
materials

Review

In-Memory Logic Operations and Neuromorphic
Computing in Non-Volatile Random Access Memory

Qiao-Feng Ou 1, Bang-Shu Xiong 1, Lei Yu 1, Jing Wen 1, Lei Wang 1,* and Yi Tong 2,*
1 School of Information Engineering, Nanchang Hangkong University, Nanchang 330063, China;

Ou.Qiaofeng@nchu.edu.cn (Q.-F.O.); xiongbs@nchu.edu.cn (B.-S.X.); yulei@nchu.edu.cn (L.Y.);
wenj@nchu.edu.cn (J.W.)

2 College of Electronic and Optical Engineering & College of Microelectronics, Nanjing University of Posts
and Telecommunications, Nanjing 210023, China

* Correspondence: LeiWang@nchu.edu.cn (L.W.); tongyi@njupt.edu.cn (Y.T.)

Received: 15 June 2020; Accepted: 6 August 2020; Published: 10 August 2020
����������
�������

Abstract: Recent progress in the development of artificial intelligence technologies, aided by deep
learning algorithms, has led to an unprecedented revolution in neuromorphic circuits, bringing us ever
closer to brain-like computers. However, the vast majority of advanced algorithms still have to run
on conventional computers. Thus, their capacities are limited by what is known as the von-Neumann
bottleneck, where the central processing unit for data computation and the main memory for data
storage are separated. Emerging forms of non-volatile random access memory, such as ferroelectric
random access memory, phase-change random access memory, magnetic random access memory,
and resistive random access memory, are widely considered to offer the best prospect of circumventing
the von-Neumann bottleneck. This is due to their ability to merge storage and computational
operations, such as Boolean logic. This paper reviews the most common kinds of non-volatile
random access memory and their physical principles, together with their relative pros and cons when
compared with conventional CMOS-based circuits (Complementary Metal Oxide Semiconductor).
Their potential application to Boolean logic computation is then considered in terms of their working
mechanism, circuit design and performance metrics. The paper concludes by envisaging the prospects
offered by non-volatile devices for future brain-inspired and neuromorphic computation.

Keywords: in-memory logic operation; non-volatile; random access memory; von Neumann
bottleneck; neuromorphic computation

1. Introduction

The ultimate dream for many computer scientists is being able to create a brain-like computer that
can think, determine, and reason like human beings. The rapid recent development of deep neural
networks (DNNs) [1,2], in conjunction with advanced computer configurations, such as low-power
graphical processing units (GPUs) and fast central processing units (CPUs), has brought this dream
much closer to reality. This has been demonstrated by the IBM Watson’s victory (International Business
Machines Corporation) over two former world champions in Jeopardy [3] and the AlphaGo beating
an 18-times human world Go champion [4]. Although current artificial intelligence (AI)-based machines
exhibit greater computational capabilities than human beings, their energy requirements are orders of
magnitude higher than that of the human brain. This can be attributed to what is known as the von
Neumann bottleneck [5]. This arises from the fact that data are executed and stored in two completely
different places in conventional computers, namely the CPU and the main memory. As a result of the
von Neumann bottleneck, the CPU has to retrieve data from memory prior to processing it, then transfer
it back to memory at the end of the computation. This leads to extra energy consumption during the
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data transfer process, diminishing the energy efficiency of computational devices [6]. This is aggravated
by the fact that the transfer rate of the data bus that connects the CPU with the memory is much slower
than that of the CPU, seriously restricting the processing speed [7]. In view of this issue, developing
a novel computer architecture that can overcome the von Neumann bottleneck is imperative for the
realization of effective brain-like computers (see Figure 1). The key here is to find a way of having all
the computation happen uniquely within the memory, so that the shuttling of data to and from is no
longer necessary. Approaches adopting this kind of solution are known as ‘in-memory computing’ [8].
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Figure 1. Computer architectures with (a) a von Neumann structure and (b) a non-von Neumann
structure. Note that data need to be retrieved from conventional memory first and transferred
to the central processing unit (CPU) for computation when using a von Neumann structure.
For non-von Neumann structures, the data can be stored and executed simultaneously inside the
computational memory.

