

Supporting Information

Polymer Brushes via Surface-Initiated Electrochemically Mediated ATRP: Role of a Sacrificial Initiator in Polymerization of Acrylates on Silicon Substrates

Monika Flejszar ¹, Paweł Chmielarz ^{1,*}, Karol Wolski ², Gabriela Grześ ² and Szczepan Zapotoczny ²

- ¹ Department of Physical Chemistry, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland; d442@stud.prz.edu.pl
- ² Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland;
- wolski@chemia.uj.edu.pl (K.W.); gabriela.grzes@doctoral.uj.edu.pl (G.G.); zapotocz@chemia.uj.edu.pl (S.Z.) * Correspondence: <u>p_chmiel@prz.edu.pl</u>; Tel.: +48-17-865-1809 (P.C.)

Received: 27 July 2020; Accepted: 10 August 2020; Published: date

Additional Experimental Data

Entry	t	NaBr	HEA /solven	[Cu ¹¹ Br ₂ /TPMA]	Eapp	conv. (b)	DPtheo	DPapp	$k_{ m p^{app}}$ (c)	$k_{ m red}{}^{ m app}$ (d)	Mn,app (e)	Mn,th (f)	Ð (e)
En	[h]	[mol / dm³]	t [v/v]	[ppm by wt.]	(a)	[%]		(c)	[h-1]	[s ⁻¹]			D
1	4.5	-	50/50	51	320 mV (<i>E</i> _{pc} 80 mV)	27	270	274	0.099	0.0021	32 700	43 500	1.35
2	8	0.1	50/50	51	190 mV (<i>E</i> _{pc} 80 mV)	22	220	220	0.040 (0.051) ^{c)}	0.0016	27 600	35 000	1.63
3	4.5	-	25/75	26	180 mV (<i>E</i> _{pc} 120 mV)	31	310	308	0.094	0.0018	37 100	48 700	1.86

Table S1. Low ppm seATRP of HEA.

General reaction conditions: T = 55 °C; V_{tot} = 70 mL; [HEA]₀ = 2.4 M; [EBiB]₀ = 4.8 mM (except entry 3: [EBiB]₀ = 2.4 mM); [TBAP]₀ = 0.2 M *se*ATRP under constant potential electrolysis (working electrode (WE) = Pt plate, counter electrode (CE) = Al wire (l = 10 cm, d = 1 mm), reference electrode (RE) = Ag/AgI/I⁻). ^(a) Applied potential (E_{app}) was selected based on cyclic voltammetry (CV) analysis of catalyst complex (Figure S1a-c, Supporting Information); ^(b) Monomer conversion and apparent propagation rate coefficients (k_p^{app}) were determined by NMR; ^(c) k_p^{app} value determined for 4h of reaction time; ^(d) k_{red}^{app} – apparent reduction rate coefficient determined from first order plot of current vs. time (Figure S6a-c, Supporting Information); ^(e) apparent M_n and D were determined by THF GPC with PS standards; ^(f) $M_{n,th}$ = ([M]₀/[I]₀) × monomer conversion × $M_{monomer}$ + $M_{initiator}$.

Table S2. Theoretical Al³⁺ concentration in solution and polymer by monomer conversion.

Entry	Entry	Q (a) (C)	n _{Al³⁺} ^(b) (mol × 10 ⁵)	[Al ³⁺] _{solution} (c) (ppm by wt.)	[Al ³⁺] _{polymer} ^(d) (ppm by wt.)	
	1	1	3.579	1.24	4.6	0.5
according to Table 1	2	2	6.585	2.27	8.5	0.8
	4	3	1.699	0.59	2.3	0.4
	1	4	0.579	0.20	3.2	0.4
according to Table S1	2	5	2.989	1.03	16.6	1.8
	3	6	1.835	0.63	10.4	0.8

