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Abstract: A series of metal element (Al, Fe, Mg and Ni)-doped ZnO (M-ZnO) photocatalysts have been
successfully synthesized on graphene-coated polyethylene terephthalate (GPET) flexible substrate
via the hydrothermal method. The effects of doped metals in ZnO were also studied on the crystal
structure, morphology and photocatalytic performance. The photocatalytic experiment results
indicated that, compared with Al-, Mg- and Fe-ZnO/GPET photocatalysts under ultraviolet (UV) light
irradiation, Ni-ZnO/GPET had better photocatalytic activity, and the degradation rate of methylene
blue (MB) was 81.17%. Meanwhile, the mechanism of enhancing the photocatalytic activity of metal
element-doped ZnO is also discussed. It is concluded that, after doping with metal elements, electrons
and holes are prevented from recombination by trapping electrons of the ZnO/GPET conductive band,
thereby improving the photocatalytic activity.
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1. Introduction

In recent years, water pollution has become one of the most serious problems endangering human
health, the environment and social sustainable development. Semiconductor photocatalysis is a
green environmental protection technology with the ability to remove organic pollutants in the air
and water, and it is an effective way to solve the energy and environmental crisis [1]. At present,
metal oxides such as TiO2 [2], SnO2 [3] and ZnO [4] have been used by researchers around the
world to remove various pollutants by photocatalytic methods. Among them, ZnO exhibits excellent
photocatalytic activity under ultraviolet (UV) light irradiation, and its high exciton binding energy
(60 meV) provides it with efficient exciton emission at room temperature, making it an attractive wide
band gap (3.37 eV) semiconductor photocatalyst [5,6]. In addition, ZnO as a photocatalyst also has
the advantages of low cost, non-toxicity and high absorption of light quantum. However, the rapid
recombination of photogenerated carriers suppresses the photocatalytic efficiency of ZnO. Studies
have found that element doping is an effective method to improve the photocatalytic performance
of ZnO by inhibiting the recombination of electron-hole pairs [7]. Traditional powder catalysts have
problems such as difficult solid–liquid separation, difficult recycling and practical application [8].
To overcome these problems, thin-film photocatalysts can be used. ZnO films with photocatalytic
properties were prepared on polyetherimide flexible substrates using spray pyrolysis deposition
by Ameur et al. [9]. Sanchez et al. successfully fabricated ZnO nanorod (NR) film polyethylene
terephthalate (PET) substrate and studied its photocatalyst performance [10]. There are many types of
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flexible substrates, including conductive polymer films, graphene, metal foil, carbon fiber cloth and
so on. Among them, graphene, as a two-dimensional carbon nanomaterial with zero band gap, has
high specific surface area (~2600 m2g−1), high carrier mobility (15,000 cm2V−1s−1), high conductivity
and transparency, so it is considered to be an excellent flexible growing substrate [11]. In addition,
the combination of graphene and semiconductor materials can realize electron conduction between
the two and suppress the recombination efficiency of photo-generated carriers [12–14]. Meanwhile,
most studies have shown that doping metal ions can be devoted to enhancing the photocatalytic
performance of ZnO structures [15–17]. However, to the best of our knowledge, there are few reports
about metal-doped ZnO prepared on graphene-coated PET (GPET) by the hydrothermal method and
applied in the photocatalytic field.

In this paper, M-ZnO (M = Al, Fe, Mg and Ni) composites were synthesized by a simple and
green hydrothermal method by using GPET as the growth substrate. The prepared samples were
fundamentally characterized. The photocatalytic performance of ZnO/GPET composite structures
doped with different elements was analyzed, and the possible photocatalytic mechanisms of
M-ZnO/GPET were investigated.

2. Experimental Methods

2.1. Synthesis of M-ZnO Nanofilms on GPET Substrates

The M-ZnO nanofilms were successfully synthesized on GPET substrates. The substrates were
purchased from 2D Carbon Tech Inc., LTD (Changzhou, China). After ultrasonically cleaning the flexible
substrate of GPET with acetone (10 min), methanol (10 min) and deionized (DI) water, the ZnO seed
layers with a thickness of 30 nm were sputtered on the surface of GPET substrates by radio frequency
magnetron sputtering to control the growth direction of ZnO. We weighed a certain amount of zinc
nitrate hexahydrate (Zn(NO3)2·6H2O) and hexamethylenetetramine (C6H12N4) in 30 mL of DI water,
added 0.1 mol/L aluminum (Al2O3) (or iron nitrate (Fe(NO3)3·9H2O), magnesium nitrate hexahydrate
(Mg(NO3)2·6H2O) and nickel nitrate hexahydrate (Ni(NO3)2·6H2O)) as a dopant, and stirred the
mixture under weak magnetic conditions for 30 min to completely dissolve to form growth solution.