In-memory logic operations relate to where the memory is not just used for data storage,
but where different physical states of the materials making up the memory are themselves able to
represent logical states and operations. Certain kinds of technology offer the scope to realize this
possibility, notably non-volatile RAM. Recent progress in the development of non-volatile nanoscale
random access memories (RAMs) has led to them offering a viable solution to the von Neumann
bottleneck. These devices come mainly in the form of ferroelectric RAM (FeRAM) [9–13], magnetic RAM
(MRAM) [14–18], phase-change RAM (PCRAM) [19–23], and resistive RAM (RRAM) [24–28]
(see Figure 2). They usually have two distinct physical states relating to when they are either
immune to or subject to external excitations. This can be denoted by the binary codes ‘0” and ‘1’.
Critically, these proposed RAMs can be rapidly and reversibly switched between their different states,
thus offering the possibility of realizing in-memory logic operations, which is considered the key
CPU requirement in nanoscale devices. Non-volatile RAM offers a number of key advantages in
this regard, including its high integration density [29–32], fast switching speed [33–36], low energy
consumption [37–40], and long data retention [41–44]. This makes them eminently suitable for the
development of future computational memory applications. However, to date, there has not been
a comprehensive description of the physical mechanisms associated with how these promising devices
might perform computational tasks, especially logic operations, in the memory itself. Nor has there been
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any systematic exploration of how in-memory logic operations might be applied and the benefits that
might accrue to using non-volatile memory (NVM)-based in-memory logic as opposed to conventional
ways of handling logic operations.
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This paper is focused on the development of various non-volatile devices where storage and logic
computation can be processed together, also known as in-memory computing devices. In-memory
computing devices are those that take advantage of their physical state to store data or to provide
input/output signals, rather than relying upon electrical charge [8,45]. The paper particularly seeks to
provide in a single place a thorough review of the scope of current developments in the use of such
devices as a resource for the rapid processing of logic operations. The paper is divided up into four
main sections, the first concerning FeRAM, the second MRAM, the third PCRAM, and the fourth
RRAM. Each main section begins by describing the basic physical principles of the approach. This is
followed by consideration of how the approach can be used for the processing of logic operations.
Each section concludes with an outline of the technology’s principle advantages and disadvantages,
remaining challenges and recent developments. The structure of each independent section therefore
provides an analytic, evaluative and comparative review of the state-of-the-art for each of the primary
non-volatile RAM technologies. The paper concludes with a comparative assessment of the pros and
cons of each approach for handling logic operations and the prospects offered by these remarkable
devices for the future development of computational memory. The paper’s overall goal is to help
researchers to better understand the potential of non-volatile RAM and to hopefully further trigger
innovations in the field.

2. Logic in Ferroelectric RAM

2.1. The Technology

The storage and computational functionality of Ferroelectric RAM (FeRAM) strongly relies upon
a ferroelectric material whose polarization is controlled by an external electric field and its stored
charge. The simplest FeRAM storage unit comprises a capacitor and a transistor (i.e., a 1T1C structure,
see (Figure 3a) [46]. Observations show that the applied field can align the magnetic dipole in the
ferroelectric material with the field direction due to shifts in the position of atoms and the distribution
of the electronic charge in the crystalline structure. Removing the external field returns the dipole to
its original position. Figure 3b shows how the dependence of the polarization on the applied field
results in a hysteretic loop. The two potential polarizations in a positive or negative direction can
indicate the binary bits ‘0’ and ‘1’, respectively. Thus, FeRAM-based recording can be accomplished
by charging the capacitor through the external electric field to switch the dipoles between a positive
and negative direction. Unlike other RAM, FeRAM makes use of a peculiar readout mechanism by
consistently maintaining the storage cell in a ‘0’ state [10,47]. This simply indicates that no action
(i.e., no readout signal) occurs when the cell is held in its original ‘0’ state. To generate a ‘1’ state,
polarization re-orientation is required to switch the cell back to its ‘0’ state. The current pulse resulting
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from this polarization switching is considered to be the readout signal. This readout mechanism is
also known as ‘destructive readout’, because it requires the overwriting of the data prior to reading,
with the data being rewritten back to the cell after being read.
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2.2. Potential for Logic Operations

The use of FeRAM for logic operations can be traced back to 2004, when a non-volatile functional
pass gate that could read out the polarization for the on/off state of the pass gate transistor was
developed [48]. This was able to adhere to a conventional Boolean logic truth table, thus achieving
a sort of ‘in memory’ logic computation and was subsequently expanded to a non-volatile programmable
logic device (NVPLD) with a configuration block, a PLD block and a control block. SPICE (Simulation
Program with Integrated Circuit Emphasis) simulations demonstrated the feasibility of using NVPLDs
at a low cost, operational voltage and power consumption for rapidly reconfigurable and secure
field programmable systems [49]. However, despite these achievements, FeRAM largely serves
as a switch in these devices, with the critical logic function still being controlled by conventional
transistors and D flip-flop circuits. This is space-hungry and can impair the integration density
of the FeRAM. Recent advances in semiconductor manufacturing have led to the possibility of
FeRAM-based logic memories that are less dependent on CMOS transistors. One idea is to replace
inorganic ferroelectric materials with an organic counterpart, such as vinylidene fluoride (VDF).
This can be used for a novel ferroelectric programmable logic gate (FePLG) by stacking two ferroelectric
capacitors [50] (see Figure 4a). A FePLG has two inputs and one output, with the output value,
or switched signal, depending on the input values and the polarization direction in the ferroelectric
layers. Applying +Vs/−Vs and −Vs/+Vs to inputs 1 and 2, respectively, results in an output value of +Q,
due to the reversed polarization of the first layer. Applying +Vs to both inputs leads to an output value
of +2Q because of the reversed polarization of both layers. By choosing different output threshold
values, multiple logic functions such as ‘AND’ and ‘OR’ can be achieved. This methodology led
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to the development of another logic-gate device, where three distinct graphene-ferroelectric hybrid
ribbons (GFeR) are stacked (Figure 4b) [51]. A ferroelectric film in the first and second GFeR acts as
a gate dielectric, while the graphene in the second GFeR behaves like the common channel in two
vertically stacked field-effect transistors. However, the graphene layers in the first and third GFeRs act
as gate electrodes, with the ferroelectric film in the third GFeR wrapping the gate graphene. To enable
Boolean logic here, positive/negative pulses applied to the gate electrodes represent the logical states,
‘1’/’0’, while the channel resistance indicates the output of the logic gate. In this design, the p-type
graphene becomes very depleted and causes a high-resistance state when applying positive pulses
to both electrodes. Applying negative pulses to both electrodes results in a low output resistance.
Carefully choosing a reference resistance allows for the realization of fundamental logic functions such
as ‘OR’ and ‘AND’. In the proposed design, more than one cell was adopted to conduct the Boolean
function. This complicates the device architecture.
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Figure 4. More advanced approaches to FeRAM devices: (a) the cross-sectional geometry of an FePLG
(ferroelectric programmable logic gate) (left) and a photograph of an FePLG fabricated on a flexible
substrate (right); (b) the three-dimensional geometry of a graphene field-effect transistor (left) and
its cross-sectional view (right); (c) the structure of a ferroelectric tunnel memristor; (d) a schematic
of the device structure for logic gates. ((a) is reprinted with permission from [50]; (b) is reprinted
with permission from [51]; (c) is reprinted with permission from [52]; (d) is reprinted with permission
from [53]).