^(a) The total passed charge was calculated by integration of the chronoamperometry (CA) area, that is, $Q = I \times t$; ^(b) Theoretical amount of Al³⁺ in the reaction mixture was calculated from CA: $n_{Al^{3+}} = Q/F/3$, where F = 96,485 C/mol; ^(c) The Al concentrations in the reaction mixture was calculated according to the equation defined as: $[Al^{3+}]_{solution} = [Al^{3+}] \times MW_{Al} / wt_{total} \times 1,000,000$; ^(d) The Al concentrations in pure polymer sample were determined by the monomer conversion, i.e., $[Al^{3+}]_{polymer} = [Al^{3+}]_{solution}/df \times$ monomer conversion, where df is dilute factor df = 4 (except entries 3: df = 2.5; for entries 4–5: df = 2).

			kp ^{app} (a)	[Pn•] KATRP (a) (b)		[P _n - Br]	[Cu ^I]/[Cu ^{II}]	[Cu ^I TPMA ⁺]	[Br- Cu ^{II} TPMA ⁺]	
Entry		Entry	(h-1)	(M × 10 ⁹)	(×107)	(M)	(c)	(%)	(%)	
according	1	1	0.107	8.49	1.30	0.0024	27	96.5	3.52	
to Table 1	4	2	0.058	4.60	1.30	0.0028	13	92.8	7.22	
according	1	3	0.099	7.86	1.30	0.0048	13	92.7	7.30	
to Table	2	4	0.040	3.17	1.30	0.0048	5	83.7	16.32	
S1	3	5	0.094	7.46	1.30	0.0024	24	96.0	3.98	

Table S3. Calculation of Cu^I/Cu^{II} ratio for the preparation of polyacrylate brushes.

^(a) The radical concentration $[P_n^*]$ was calculated according to the equation defined as $[P_n^*] = \left(\frac{d\ln[M]}{dt}\right) \left(k_p\right)^{-1}$ [1], where $\frac{d\ln[M]}{dt}$ values were calculated from the first order kinetics plots (Figures S7, 1a and 2a) [2], $k_p = 3,500 \text{ M}^{-1} \text{s}^{-1}$ [3]. ^(b) $K_{\text{ATRP}} = 1.3 \times 10^{-8}$ was determined for the Cu^I/TPMA⁺ catalyst in methyl acrylate/acetonitrile 50/50 (v/v) at 50 °C [4]. ^(c) The Cu^I/Cu^{II} ratio was calculated according to the equation defined as $\frac{[Cu^{I}TPMA^+]}{[Br-Cu^{II}TPMA^+]} = \frac{[P_n^*]}{[P_n-Br]K_{\text{ATRP}}}$ [4].

Table S4. Calculation of Dead Chain Fraction (DCF).

Enter	Enter	$\llbracket P_n^{\bullet} \rrbracket$ (a)	[D] ^(b)	[Pn-Br]0	DCF (c)	CEF (d)	
Entry	Entry	(M × 10 ⁹)	(M × 10 ⁴)	(M)	(%)	(%)	
according to Table 1	1	1	8.49	1.9	0.0024	7.9	92.1
-	4	2	4.60	3.3	0.0028	11.8	88.2
	1	3	7.86	1.2	0.0048	2.5	97.5
according to Table S1	2	4	3.17	0.3	0.0048	0.7	99.3
-	3	5	7.46	1.1	0.0024	4.5	95.5

