of Residues: Gold Ore Processing

Figure 9 shows a strong narrow peak at 2165 cm−1, which is characteristic of a CN bond; this can
be ascribed to the incorporation of the conservation chemicals (paraloid, glues) commonly used by
archaeologists to preserve the samples. However, cyanoacrylate spectra show a characteristic band
at a lower wavenumber, ca. 2250 cm−1 [46]. The observed wavenumber here fits very well with
the species KAu(CN)2 (2165 cm−1) and is also not far from that of KAg(CN)2 (2141 cm−1) [47–49].
KAu(CN)2 and KAg(CN)2 are so-called cyanidation compounds which have been used in gold- and
silver-plating/extraction since the 19th century [50]. This would indicate that asbestos-based pottery
pieces have also been used as crucibles due to their good resistance to thermal shock. Gold mining
is reported to occur locally and not far away from the asbestos outcrops [51]. The demonstration of
the possibility of identifying the residues of metallurgical use in archaeological shards opens a new
field of research, as this type of analysis has only been conducted to assess potential domestic uses
(food residues).
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4. Conclusions

Two types of raw materials have been identified in these archaeological asbestos-fiber-reinforced
ceramic matrix composites, confirming the ethnological classification. It appears that a selection of the
most appropriate asbestos fibers has been made by ancient potters. Obviously, the good mechanical
strength due to the fiber reinforcement (the fibrous behavior of the length of the fiber pull-out reaches
the millimeter range) was selectively searched for, and at that time the toxicity of asbestos fibers was
not recognized. This demonstrates that the use of natural eco-friendly products (clays and stones)
and their traditional preparation by women (in the ethnological record) are not guarantees of the
achievement of a good product. Detailed analysis by Raman microscopy of the νO-H modes shows
that the firing conditions were close to or slightly exceeded the degradation temperature of the asbestos
fibers, thus preserving their mechanical properties.

The observation of traces of KAu(CN)2 proved the use of one pottery shard as a crucible for gold
extraction/separation. This highlights the potential of Raman microscopy, a noninvasive and mobile
technique, in identifying residues testifying to nondomestic, chemical and metallurgical uses in the
case of these ceramics. A sorting of useful shards for additional analyses can therefore be done on site,
in museum reserves or on excavation sites.
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Figure A1. XRPD pattern for specimen a. XRPD patterns of indexed phases: heated actinolite
(PDF# 01-089-5367), quartz (PDF# 00-001-0649), antigorite (PDF# 00-007-0417), chlorite–serpentine (NR)
(PDF# 00-052-1044) and albite (PDF# 01-089-6425) are presented in the form of straight intensity lines at
the bottom of the pattern.
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Figure A2. XRPD pattern for specimen b. XRPD patterns of indexed phases: heated actinolite (PDF#
01-089-5367), quartz (PDF# 00-001-0649), crocidolite (riebeckite) (PDF# 00-027-1415), diopside (PDF#
00-017-0318), orthopyroxene (PDF# 01-076-3331), antigorite (PDF# 00-007-0417), chlorite–serpentine (NR)
(PDF# 00-052-1044), tremolite (PDF# 01-086-1319) and albite (PDF# 01-089-6425) are presented in form of
straight intensity lines at the bottom of the pattern.Materials 2020, 13, x FOR PEER REVIEW 16 of 19 

 

 

Figure A3. Representative EDS (left) and Raman (right) spectra recorded on some spots of sample a 

(see Figure 1). 

Figure A3. Representative EDS (left) and Raman (right) spectra recorded on some spots of sample a
(see Figure 1).



Materials 2020, 13, 3597 16 of 18
Materials 2020, 13, x FOR PEER REVIEW 17 of 19 

 

 

Figure A4. Representative EDS (left) and Raman (right) spectra recorded on some spots of sample d 

(see Figure 1). 

References 

1. Chawla, K.K. Composites Materials, Sciences and Engineering, 2nd ed.; Springer: New York, NY, USA, 1998. 

2. Evans, A.G.J. Perspectives on the development of high-toughness ceramics. J. Am. Ceram. Soc. 1990, 73, 187–

206. 