Recently, a novel ferroelectric tunnel memristor (FTM)-in-memory approach has been proposed
where logic operations are processed inside a single memristor [52]. The proposed FTM (see Figure 4c)
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has a ferroelectric ultrathin barrier (BaTiO3) sandwiched between two different electrodes (Co and
La0.67Sr0.33MnO3). The tunnel resistance is considered to be the output signal and can be switched
between ‘ON’ and ‘OFF’ states, depending on the direction of a spontaneous polarization controlled by
an external voltage. Here, the logic block connects an FTM to a loading resistor, giving three terminals.
The amplitude of the input voltages between two pairs of the terminals is used to denote the logical
states ‘1’ and ‘0’. The FTM is programmed to a specific resistance state by varying the amplitude
and duration of the input pulses. A small reading pulse is then applied to another pair of terminals
to read the FTM resistance. A high resistance is only programmed in if both pulses are of a large
amplitude. A low resistance arises if at least one input pulse is of a small amplitude, corresponding to
the ‘NAND’ function.

Even more recently, a hybrid ferromagnetic-ferroelectric device has been devised,
with ferromagnetic/heavy metal films on a ferroelectric (1-x)[Pb(Mg1/3Nb2/3)O3]-x[PbTiO3] (PMN-PT)
substrate. This allows for deterministic switching from the virgin state of the PMN-PT by using small
voltages [53]. The voltages applied to the current channel and the PMN-PT electrodes are defined
as the inputs, with the Hall resistance signals being the outputs. A positive and zero Hall resistance
represents ‘1’ and ‘0’, respectively (Figure 4d). By tailoring the polarity and magnitude of the input
pulses, different logic functions, including ‘XNOR’, ‘AND’, ‘NAND’, and ‘NOT’, have been successfully
realized. This spin logic scheme was reported to be simple, scalable, and programmable, with a low
energy consumption.

2.3. Comparative Advantages and Disadvantages

Compared to its compatriots, FeRAM has a number of merits: low power consumption; a fast
writing speed at potentially ns levels; and endurance of up to 1013 cycles [54]. Its main disadvantage is
its lack of scalability difficulty. This is because ferroelectric materials usually lose their ferroelectric
characteristic when they are very thin [55]. Research has therefore been devoted to finding new
ferroelectric materials and to developing novel device architectures. In relation to potential new
materials, metal oxide-doped HfOx has recently received considerable attention, due to its ability to
provide high integration density in 28 nm nodes [56]. It also has a fast switching speed of 20 ns and
a long endurance of 109 cycles [57].

An alternative approach to increasing the areal density of FeRAM is to replace the capacitor-type
FeRAM with a Fe field-effect transistor (FeFET). This significantly reduces the physical thickness of the
gate stack, thus improving the scalability [58–60]. A number of potential advantages of FeFETs have
been noted in the literature, including improved switching, a number of possible operating modes,
and, of particular interest for this paper, the possibility of demonstrating analog synaptic behavior [61].
The main problems associated with FeFET relate to its rewrite capacity and retention time, both of which
can be mitigated by using gate-stacked layers of SrBi2Ta2O9 (SBT)/HfNO2 (paraelectric layers) [60].
In addition to FeFET, ferroelectric tunnel junction (FTJ)-based devices constitute another promising use
of FeRAM. Here, a thin ferroelectric layer is sandwiched between two metal electrodes [62]. The tunnel
current across the ferroelectric layer can be modulated via the polarization of the ferroelectric layer,
so, FTJ-based devices present the possibility of having a non-destructive readout mechanism [12,63].
Using HfO2 as the thin ferroelectric material in an FTJ memory can reportedly give rise to a large on-off

tunnel current ratio [54].
The main challenges confronting FeRAM relate to the need to develop new configurations

of ferroelectric materials that can effectively solve the existing rewrite and retention issues in
a scalable fashion.
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3. Logic in Magnetic RAM