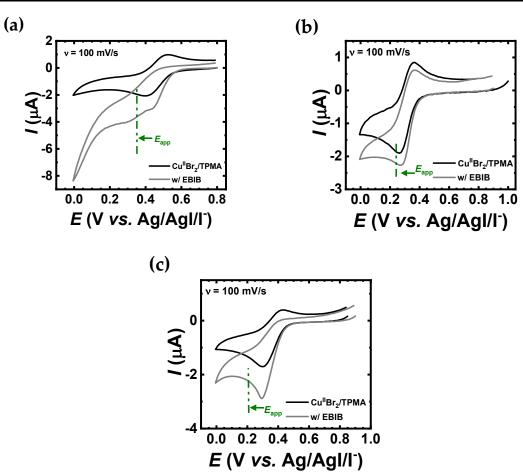

^(a) The radical concentration $[P_n^{\bullet}]$ was calculated according to the equation defined as $[P_n^{\bullet}] = \left(\frac{d\ln[M]}{dt}\right) \left(k_p\right)^{-1} [1]$, where $\frac{d\ln[M]}{dt}$ values were calculated from the first order kinetics plots (Figure S7, 1a and 2a) [2], $k_p = 3.5 \cdot 10^3 \text{ M}^{-1} \text{s}^{-1} [3]$. ^(b) The concentration of terminated chains [D] was calculated according to the equation defined as $[D] = k_t [P \cdot]^2 t$ where t (denote reaction time) = s, $k_t = 1.2 \times 10^8 \text{ M}^{-1} \text{s}^{-1}$ was determined for the 2-hydroxethyl acrylate at room temperature [5] (except entry 2: $k_t = 5.7 \times 10^8 \text{ M}^{-1} \text{s}^{-1}$ was determined for the *n*-butyl acrylate at 50 °C) [6]. ^(c) DCF = $\left(\frac{[D]}{[P-Br]_0}\right) \cdot 100\%$ [1]. ^(d) CEF = 100% – DCF.

Table S5. Experimental values of contact angles for synthesized polymer brushes and brominated silica wafer.

Entry (according	Experimental Values of Θ [°]									
to Table 1)	Water	Standard Deviation	Formamide	Standard Deviation	Diiodomethane	Standard Deviation				
1	61.86	1.23	45.23	1.06	39.26	1.32				
2	68.67	1.40	50.28	1.63	38.68	1.99				
4	98.60	1.43	69.60	1.94	46.15	1.06				
5 (Si-Br)	73.01	1.19	54.68	1.27	34.22	1.12				

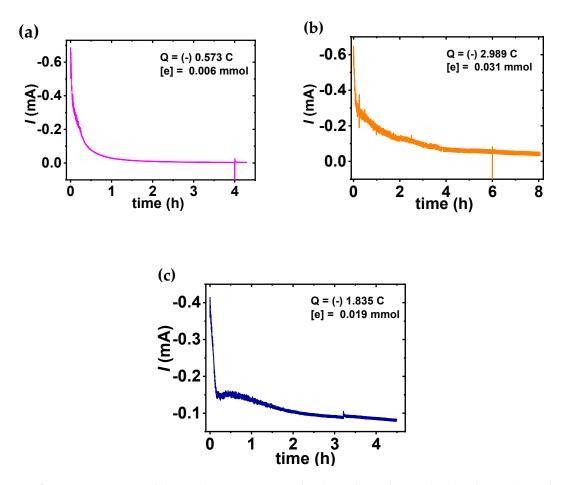

	Parameters of FSE [mJ/m ²]										
Entry.	Owens	s-Wendt I	Method	van Oss-Good Method Diiodomethane-formamide-water							
(according	Water	-diiodom	ethane								
to Table 1)	γ _s	γ_s^d	γ_s^p	γ_s^{LW}	γ_{s^+}	$\gamma_{s^{-}}$	γ_s^{AB}	Υs			
1	46.36	31.82	14.54	39.986	0.329	17.534	4.806	44.791			
1	(±0.09)	(±0.08)	(±0.05)	(±0.9)	(±0.003)	(±0.249)	(±0.044)	(±0.263)			
2	43.68	33.73	9.95	40.268	0.161	12.685	2.858	43.126			
Z	(±0.13)	(±0.12)	(±0.04)	(±0.393)	(±0.002)	(±0.222)	(±0.034)	(±0.395)			
4	37.23	37.08	0.152	36.392	0.0122	0.243	0.109	36.501			
4	(±0.08)	(±0.08)	(±0.001)	(±0.189)	(±0.0001)	(±0.004)	(±0.001)	(±0.189)			
$F(\mathbf{C}; \mathbf{R}_{r})$	44.03	37.07	6.96	42.386	0.00077	10.674	0.182	42.568			
5 (Si-Br)	(±0.08)	(±0.08)	(±0.03)	(±0.233)	(±0.00001)	(±0.152)	(±0.001)	(±0.233)			

Table S6. Parameters of free surface energy (FSE) as calculated by Owens-Wendt and van Oss-Good methods for synthesized polymer brushes and brominated silica wafer.