The configured growth solutions were transferred to Teflon-lined stainless-steel autoclaves, and the
GPET substrates sputtered with the ZnO seed layer were vertically immersed in the solution. After this,
the autoclaves were sealed and put into an oven and heated at 95 ◦C for 6 h. The products were washed
with DI water and dried naturally at room temperature.

2.2. Structural Characteristics

X-ray diffraction (XRD, by Rigaku D/MAX-Ultima with Cu Kα radiation, Rigaku, Tokyo, Japan) was
used to characterize the crystal structure of samples, and a field emission scanning electron microscope
(FESEM, by FEI Magellan 400, Milpitas, CA, USA) was used to observe the micro-morphology. X-ray
photoelectron spectroscopy (XPS, by ESCALAB Xi+, ThermoFisher, Dartford, UK) was mainly used to
characterize the surface elements of M-ZnO/GPET and valence state. The Cary Eclipse fluorescence
spectrophotometer (wavelength 325 nm) from Agilent (Santa Clara, CA, USA), was used to measure
the photoluminescence (PL) spectrum of the sample to detect its photoluminescence characteristics.

2.3. Photocatalytic Measurement

The photocatalytic performance of M-ZnO/GPET nanofilms was analyzed by measuring the
degradation rate of methyl blue (MB) solution under UV irradiation, and Figure 1 is a diagram of a
simple experimental device, configured with 3 mg/L MB solution and added to the photocatalytic
reactor. After rinsing the ZnO film with a small amount of MB solution, it was immersed in the
reactor for dark reaction to enable the MB solution to reach the adsorption–desorption equilibrium.
Then, it was placed under a 500 W Xe lamp (CEL-S500) for photocatalytic reaction by UV irradiation.
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The MB solution was quantitatively measured every 30 min and the absorbance was measured by a
UV spectrophotometer (λ max = 664 nm).
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Figure 1. Diagram of simple photocatalytic experimental apparatus.

3. Results and Discussion

3.1. Morphology and Structure of M-ZnO/GPET Composites

FE-SEM images were taken in order to analyze the microscopic morphology of M-ZnO/GPET
samples and the results can be seen in Figure 2a–e. As shown in Figure 2a,c, in the case of the
undoped and doped Mg elements, ZnO was a vertically arranged, different size of the NR’s structure,
suggesting that undoped and Mg-ZnO/GPET have a good degree of orientation and Mg doping
does not significantly change the morphology of the ZnO. With the addition of Ni or Al elements,
the structure of ZnO is changed from NR to nanosphere (NS). It is not difficult to see that Ni-ZnO/GPET
has an NR/NS composite structure (Figure 2d). Al-ZnO/GPET NSs, with smooth surfaces, still grow
perpendicular to the GPET substrate and are connected to form a network structure, which can be
clearly observed in Figure 2b. This indicates that the doping of Al or Ni could affect the growth
mechanism of ZnO nanostructures. Figure 2e shows that Fe-ZnO nanomaterials are regular hexagonal
NRs that uniformly and densely cover the surface of the GPET substrate.
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Figure 2. FE-SEM images of (a) ZnO/GPET, (b) Al-ZnO/GPET, (c) Mg-ZnO/GPET, (d) Ni-ZnO/GPET
and (e) Fe-ZnO/GPET.