3.1. The Technology

Magnetic RAM is able to provide memory behavior as a result of its tunnel magneto-resistance
(TMR), which usually takes place in a magnetic-tunnel junction (MTJ). This consists of a thin insulator
sandwiched between two ferromagnets (see Figure 5). As with FeRAM, by applying an external
magnetic field the magnetization direction of the two ferromagnets can be switched.
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Figure 5. MTJ (magnetic-tunnel junction) and MRAM structure and operation: (a) the structure
of an MTJ with a tunneling barrier sandwiched between a free layer and a fixed layer; (b) the cell
architecture of a typical MRAM; (c) the ‘set’ (i.e., write) and ‘reset’ (i.e., re-write) operations of MRAM,
according to the relative orientation of the magnetization direction of the fixed and free magnetic layers.
((a,c) are reprinted with permission from [64] and (b) is reprinted with permission from [47].)

If the magnetization direction is parallel, the electrons can more easily tunnel across the
insulating layer, leading to a state of low resistance. Opposing magnetization directions generally
produce a high-resistance state. Thus, an MTJ can be switched between a high-resistance state and
a low-resistance state according to the orientation of the magnetization [64]. Today, thermal-assisted
switching (TAS) [65–67] and spin transfer torque (STT) switching [68–70] are generally considered to
be the best approaches to controlling the current. The basic physical principles associated with TAS
are analogous to heat-assisted magnetic recording (HAMR). The idea is to heat the free layer of the
MTJ by adding current so as to lower its magnetic anisotropy and thus lower the switching current.
In the case of STT-MRAM, the alignment of the electron spin towards the magnetization orientation is
controlled by means of a spin-polarized current (see Figure 5c). Re-polarization of the spin can then be
achieved by directing the spin-polarized current into another magnet. As a result, an STT-MTJ can be
switched between a low-resistance state and a high-resistance state by using the spin-polarized current
induced between the free layer and fixed layer. This means that STT-MRAM produces a relatively
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small switching field and consumes much less energy than conventional MTJ-based MRAM. The metal
line required in conventional MRAM is also unnecessary, making STT-MRAM far more scalable.

Recently, some technical issues with STT-MRAM have been uncovered. Basically, if the write
current density passing through the MTJ is too large, it can result in a breakdown of the ferromagnetic
oxide. Assessing the MTJ’s magnetic state involves sensing the resistance of the MTJ stack using
the tunnel-magneto-resistance (TMR) effect. However, the coupling of the read-write path in the
MTJ in STT-MRAM could result in accidental switching (write) of the cell during the read operation
causing ‘read-disturbance’ issues [71]. This has led to the development of an alternative approach
to manipulating the magnetization, called ‘spin-orbit torque’ (SOT) [72–77]. This is able to generate
a spin current that consumes less power and provides more rapid switching than an STT [78–82].
As shown in Figure 6, SOT devices consist of a bilayer made of a ferromagnet and a non-magnetic
material, topped with an oxide. The application of an in-plane charge current to the bilayer generates
a transverse spin current at the bilayer interface. This results in turn on torque being exerted on the
magnetization of the ferromagnet, which can switch its magnetization. SOT-MRAM cells offer the
key advantage over STT-MRAM of decoupling the read and write current paths through the MTJ,
thus eliminating the risk of read disturbance. The absence of a large write current in the MTJ also
adds to device stability [71]. In addition, recent research suggests that SOT-MRAM devices are easier
to manufacture and can be rendered CMOS compatible [83]. Even more recently, some work has
started to explore the possibility of creating STT-SOT hybrids for MRAM technology, combining the
advantages of each [82]. Generally, the earlier issues with read-disturbance have largely been solved
with regard to SHE (Spin Hall Effect) MRAM that decouples write and readout paths [84] and VCMA
(Voltage-Controlled Magnetic Anisotropy) MRAM that uses a reverse voltage read to suppress thermal
activation across the barrier [85].
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Figure 6. Schematic of (a) an SOT (‘spin-orbit torque’) device illustrating the write current path
in the SOT scheme and (b) a SOT-MRAM cell utilizing the SOT scheme for writing and TMR
(tunnel magneto-resistance) scheme for readout. FM and NM denote the ferromagnetic layer and
non-magnetic layer, respectively. (Reprinted with permission from [71]).