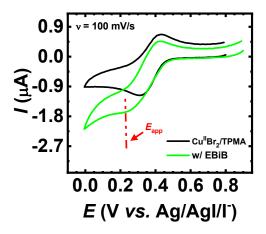
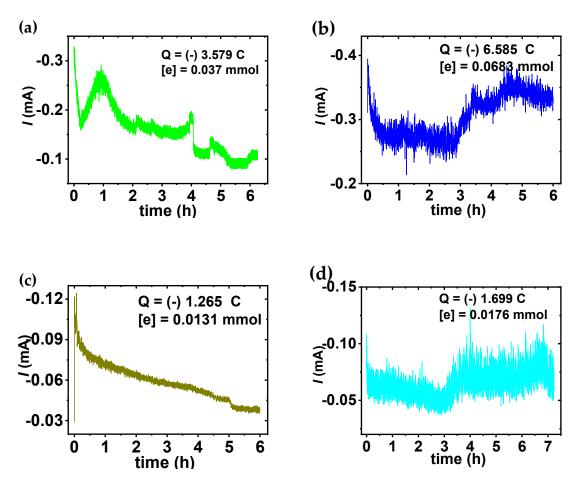


Figure S1. Cyclic voltammetry of Cu^{II}Br₂/TPMA (black) and in the presence of EBiB (grey) according to (**a**) Table S1, entry 1, (**b**) Table S1, entry 2, and (**c**) Table S1, entry 3. The arrow (green) indicates the applied potential during electrolysis.



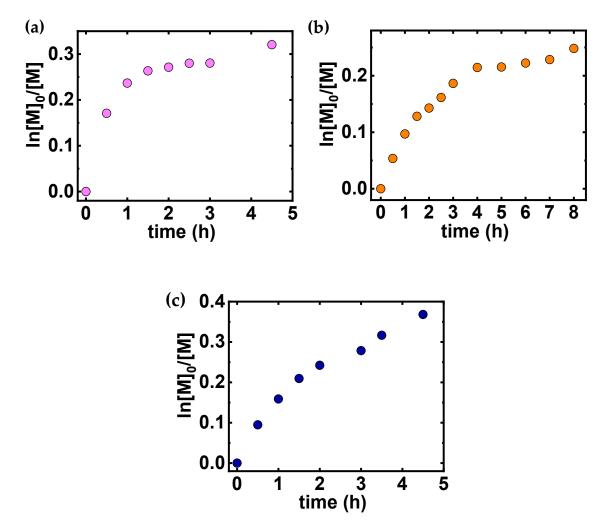

Figure S2. Current profile vs. polymerization time for the grafting of PHEA brushes from silica wafers *via* sacrificial initiator-assisted ultralow ppm SI-*se*ATRP according to (**a**) Table S1, entry 1, (**b**) Table S1, entry 2, and (**c**) Table S1, entry 3.

Figure S3. Cyclic voltammetry of Cu^{II}Br₂/TPMA (black) and in the presence of EBiB (green). The arrow (red) indicates the applied potential during preparative electrolysis. Measurement conditions: $[HEA]_0/[EBiB]_0/[Cu^{II}Br_2]_0/[TPMA]_0 = 1000/1/0.05/0.10$, $[HEA]_0 = 2.2$ M, $[Cu^{II}Br_2/TPMA]_0 = 0.12$ mM, $[TBAP]_0 = 0.2$ M. Table 1, entry 1.

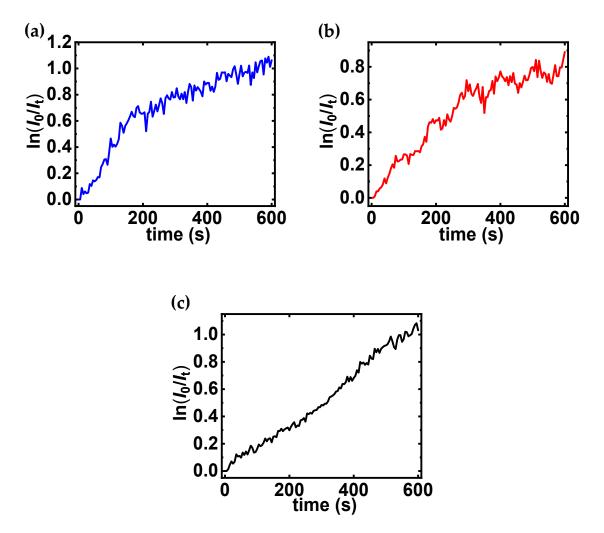


Figure S4. Current profile vs. time for the grafting of polymer brushes from silicon wafers according to (**a**) Table 1, entry 1, (**b**) Table 1, entry 2, (**c**) Table 1, entry 3, and (**d**) Table 1, entry 4.