3. Mah, T.I.; Mendiratta, M.G.; Katz, A.P.; Mazdiyasni, K.S. Recent developments in fiber-reinforced high 

temperature ceramic composites. Am. Ceram. Soc. Bull. 1987, 66, 304–308. 

4. Mouchon, E.; Colomban, Ph. Oxide ceramic matrix/oxide fibre wowen fabric composites exhibiting 

dissipative fracture behaviour. Composites 1995, 26, 175–182. 

5. Chiva, I.; Ojalvo, D. La poterie corse à l’amiante. Rev. Arts Tradit. Pop. 1959, 7, 203–227. 

6. Mezzadri, B. La Corse—Poterie traditionnelle à l’amiante. Rev. Céramique Verre 1986, 26, 6–9. 

7. Istria, D. L’utilisation de l’amiante en corse du XIVe au XIXe siècle. Médiévales 2007, 53, 39–50. 

8. Colomban, P.; Gouadec, G. The ideal Ceramic fiber/oxide matrix composite: How to conciliate antagonist 

physical and chemical requirements. Ann. Chim. Sci. Matériaux 2005, 30, 673–688, doi:10.3166/acsm.30.673-

688. 

9. Hulthén, B. On ceramic ware in northern scandinavia during the neolithic, bronze, and early iron Age: A 

ceramic-ecological study. In Archaeology and Environment Series (e-book), 8th ed.; University of Umea: Umea, 

Sweden, 1991. 

10. Kakoulli, I.; Prikhodko, S.V.; King, A.; Fischer, C. Earliest evidence for asbestos composites linked to 

Byzantine wall paintings production. J. Archaeolog. Sci. 2014, 44, 148–153. 

11. Colomban, Ph.; Ambrosi, F.; Ngo, A.-T.; Lu, T.-A.; Feng, X.-L.; Chen, S.; Choi, C.-L. Comparative analysis 

of wucai Chinese porcelains using mobile and fixed Raman microspectrometers. Ceram. Int. 2017, 43, 14244–

14256. 

12. PDXL 2. Integrated X-Ray Powder Diffraction Software, Version 2.8.3.0; Rigaku Corporation: Tokyo, Japan, 

2018. 

13. Levin, E.M.; Robin, C.R.; McMurdie, H.F. Phase Diagrams for Ceramists; The American Ceramic Society: 

Columbus, OH, USA, 1964. 

Figure A4. Representative EDS (left) and Raman (right) spectra recorded on some spots of sample d
(see Figure 1).

References

1. Chawla, K.K. Composites Materials, Sciences and Engineering, 2nd ed.; Springer: New York, NY, USA, 1998.
2. Evans, A.G.J. Perspectives on the development of high-toughness ceramics. J. Am. Ceram. Soc. 1990, 73,

187–206. [CrossRef]
3. Mah, T.I.; Mendiratta, M.G.; Katz, A.P.; Mazdiyasni, K.S. Recent developments in fiber-reinforced high

temperature ceramic composites. Am. Ceram. Soc. Bull. 1987, 66, 304–308.
4. Mouchon, E.; Colomban, P. Oxide ceramic matrix/oxide fibre wowen fabric composites exhibiting dissipative

fracture behaviour. Composites 1995, 26, 175–182. [CrossRef]
5. Chiva, I.; Ojalvo, D. La poterie corse à l’amiante. Rev. Arts Tradit. Pop. 1959, 7, 203–227.
6. Mezzadri, B. La Corse—Poterie traditionnelle à l’amiante. Rev. Céramique Verre 1986, 26, 6–9.
7. Istria, D. L’utilisation de l’amiante en corse du XIVe au XIXe siècle. Médiévales 2007, 53, 39–50. [CrossRef]
8. Colomban, P.; Gouadec, G. The ideal Ceramic fiber/oxide matrix composite: How to conciliate antagonist

physical and chemical requirements. Ann. Chim. Sci. Matériaux 2005, 30, 673–688. [CrossRef]
9. Hulthén, B. On ceramic ware in northern scandinavia during the neolithic, bronze, and early iron Age:

A ceramic-ecological study. In Archaeology and Environment Series (e-book), 8th ed.; University of Umea:
Umea, Sweden, 1991.