The crystal structure and phase purity of pure ZnO/GPET and M-ZnO/GPET samples were
characterized by XRD. As shown in Figure 3, the diffraction peaks at 31.6◦, 34.3◦, 36.1◦, 47.4◦, 56.6◦,
62.7◦, 67.8◦, 72.4◦ correspond to (100), (002), (101), (102), (110), (103), (112) and (004) crystal planes of
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ZnO, respectively, which is basically consistent with the standard ZnO pattern (JCPDS No. 36-1451).
It is indicated that the ZnO samples before and after doping are all single-phase hexagonal wurtzite
structures. Except for the peak near 55◦, which is the diffraction peak of the GPET flexible substrate,
other peaks are attributed to the ZnO characteristic peak, and no impurity peaks appear. This proves
that the doping elements, namely Al, Fe, Ni and Mg, all substitute Zn2+ into the ZnO lattice in the form
of ions. It is worth mentioning that, in the obtained wurtzite-type ZnO crystals, with the exception of
Fe-ZnO/GPET, the diffraction peak intensity of the (002) crystal plane of other samples is significantly
higher than other crystal planes. This indicates that the sample has a high c-axis preferential orientation,
which is consistent with the FE-SEM results. After doping Al, Mg, Ni and Fe elements, the intensity of
the XRD diffraction peak of M-ZnO/GPET changed, indicating that metal ion doping may affect the
crystallinity of ZnO.
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In order to obtain information on the surface composition and valence state of the elements, XPS
research was carried out on Fe-ZnO/GPET and Ni-ZnO/GPET nanocomposites (as shown in Figure 4).
As can be seen from Figure 4a,b, the full XPS spectra of Fe-ZnO/GPET and Ni-ZnO/GPET have three
types of strong electron peaks corresponding to Zn, C and O elements, respectively. Among them, C 1s
presents a single strong peak near 284.6 eV, which may be attributed to sp2 hybrid carbon atoms [18].
The two optoelectronic peaks of Fe 2p are shown in the inset in Figure 4a, respectively, which are Fe
2p1/2 at high binding energy (721.3 eV) and Fe 2p3/2 at low binding energy (708.4 eV). The spin orbit is
separated to 12.9 eV, which means that Fe exists in an oxidation state of Fe3+ [19–21]. The typical XPS
peaks of Ni 2p3/2 and Ni 2p1/2 are 855.7 eV and 871 eV, respectively (Figure 4b), which are consistent
with the reported values of Ni 2p [22]. From the high-resolution Ni 2p spectrum, the photoelectron
peaks of Ni 2p3/2 and Ni 2p1/2 are not obvious, yet the peak position is consistent with the literature,
indicating that Ni exists in an oxidation state of Ni2+. The intensity of the Ni 2p photoelectron peak is
weak, probably because the content of the Ni element actually incorporated into the ZnO crystal is
relatively small.

The XPS spectra of O1s shown in Figure 4d,e are asymmetric, indicating the presence of multi-component
oxygen on its surface. The peak (O1) at low binding energy is attributed to the Zn-O bond [23]. The peak of
intermediate level (O2) is related to O2

− ions in the oxygen deficient regions within the matrix of ZnO,
and the high energy peak (O3) is related to the presence of loosely bound oxygen forms, such as CO3,
adsorbed O2 or H2O, adsorbed on the surface of ZnO [23,24]. Figure 4c shows the combined energy
of Zn 2p, with peaks around 1021 eV and 1044 eV belonging to Zn 2p2/3 and Zn 2p1/2, respectively,
suggesting that Zn exists in a 2+ chemical state in the samples. In addition, the distance between the
two peaks is 23 eV, which is consistent with the energy splitting of ZnO [25].
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3.2. Photocatalytic Performance