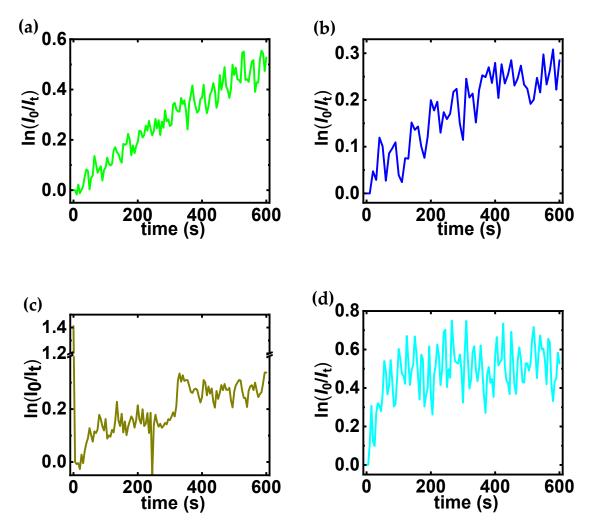


Figure S5. First-order kinetic plot of monomer conversion vs. polymerization time according to: (**a**) Table S1, entry 1, (**b**) Table S1, entry 2, and (**c**) Table S1, entry 3.

Figure S6. First-order plot of current vs. polymerization time for the grafting of PHEA brushes from silicon wafers via sacrificial initiator-assisted ultralow ppm SI-*se*ATRP according to (**a**) Table S1, entry 1, (**b**) Table S1, entry 2, and (**c**) Table S1, entry 3.

Figure S7. First-order plot of current *vs.* polymerization time for the grafting of polymer brushes from silicon wafers according to (**a**) Table 1, entry 1, (**b**) Table 1, entry 2, (**c**) Table 1, entry 3 and (**d**) Table 1, entry 4.

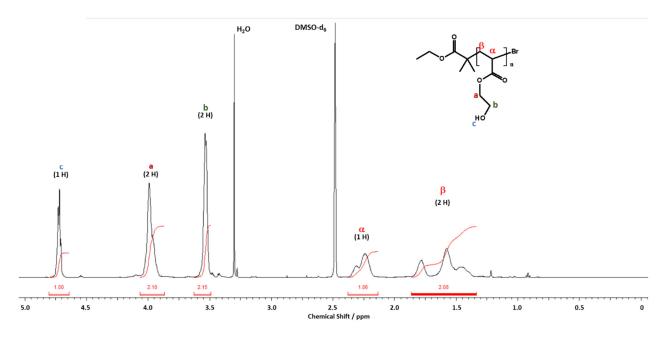


Figure S8. NMR spectrum of PHEA homopolymer (Table 1, entry 1).

(a)

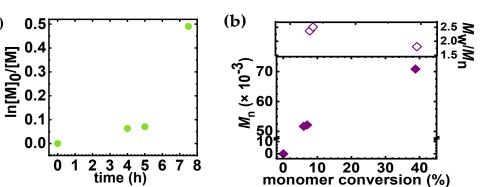


Figure S9. Synthesis of well-defined PtBA chains generated in the solution: (a) First-order kinetic plot of monomer conversion vs. polymerization time, (b) Mn and Mw/Mn vs. monomer conversion. Table 1, entry 4.

monomer conversion (%)