10. Kakoulli, I.; Prikhodko, S.V.; King, A.; Fischer, C. Earliest evidence for asbestos composites linked to Byzantine
wall paintings production. J. Archaeolog. Sci. 2014, 44, 148–153. [CrossRef]

11. Colomban, P.; Ambrosi, F.; Ngo, A.-T.; Lu, T.-A.; Feng, X.-L.; Chen, S.; Choi, C.-L. Comparative analysis
of wucai Chinese porcelains using mobile and fixed Raman microspectrometers. Ceram. Int. 2017, 43,
14244–14256. [CrossRef]

12. PDXL 2. Integrated X-Ray Powder Diffraction Software, Version 2.8.3.0; Rigaku Corporation: Tokyo, Japan, 2018.
13. Levin, E.M.; Robin, C.R.; McMurdie, H.F. Phase Diagrams for Ceramists; The American Ceramic Society:

Columbus, OH, USA, 1964.

http://dx.doi.org/10.1111/j.1151-2916.1990.tb06493.x
http://dx.doi.org/10.1016/0010-4361(95)91380-N
http://dx.doi.org/10.4000/medievales.3383
http://dx.doi.org/10.3166/acsm.30.673-688
http://dx.doi.org/10.1016/j.jas.2014.01.031
http://dx.doi.org/10.1016/j.ceramint.2017.07.172


Materials 2020, 13, 3597 17 of 18

14. Andreozzi, G.B.; Ballirano, P.; Gianfagna, A.; Mazziotti-Tagliani, S.; Pacella, A. Structural and spectroscopic
characterization of a suite of fibrous amphiboles with high environmental and health relevance from
Biancavilla (Sicily, Italy). Am. Mineral. 2009, 94, 1333–1340. [CrossRef]

15. Giacobbe, C.; Gualteri, A.F.; Quartieri, S.; Rinaudo, C.; Allegrina, M.; Andreozzi, G.B. Spectroscopic study of
thermal transformation of chrysotile-asbestos containing materials (ACM). Eur. J. Mineral. 2010, 22, 535–546.
[CrossRef]

16. Ristic, M.; Czako-Nagy, I.; Music, S.; Vértes, A. Spectroscopic characterization of chrysotile asbestos from
different regions. J. Mol. Struct. 2011, 993, 120–126. [CrossRef]

17. Trittschack, R.; Groberty, B.M. Koch-Muller, In-situ high-temperature Raman and FTIR spectroscopy of the
phase transformation of lizardite. Am. Mineral. 2012, 97, 1965–1976. [CrossRef]

18. Trittschack, R.; Groberty, B. Dehydroxylation kinetics of lizardite. Eur. J. Mineral. 2012, 24, 47–57. [CrossRef]
19. Trittschack, R.; Groberty, B. The dehydroxylation of crhrysotile: A combined in situ micro-Raman and

micro-FTIR study. Am. Mineral. 2013, 98, 1133–1145. [CrossRef]
20. Ventura, G.; Vigliaturo, R.; Gieré, R.; Pollastri, S.; Gualtieri, A.; Iezzi, G. FTIR Spectroscopy of the regulated

Asbestos Amphiboles. Minerals 2018, 8, 413. [CrossRef]
21. Yang, H.-X.; Evans, B.W. X-ray structure refinements of tremolite at 140 and 295 K: Crystal chemistry and

petrologic implications. Am. Mineral. 1996, 81, 1117–1125. [CrossRef]
22. Gatta, D.G.; Merlini, M.; Valdrè, G.; Liermann, H.-P.; Nénert, G.; Rothkirch, A.; Kahlenberg, V.; Pavese, A.