3.2. Potential for Logic Operations

The scope to reversibly switch between high-resistance and low-resistance states makes MRAM
especially suitable for logic function operations. In one scenario, different logic functions can be achieved
by continuously changing the switching threshold of Giant Spin-Hall Effect (GSHE) STT-MRAM [86].
GSHE STT-MRAM involves far less programming time and energy than conventional STT-MRAM
because it eliminates the incubation delay [87]. By controlling the connection direction between the
input nodes, A and B, selecting the input nodes (n) and the switching threshold (m), the logic operation
of a device can be collectively determined (see Figure 7a). The output resistance states for the upper
level of any two devices controls the input current for each device, and, depending on the resistance
states (RH and or RL) of the two input devices, the current I1 + I2 can take three forms-RH-RH (0,0),
RH-RL (0,1), and RL-RL (1,1)- for the same bias voltage. Devices are assumed to be switched when
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the current exceeds a certain threshold. So, for example, a device can act as an ‘OR’ gate when the
threshold is close to RH-RL and as an ‘AND’ gate when the threshold approaches RL-RL.Materials 2019, 12, x FOR PEER REVIEW 9 of 36 
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Figure 7. (a) The structure of a GSHE MTJ (Giant Spin-Hall Effect MTJ) (3D view (top left), top-down
view (bottom left), device symbols (top right), and equivalence circuit (bottom right)); (b) schematic of
the two-input logic function (NOR) in a DEMR (device diode-enhanced magnetoresistance); (c) device
structure of the voltage-controlled MTJ (left) and its corresponding voltage and current signals to map
Boolean logic ‘0’ and ‘1’ (right); (d) proposed SOT-MRAM based dual-mode in-memory computing
architecture (left) and the resulting transient simulation of row-wise AND/OR computation. ((a) is
reprinted with permission from [86]; (b) is reprinted with permission from [88]; (c) is reprinted with
permission from [89]; (d) is reprinted with permission from Shaahin et al., 2018).

Boolean logic functions can also be handled by diode-enhanced magnetoresistance (DEMR)
devices [88] (see Figure 7b). The logic unit inside a DEMR device has two L10-FePt magnets
with perpendicular magnetocrystalline anisotropy, which are regarded as a data bit and a control
bit, respectively. Different combinations of the magnetization direction of the control bit and the
data bit, i.e., ‘up-up’, ‘up-down’, ‘down-down’, and ‘down-up’, give rise to different stray fields.
The magnetization direction of the data bits (i.e., ‘down’ and ‘up’) can be considered as the logic inputs
‘0’ and ‘1’, respectively. The output voltage as a sum of the measured voltages of the two logic units
is then regarded as the logic output. The threshold voltage set to distinguish the output signal ‘1’
from ‘0’ is taken to be 3 mV. For the logic operation ‘AND’, the stray fields for the two logic units
to give the logic input (1, 1) need to be 0 T, which gives rise to an output voltage greater than 3 mV
(i.e., an output of ‘1’). The output voltages for the other input configurations are always lower than
the threshold value, implying an output signal of ‘0’. By controlling the control bit and the working
current, 15 Boolean logic functions can be realized.
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Some recent work has explored the potential use of MTJs for stochastic computing [89–91].
Zhang et al. [89], for instance, have explored the use of voltage-controlled MTJs as both stochastic
number generators and in-memory logic devices, with changes in voltage and current controlling
the operating mode and the assignation of different Boolean logic inputs [89], as demonstrated in
Figure 7c. Lv and Wang [90] have shown how the physical properties of a single MTJ, such as pulse
amplitude, bias field, bias current, pulse width and switching probability, can be used for a variety of
logic operations. Voltage-controlled MTJs are claimed to be more energy efficient than conventional
MTJs [89] and others have indicted the scope to use switching mechanisms such as STT to further
enhance the scope and energy benefits of taking this approach [90]. Stochastic computing-based logic
operations offer a number of potential advantages, including not just the evident speed and energy
advantages of in-memory computing but also improved accuracy and fault tolerance [91].

Research has also begun to explore specific opportunities offered by SOT-MRAM for logic
operations [89]. These build primarily upon the previously noted advantages of SOT-MRAM, namely
a higher switching speed and lower energy consumption, especially the latter [92]. One specific
architecture, as illustrated in Figure 7d, uses SOT-MRAM to build Boolean logic operations through
the relationship between operands on the same row or in the same column within memory arrays [93].
Simulations suggest that this approach can reduce power consumption by 56% and increase speed
by 31.6% in relation to other comparable NVM architectures. With regard to the potential limitations
of STT-MRAM in handling big data applications, recent explorations have also begun to look at
how SOT-MRAM might be used for the development of convolutional neural networks (CNNs) [94].
In related research, explorations have also been made regarding the potential use of spin current-based
circuits and devices, also known as All Spin Logic (ASL) devices, as a replacement for conventional
Arithmetic Logic Units (ALUs) [95]. Simulations, here, do not show the same energy savings as
SOT-MRAM, but do display greater controllability. In-memory logic function has most recently been
realized in a so-called multilevel voltage-controlled SOT-based magnetic memory (MV-SOTM) [96],
as illustrated in Figure 8a. The in-memory logic circuit comprises two MV-SOTM memory cells that are
initially employed to store the input states (i.e., memory mode). Its in-memory computing architecture
is divided into odd column reserved for reading the input data from MTJ of the respective memory
cell and even columns where resistance state from the free layers of the output cell is reserved and
can be switched by the current passing through the respectively heavy metal. Another emerging
in-memory logic MRAM arises from a hybrid spin-CMOS polymorphic logic gate (HPLG) (Figure 8b)
implementing a novel 5-terminal magnetic domain wall motion device [97]. The feasibility of achieving
a full set of 1- and 2-input Boolean logic functions (such as NOT, AND, and OR) based on such a device
was demonstrated by configuring the applied keys [97].
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in-memory computing architecture; (b) proposed hybrid polymorphic logic gate (HPLG) circuit design
based on a 5-terminal domain wall motion device. ((a) is reprinted with permission from [96]; (b) is
reprinted with permission from [97]).
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3.3. Comparative Advantages and Disadvantages