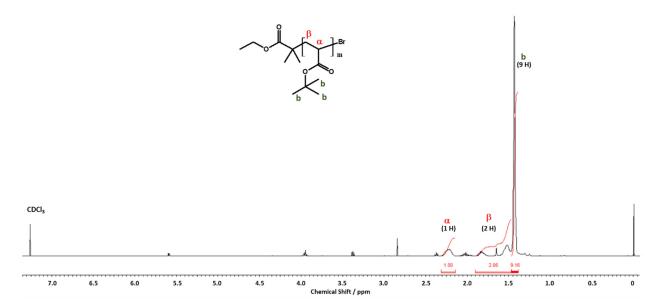
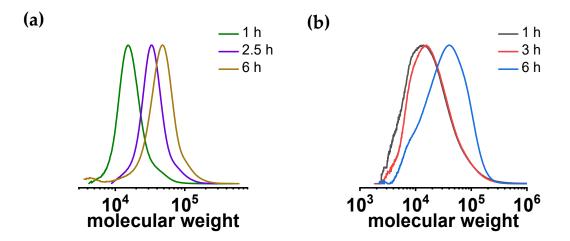
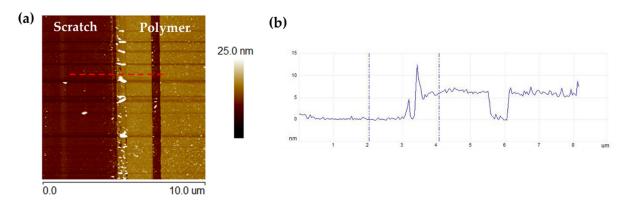


Figure S10. ¹H NMR spectrum of PtBA homopolymer (Table 1, entry 4).




Figure S11. GPC traces of free polymers generated from sacrificial initiator during preparation of surface-grafted PHEA brushes according to (a) Table 1, entry 1 and (b) Table 1, entry 4.

Materials **2020**, *13*, x FOR PEER REVIEW

(e)

Figure S12. (**a**) Diiodomethane, (**e**) formamide and (**i**) water contact angle images of Si-*g*-PHEA prepared according to Table 1 (entry 1), (**b**) diiodomethane, (**f**) formamide and (**j**) water contact angle images of Si-*g*-PHEA prepared according to Table 1 (entry 2), (**c**) diiodomethane, (**g**) formamide and (**k**) water contact angle images of Si-*g*-(PHEA-*b*-P*t*BA) prepared according to Table 1 (entry 4) and (**d**) diiodomethane, (**h**) formamide and (**l**) water contact angle images of Si-*g*.

Figure S13. AFM analysis of well-defined polymer brushes grafted from silicon wafers. Height image of PHEA (**a**) according to Table 1, entry 3, (**b**) cross-section profile captured in the place marked with a red dotted line in the topography image, (Table 1, entry 3).

References

- 1. Zhong, M. J.; Matyjaszewski, K., How fast can a CRP be conducted with preserved chain end functionality? *Macromolecules* **2011**, *44*, 2668–2677.
- 2. Chmielarz, P.; Krys, P.; Wang, Z. Y.; Wang, Y.; Matyjaszewski, K., Synthesis of well-defined polymer brushes from silicon wafers *via* surface-initiated *se*ATRP. *Macromol. Chem. Phys.* **2017**, *218*, 1700106.
- Mavroudakis, E.; Liang, K.; Moscatelli, D.; Hutchinson, R. A., A combined computational and experimental study on the free-radical copolymerization of styrene and hydroxyethyl acrylate. *Macromol. Chem. Phys.* 2012, 213, 1706–1716.
- 4. Wang, Y.; Kwak, Y.; Buback, J.; Buback, M.; Matyjaszewski, K., Determination of ATRP equilibrium constants under polymerization conditions. *ACS Macro Letters* **2012**, *1*, 1367–1370.
- 5. Wojnarovits, L.; Takacs, E., Rate coefficients of the initial steps of radiation induced oligomerization of acrylates in dilute aqueous solution. *Radiat. Phys. Chem.* **1999**, *55*, 639–644.
- 6. Barth, J.; Buback, M.; Hesse, P.; Sergeeva, T., Termination and transfer kinetics of butyl acrylate radical polymerization studied *via* SP-PLP-EPR. *Macromolecules* **2010**, *43*, 4023–4031.

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).