On the crystal structure and compressional behavior of talc: A mineral of interest in petrology and material
science. Phys. Chem. Miner. 2013, 40, 145–156. [CrossRef]

23. Hanawalt, J.D.; Rinn, H.W.; Frevel, L.K. Identification of Crystalline Materials. Ind. Eng. Anal. Chem. 1938,
10, 457–513. [CrossRef]

24. Gatta, G.D.; Rinaldi, R.; Knight, K.S.; Molin, G.; Artioli, G. High temperature structural and thermoelastic
behaviour of mantle orthopyroxene: An in situ neutron powder diffraction study. Phys. Chem. Miner. 2007,
34, 185–200. [CrossRef]

25. National Bureau of Standards (USA). Standard x-ray diffraction powder patterns. Monographs 1967, 255, 17.
26. Reynolds, R., Jr.; DiStefano, M.; Lahann, R. Randomly interstratified serpentine/chlorite: Its detection and

quantification by powder X-ray diffraction methods. Clays Clay Miner. 1992, 40, 262–267. [CrossRef]
27. Hess, H.; Smith, R.; Dengo, G. Antigorite from the vicinity of Caracas, Venezuela. Am. Mineral. J. Earth

Planet. Mater. 1952, 37, 68–75.
28. Meneghinello, E.; Alberti, A.; Cruciani, G. Order-disorder process in the tetrahedral sites of albite. Am. Mineral.

1999, 84, 1144–1151. [CrossRef]
29. Evans, B.W.; Yang, H.-X. Fe-Mg order-disorder in tremolite-actinolite-ferro-actinolite at ambient and high

temperature. Am. Mineral. 1998, 83, 458–475. [CrossRef]
30. Dichicco, M.C.; de Bonis, A.; Mongelli, G.; Rizzo, G.; Sinisi, R. µ-Raman spectroscopy and X-ray diffraction of

asbestos’ minerals for geo-environmental monitoring: The case of the southern Apennines natural sources.
Appl. Clay Sci. 2017, 141, 292–299. [CrossRef]

31. Jeong, H.; Moon, W.; Roh, Y. Characterization of mineralogical changes of chrysotile and its thermal
decomposition by heat treatment. Econ. Environ. Geol. 2016, 49, 77–88. [CrossRef]

32. Rooney, J.; Tarling, M.; Smith, S.; Gordon, K. Sub-micron raman spectroscopy mapping of serpentinite fault
rocks. J. Raman Spectrosc. 2018, 49, 279–286. [CrossRef]

33. Dodony, I.; Buseck, P.R. Serpentines close-up and intimate: An hrtem view. Int. Geol. Rev. 2004, 46, 507–527.
[CrossRef]

34. Viti, C.; Giacobbe, C.; Galtieri, A.F. Quantitative determination of chrysotile in massive serpentinites using
DTA: Implications for asbestos determinations. Am. Mineral. 2011, 96, 1003–1011. [CrossRef]

35. Groppo, C.; Rinaudo, C.; Cairo, S.; Gastaldi, D.; Compagnoni, R. Micro-Raman spectroscopy for a quick and
reliable identification of serpentine minerals from ultramarics. Eur. J. Mineral. 2008, 18, 319–329. [CrossRef]

36. Petriglieri, J.R.; Salvioli-Mariani, E.; Mantovani, L.; Tribaudino, M.; Lottici, P.P.; Laporte-Magoni, C.; Bersani, D.
Micro-Raman mapping of the polymorphs of of serpentine. J. Raman Spectrosc. 2015, 46, 953–958. [CrossRef]

37. Fornero, E.; Allegrina, M.; Rinaudo, C.; Mazziotti-Tagliani, S.; Gianfana, A. Micro-Raman spectroscopy
applied on oriented crystals of fluoro-edenite amphibole. Per. Mineral. 2008, 77, 5–14.