When compared to other non-volatile memories, STT-MRAM provides the closest switching
speed (<10 ns) and endurance cycles (>1012 cycle) to static RAM (SRAM) [57]. However, despite
these encouraging properties, commercialization of STT-MRAM as a substitute for SRAM has yet
to be properly realized. This is because, given the small on/off ratio (defined as the tunneling
magneto-resistance ratio, or TMR ratio), the existing reading schemes need to be substantially improved.
The physical performance of STT-MRAM is also strongly determined by its fabrication process,
which can affect the encapsulation, etching quality and substrate smoothness [98]. Thus, advanced
device and material innovations, such as Voltage-Controlled Magnetic Anisotropy (VCMA)-based
MTJs [99] and heavy metal-based GSHEs [75], are urgently required to improve the magnetic and
electrical properties of MTJs. A key development in this area is the move towards SOT-MRAM-based
devices. This shows definite potential regarding switching speed and energy-saving. However,
research in this area is nascent and all of the studies so far have generated results on the basis of
simulations. There have been a few of demonstrations of the feasibility of fabricating SOT-MRAM
devices on the basis of CMOS-compatible industrial processes [100], but many design considerations
still need to be addressed, so it remains to be seen as to whether SOT-MRAM will live up to its promise.

The principal advances in relation to MRAM-based technology are associated with new
developments around STT-MRAM and SOT-MRAM and hybrids of the two. The challenges confronting
its use are that all of these new approaches are still in their infancy and relatively unproved in large-scale
practical applications.

4. Logic in Phase-Change RAM

4.1. The Technology

As a storage medium, Phase-Change RAM (PCRAM) is mainly based upon chalcogenide (Group VI)
and pnictide (Group V) elements, in the form of Germanium-antimony-tellurium (GST) alloys such
as Ge2Sb2Te5 (usually abbreviated as GST) and compositional variations of GeSb [101], GeTe [102],
InSbTe [103], InGeTe [104], InSbGe, AgInSbTe [105], GeSbSeTe, GeSbReBi, SiSbTe [106], and SbTe [107].
The particularly relevant feature of these compositions, here, is that their electrical/optical properties,
such as their electrical resistivity and optical reflectivity, differ sharply between their crystalline
state (with a long-range atomic order) and their amorphous state (with a short-range atomic order).
These two distinct states can be rapidly and reversibly switched between on the basis of temperature,
making them what are known as ‘phase-change materials’ (PCMs). As shown in Figure 9a, their highly
resistive amorphous state can be achieved (i.e., as a reset process) by heating their crystalline form to
an appropriate melting temperature, followed by a quick cooling process. Heating amorphous PCMs
to a glass transition temperature then allows for the formation of a low resistive crystalline state (i.e., as
a setting process). The crystalline and amorphous states of PCMs can be defined in terms of the binary
codes ‘1’ and ‘0’. The phase-transformation between their amorphous and crystalline states, which is
generally induced by current pulses of an appropriate magnitude and width, is then open to being
considered as the PCRAM record/write operation. The readout operation is performed by sensing
variations in the resistance between phase-transformed and non-transformed regions. This is achieved
by applying a readout pulse with a much lower magnitude than a write pulse.

The success of PCRAM as a non-volatile memory (NVM) technology stems from the pioneering
work of Stanford R. Ovshinsky, who developed the current benchmark for PCRAM cells, known as the
Lance structure [108]. It can be seen in Figure 9b that a Lance-type PCRAM consists of a GST layer
sandwiched between a top electrode, usually made of metal, and a TiN resistive electrode (also called
the heater). The write current pulse is applied vertically from the bottom electrode to the top electrode.
It flows through the heater and the GST and the resistive Joule heating results in a ‘mushroom’ like
phase-change at the heater/GST interface as soon as the temperature reaches the crystallization or
amorphization point. The readout in a Lance-type PCRAM is achieved by applying a low voltage
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and detecting the current through the cell. The current pulse is usually produced by a cell selector
such as MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). To generate sufficiently high
current density for phase transformation (particularly amorphization), it is necessary to have a fairly
large cell selector. Unfortunately, this tends to diminish the integration density. A possible solution
is to reduce the PCRAM programming current. This has led to the development of various PCRAM
architectures that differ from the ‘Lance’ type in some way, such as the µTrench [109], ring [110],
pore [111], line [112], and dash [113] architectures. These improved configurations not only significantly
reduce the reset current, but also bring with them various other advantages, such as larger-scale phase
transition, higher crystallization temperatures (which means longer retention), faster switching speeds,
and improved endurance at smaller dimensions.
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Generally, GST has played an important role in the development of integrated all-optical
PCMs [114]. Implementing ordinary integrated all-photonic PCM at a chip level has to date proved
problematic because of the need to a constant bias power for the memory to be viable. However, recent
work has demonstrated that, by using a GST-based non-volatile switch, on-chip all-photonic read and
write operations are realizable [115]. Broadband non-volatile photonic on-chip switches have also
recently been developed that can significantly surpass all existing figures of merit for performance
for broadband switches, opening up the possibility of major improvements in the performance of
telecommunications networks [116]. Other important trends include the development of interfacial
phase change memories [117] and GSST-based photonic artificial synapses (Ge-Sb-Se-Te) [118] and
the use of broadband transparent materials to enhance the performance of non-volatile photonic
memories [119]. As a result of all these recent developments, many of which outperform electronic-based
paradigms. PCRAM is arguably the most advanced NVM technology.