Figure 5 is the PL emission spectrum of M-ZnO/GPET nanomaterials. It can be seen that all
samples have a near-UV emission peak at around 389 nm, which is mainly due to the near-band
edge transition of electrons. Pure ZnO/GPET has the highest PL emission intensity in all films,
which indicates that its electron-hole pair recombination efficiency is high. Compared with undoped
ZnO/GPET nanomaterials, the UV luminescence peak of M-ZnO/GPET is significantly weakened,
which indicates that metal doping can effectively reduce the recombination efficiency of electron-hole
pairs and is more conducive to the improvement of photocatalytic activity [26]. However, in this
study, the photocatalytic activity of Fe-ZnO/GPET is better than that of Al-ZnO/GPET. This abnormal
PL behavior has also been reported by other researchers, possibly due to the lower crystallinity of
Fe-ZnO [27].
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The MB solution was degraded by UV irradiation under a xenon lamp, and the effect of metal
elements doping on the photocatalytic performance of ZnO/GPET nanocomposites was studied.
Figure 6a is the degradation rate graph of ZnO/GPET and M-ZnO/GPET as photocatalysts after being
irradiated with a xenon lamp for 7 h. For comparison, the photocatalytic degradation efficiency of MB
was analyzed without adding a photocatalyst. The results showed that the efficiency of MB degradation
is only 45.57% without a photocatalyst. It can be seen that the addition of ZnO photocatalysts has a
certain effect on the degradation of MB. Under light irradiation, the photocatalytic efficiency values
of ZnO/GPET, Mg-ZnO/GPET and Al-ZnO/GPET were lower, which were 69.08%, 70.86% and 75%,
respectively. In contrast, Fe and Ni single-doped ZnO/GPET nanostructures show better photocatalytic
efficiency in MB solution degradation, of which Ni-ZnO/GPET has the highest photocatalytic efficiency,
followed by Fe-ZnO/GPET (80.69%). Figure 6b is the absorption spectrum of the MB solution under the
photocatalysis action of the Ni-ZnO thin film, and the strong absorption band at 664 nm is the maximum
wavelength of the MB solution. With the increase in the illumination time, the intensity of the characteristic
absorption peak gradually decreases at a wavelength of 664 nm. After 7 h, Ni-ZnO/GPET nanoclusters
can degrade 81.17% MB dye. This may be due to the incorporation of Ni atoms into the ZnO lattice,
which changes the morphology and structure of ZnO, evolving from NRs to dense NR/NS composite
structures. Ni-ZnO NRs/NSs have a larger specific surface area, which provides more adsorption
points for MB, thus increasing its adsorption capacity [28]. Heinonen et al. studied the photocatalytic
performance of ZnO films prepared on stainless-steel substrates, and the results showed that the
optimal sample can degrade 82% of MB solution under 7 h of UV light irradiation [29]. Although its
photocatalytic activity is 0.83% higher than that of Ni-ZnO/GPET, the size of the photocatalyst sample
is 7.5 cm × 2.5 cm, while the size of all photocatalysts in our research is 1 cm × 2 cm.
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Figure 6. (a) Photo-degradation rate of methylene blue (MB) stimulated by UV in the presence of
M-ZnO/GPET samples. (b) Temporal evolution of the UV-vis absorption spectra corresponding to MB
in the presence of Ni-ZnO/GPET.

Based on the above experimental results, a possible photocatalytic mechanism is proposed. Firstly,
because the band gap of doped metals is relatively narrow, the impurity level between the conduction
band (CB) and the valence band (VB) of ZnO is formed. When the photocatalyst is irradiated with UV
light, the photon energy is higher than or equal to the band gap of M-ZnO/GPET, so that electrons are
excited from the VB to the CB and create a positively charged hole. On one hand, doped metal ions
hinder electron-hole recombination by trapping electrons in the CB of ZnO/GPET and produce more
superoxide radical anions (O2

−). On the other hand, the positive holes left in the VB can react with
H2O to form highly active hydroxyl groups (•OH) [30]. •OH and O2

− react with the MB adsorbed
on the ZnO/GPET nanophotocatalyst to produce H2O and CO2, which leads to degradation and
decolorization [31]. The reaction formula during degradation is as follows:

ZnO + Light (hv)→ ZnO (e− + h+) (1)

ZnO (e−) + M→ ZnO−M (e−) (2)
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ZnO−M (e−) + O2 → •O2
− (3)

•O2
− + H+

→ HO2• (4)

2HO2• → H2O2 + O2 (5)

H2O2 + e− →•OH + OH− (6)

OH& •O2
− + MB→ CO2 + H2O (7)

4. Discussion

In summary, M-doped ZnO nanomaterials were successfully fabricated on GPET substrate by the
hydrothermal method, and their photocatalytic properties were studied. In comparison to Al-, Fe-,
Ni- and Mg-ZnO/GPET, the as-prepared Ni-ZnO/GPET exhibits better photocatalytic performance,
and its degradation rate is 12.09% higher than that of pure ZnO/GPET. In addition, the doped metal
elements can capture the electrons in CB of ZnO/GPET and effectively separate the photogenerated
electron-hole pairs, which has the benefit of improving the photocatalytic performance. Considering
the hydrothermal method, with its advantages of simple preparation and low cost, Ni-ZnO/GPET
nanomaterials, as the most efficient catalyst, have potential application value in solving the problem of
water pollution caused by non-biodegradable organic dyes and wastewater.
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