38. Galtieri, A.F.; Giacobbe, C.; Viti, C. The dehydroxylation of serpentine group minerals. Am. Mineral. 2012,
97, 666–680. [CrossRef]

http://dx.doi.org/10.2138/am.2009.3214
http://dx.doi.org/10.1127/0935-1221/2010/0022-2038
http://dx.doi.org/10.1016/j.molstruc.2010.10.005
http://dx.doi.org/10.2138/am.2012.4162
http://dx.doi.org/10.1127/0935-1221/2012/0024-2169
http://dx.doi.org/10.2138/am.2013.4352
http://dx.doi.org/10.3390/min8090413
http://dx.doi.org/10.2138/am-1996-9-1009
http://dx.doi.org/10.1007/s00269-012-0554-4
http://dx.doi.org/10.1021/ac50125a001
http://dx.doi.org/10.1007/s00269-006-0138-2
http://dx.doi.org/10.1346/CCMN.1992.0400302
http://dx.doi.org/10.2138/am-1999-7-817
http://dx.doi.org/10.2138/am-1998-5-606
http://dx.doi.org/10.1016/j.clay.2017.02.024
http://dx.doi.org/10.9719/EEG.2016.49.2.77
http://dx.doi.org/10.1002/jrs.5277
http://dx.doi.org/10.2747/0020-6814.46.6.507
http://dx.doi.org/10.2138/am.2011.3734
http://dx.doi.org/10.1127/0935-1221/2006/0018-0319
http://dx.doi.org/10.1002/jrs.4695
http://dx.doi.org/10.2138/am.2012.3952


Materials 2020, 13, 3597 18 of 18

39. Kloprogge, J.T.; Wharton, D.; Hickey, L.; Frost, R.L. Infrared and Raman study of interlayer anions CO3
2–,

NO3
−, SO4

2− and ClO4
− in Mg/Al-hydrotalcite. Am. Mineral. 2002, 87, 623–629. [CrossRef]

40. Frost, R.L.; Palmer, S.J. Infrared and infrared emission spectroscopy of nesquehonite Mg(OH)(HCO3) 2H2O:
Implications for the formula of nesquehonite. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 78,
1255–1260. [CrossRef]

41. Type of Asbestos. Available online: https://www.asbestos.com/asbestos/types/ (accessed on 4 July 2020).
42. Froment, F.; Tournié, A.; Colomban, P. Raman identification of natural red to yellow pigments: Ochre and

iron-containing ores. J. Raman Spectrosc. 2008, 39, 560–568. [CrossRef]
43. Kouketsu, Y.; Hattori, K.; Guillot, S.; Rayner, N. Eocene to Oligocene retrogression and recrystallization of

the Stak eclogite in northwest Himalaya. Lithos 2015, 240. [CrossRef]
44. Afify, A.S.; Hassan, M.; Piumetti, M.; Peter, I.; Bonelli, B.; Tulliani, J.-M. Elaboration and characterization

of modified sepiolites and their humidity sensing features for environmental monitoring. Appl. Clay Sci.
2015, 115, 165–173. [CrossRef]

45. Asquier, M.; Colomban, P.; Milande, V. Raman and infrared analysis of glues used for pottery conservation
treatments. J. Raman Spectrosc. 2009, 40, 1641–1644. [CrossRef]

46. Steele, C.J. Gold Adsorption on Active Carbon. Ph.D. Thesis, University of Newcastle upon Tyne: London,
UK, June 1997. Available online: https://www.researchgate.net/publication/36012399_Gold_adsorption_on_
active_carbon/link/5b0e4fcd0f7e9b1ed701619c/download (accessed on 12 July 2020).

47. Chadwick, B.M.; Frankiss, M.G. Vibrational spectra and structures of polycrystalline KAg(CN)2, NaAg(CN)2

and TlAg(CN)2. J. Mol. Struct. 1968, 2, 281–285. [CrossRef]
48. Jia, Y.F.; Steele, C.J.; Hayward, I.P.; Thomas, M. Mechanisms of adsorption of gold and silver species on

activated carbons. Carbon 1998, 36, 1299–1308. [CrossRef]
49. Silver Cyanide. Available online: https://en.wikipedia.org/wiki/Silver_cyanide (accessed on 12 July 2020).
50. Potassium Dicyanoaurate. Available online: https://en.wikipedia.org/wiki/Potassium_dicyanoaurate