4.2. Potential for Logic Operations

As with FeRAM, PCRAM can offer logic functions by assigning binary codes to different physical
states or pulse amplitudes. One possibility is to define the PCM threshold voltage (the GST in this
case) as the output signal [120]. The threshold voltage has a characteristic value and the electrical
resistance of amorphous GST media undergoes an abrupt decrease if the applied voltage across the
GST layer exceeds that threshold (see Figure 9c). At the same time, a pulse with a magnitude below
the crystallization value can be considered to be an input signal ‘0’ and a pulse with a magnitude over
that value can be treated as an input signal ‘1’. Thus, a sequence of two successive low-input pulses
can leave the GST in its amorphous phase but give rise to a high threshold voltage value, representing
‘1’. The combination of one low input and one high input will result in partial crystallization and
reduce the value of the threshold voltage, this corresponding to an output value of ‘0’. Two high input
signals will lead to the full crystallization of the GST layer and drive the threshold voltage close to
0. This generates the logic operation ‘NOR’. Such a device can also generate a ‘NAND’ operation.
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This paradigm, which is shown in Figure 10a, has encouraged the development of a number of new
approaches to in-memory logic operations. For instance, instead of defining the threshold voltage as
a logic output, one can denote the low and high resistance of the PCRAM device as the binary codes ‘0’
and ‘1’ and assign the input logic ‘0’ and ‘1’ to write pulses with low and high magnitudes, respectively,
as illustrated in Figure 10b. So, applying two consecutive input pulses with a low magnitude will leave
the GST in its crystalline state, leading to a low resistance with an output value of ‘0’. Other cases that
will include at least one input signal with a high magnitude will lead to the amorphization of the GST
and give rise to a higher resistance. This pulse combinations can serve as ‘OR’ functions and as other
logic functions such as ‘NOR’ and ‘NAND’ [121].Materials 2019, 12, x FOR PEER REVIEW 14 of 36 
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Figure 10. PCRAM-based logic operations: (a) measuring the applied voltage and voltage across the
cell during initialization and computing for the four cases for logic inputs X1 and X2; (b) cell resistance
with respect to the pulse sequence for NOR and NAND operations, respectively; (c) the AND setup
and its corresponding voltage output. ((a) is reprinted with permission from [120]; (b) is reprinted with
permission from [121]; (c) is reprinted with permission from [122]).

Note, however, that the two input signals described above work in a series rather than in
parallel. The latter is often adopted in conventional CMOS circuits to increase the computing speed.
To overcome this limit, a novel PCM-based logic gate supporting parallel computing was proposed
in [122]. This took advantage of T-shaped cells (TiW/GST/TiW/SiO2/Si). As with the previous design,
the ‘RESET’ and ‘SET’ pulses were used to represent the logical inputs ‘0’ and ‘1’, respectively, while
the low- and high-resistance states of the PCRAM cell were used to indicate the logical outputs ‘1’
and ‘0’, respectively. The associated circuits (see Figure 10c) consist of two PCM cells and a load
resistor. The node between the two cells is grounded via a switch. A write operation is performed
by closing the switch and inputting the pulses at terminals A and B, while the output resistance is
measured by opening the switch and applying a small signal between terminal A and the output port.
Evidently, the output resistance will reach a lower state only if the two input pulses are both set to be
‘SET’ pulses. Input signals, including at least one amorphization pulse, will give rise to a higher device
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resistance, matching the ‘AND’ operation. Different logic functions, such as ‘OR’ and ‘NOT’, can be
obtained by changing the way in which the cells, switches and load resistors are connected.