(accessed on 12 July 2020).
51. Corsica Gold Extraction. Available online: https://books.google.fr/books?id=RQdHAQAAIAAJ&pg=PA211&

lpg\=PA211&dq=Corsica+gold+extraction&source=bl&ots=P-dxNx74tA&sig=ACfU3U1qpKUHSVka-7\

Q0MwdQcUc9F1xtAQ&hl=fr&sa=X&ved=2ahUKEwian5GYn8fqAhVOTBoKHaV1BYI4ChDoATAAegQ\

IChAB#v=onepage&q=Corsica%20gold%20extraction&f=false (accessed on 12 July 2020).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.2138/am-2002-5-604
http://dx.doi.org/10.1016/j.saa.2010.12.059
https://www.asbestos.com/asbestos/types/
http://dx.doi.org/10.1002/jrs.1858
http://dx.doi.org/10.1016/j.lithos.2015.10.022
http://dx.doi.org/10.1016/j.clay.2015.07.019
http://dx.doi.org/10.1002/jrs.2312
https://www.researchgate.net/publication/36012399_Gold_adsorption_on_active_carbon/link/5b0e4fcd0f7e9b1ed701619c/download
https://www.researchgate.net/publication/36012399_Gold_adsorption_on_active_carbon/link/5b0e4fcd0f7e9b1ed701619c/download
http://dx.doi.org/10.1016/0022-2860(68)80020-1
http://dx.doi.org/10.1016/S0008-6223(98)00091-8
https://en.wikipedia.org/wiki/Silver_cyanide
https://en.wikipedia.org/wiki/Potassium_dicyanoaurate
https://books.google.fr/books?id=RQdHAQAAIAAJ&pg=PA211&lpg\=PA211&dq=Corsica+gold+extraction&source=bl&ots=P-dxNx74tA&sig=ACfU3U1qpKUHSVka-7\Q0MwdQcUc9F1xtAQ&hl=fr&sa=X&ved=2ahUKEwian5GYn8fqAhVOTBoKHaV1BYI4ChDoATAAegQ\IChAB#v=onepage&q=Corsica%20gold%20extraction&f=false
https://books.google.fr/books?id=RQdHAQAAIAAJ&pg=PA211&lpg\=PA211&dq=Corsica+gold+extraction&source=bl&ots=P-dxNx74tA&sig=ACfU3U1qpKUHSVka-7\Q0MwdQcUc9F1xtAQ&hl=fr&sa=X&ved=2ahUKEwian5GYn8fqAhVOTBoKHaV1BYI4ChDoATAAegQ\IChAB#v=onepage&q=Corsica%20gold%20extraction&f=false
https://books.google.fr/books?id=RQdHAQAAIAAJ&pg=PA211&lpg\=PA211&dq=Corsica+gold+extraction&source=bl&ots=P-dxNx74tA&sig=ACfU3U1qpKUHSVka-7\Q0MwdQcUc9F1xtAQ&hl=fr&sa=X&ved=2ahUKEwian5GYn8fqAhVOTBoKHaV1BYI4ChDoATAAegQ\IChAB#v=onepage&q=Corsica%20gold%20extraction&f=false
https://books.google.fr/books?id=RQdHAQAAIAAJ&pg=PA211&lpg\=PA211&dq=Corsica+gold+extraction&source=bl&ots=P-dxNx74tA&sig=ACfU3U1qpKUHSVka-7\Q0MwdQcUc9F1xtAQ&hl=fr&sa=X&ved=2ahUKEwian5GYn8fqAhVOTBoKHaV1BYI4ChDoATAAegQ\IChAB#v=onepage&q=Corsica%20gold%20extraction&f=false
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Pottery Shards 
	Methods 

	Results 
	Compositions 
	Evidence of Asbestos Fibers 
	Tentative Identification of Minerals 
	OH Groups, Water and Clays 
	Heating-Induced Effects and Remarks on Preparation Procedure 
	Evidence of Residues: Gold Ore Processing 

	Conclusions 
	
	References