An important part of the story of the development of PCRAM is the development of what are
known as ‘memristors’, literally ‘memory resistors’. These were originally theorized by Chua in
1971 [123] to be one of four fundamental electrical components, incorporating resistors, capacitors,
inductors and memristors, as illustrated in Figure 11a. A memristor is effectively a two-terminal
electrical component that provides for a dynamic non-linear relationship between electrical charge
and magnetic flux. The characteristic of memristance associated with memristors amounts to being
a charge-dependent resistance. A material that demonstrates the ideal properties of a memristor
has yet to be found. However, in 2008, some 37 years after its initial conception, a nanoscale TiO2

device that mimicked the key characteristics of a memristor was developed [124] and a few years
later the first functioning memristor arrays began to be constructed [125]. The most important feature
of a memristor of interest here is its pinched hysteresis loop [126], where changes in the slope of
the curve relate to different states of resistance (Figure 11b). This presents the possibility of rapidly
switching between these different states as part of a two-terminal resistance memory. Basically, various
hysteresis loop shapes can be acquired by changing the frequency or amplitude of different input
signals. Centrally, the state variable of a memristor retains information about the electrical charge
and magnetic flux, rather than just preserving the charge or flux itself. So, when the power is turned
off, in theory at least, a memristor is able to remember its most recent state. This is the core reason
why memristors offer the possibility of non-volatile storage of information. Through changes in input
excitation, a memristor’s resistance is open to being dynamically modified, raising the prospect of
memristors simulating the behavior of brain synapses.
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Figure 11. (a) Four fundamental two-terminal circuit elements: resistor, capacitor, inductor and
memristor; (b) a typical pinched hysteresis loop of the memristor.

This idea was further expanded to a circuit containing two anti-serially connected memristors
with a Ta/GeTe/Ag structure [127] (see Figure 12a). The logic operations, here, depend on the fact that
the device resistance increases when the current flows from negative to positive polarity, while a flow
from positive to negative will decrease the resistance. For logic operations, two memristors can be
connected back to back and the logic variables A and B can be applied to the terminals X and Y,
respectively. By using this configuration, a positive SET voltage will result in a highly resistive state,
with a low resistive state in the top and bottom memristors. A negative RESET voltage, by contrast,
will switch the top and bottom memristors to a low and high resistive state, respectively. This implies
that setting and resetting the two memristors will allow for the storage of the logic values ‘0/1’ and
‘1/0’, respectively, thus enabling the realization of all Boolean logic operations.
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Figure 12. Other PCRAM-based approaches: (a) a memristor structure for logic operations with its
corresponding state transition diagram; (b) an AND gate and the threshold voltage of phase-change
materials with and without a magnetic field ((a) is reprinted with permission from [127]; (b) is reprinted
with permission from Lu et al., 2016).

It should be noted that although memristors were originally developed in the context of PCRAM,
they have also played (and continue to play) an important role in relation to both FeRAM and
STT-MRAM. Although they are distinct, there is also an affinity between the idea of a memristor and
ReRAM, so they are strongly related [128].

Recently another PCRAM structure that uses a [GeTe/Sb2Te3]n super lattice PCM has been
proposed that is also capable of in-memory logic operations [129]. The proposal arose from the
finding that applying an extra magnetic field to a super lattice PCM can modify its threshold voltage.
The resulting circuit has two input terminals, one for the voltage pulse and one for the magnetic field
(see Figure 12b). A voltage pulse with a magnitude of 3 V/0.5 V corresponds to the logic value of ‘1’/’0’
for one input terminal, whereas the presence/absence of the magnetic field represents the logic value
‘1’/’0’ for the other input terminal. If no magnetic field is applied, neither of the input signals will
electrically switch the super lattice PCM, giving rise to a high device resistance (i.e., an output logic
value of ‘0’). The device resistance undergoes a drastic reduction only if the input pulse is increased
to 3 V, together with an applied magnetic field. This triggers the ‘AND’ gate and other logic gates
such as NAND’, ‘OR’, and ‘NOR’. Most recently a complete in-memory hyperdimensional computing
(HDC) system was proposed to accomplish a near learning optimum trade-off between design
complexity and classification accuracy [130]. Such in-memory HDC mainly consists of an item memory
(IM) that stores h, d-dimensional basis hypervectors and an associative memory (AM) that stores c,
d-dimensional prototype hypervectors. One encoder was implemented to perform dimensionality
preserving mathematical manipulations during learning and to generate a query hypervector during
classification. Both IM and AM inside the in-memory HDC are arranged in the form of crossbar arrays
of memristive devices to achieve the comparable accuracies to software implementations.

Apart from the above, phase-change memories can also be used optically to realize Boolean logic
functions [131] (see Figure 13). This novel all-photonic device uses GST media as the active layer, coated
with an ITO (Indium Tin Oxide) film to protect it from oxidation. These two layers are deposited over
a half-etched waveguide on a Si3N4 substrate that is optimized for single mode operations. To record
data, an intense light is propagated through the waveguide and the resulting energy, particularly
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the evanescent electric field, is partly absorbed by the GST media. The required phase transition can
therefore be accomplished once the temperature inside the GST media reaches either ~400 ◦C for fast
crystallization or melting point for amorphization. The readout mechanism for this photonic device
relies on the significant difference in the refractive index between the crystalline and amorphous phases.
Experimental results show that amorphous GST has a lower attenuation and higher light transmission
than its crystalline phase. Thus, the device transmission coefficient, measured by a low power optical
pulse, is significantly enhanced when forming the amorphous element, whereas a lower transmission
coefficient is detected when producing a crystalline one. If this mechanism is adopted, a series of
device transmission values can be obtained by continuously changing the magnitude and width of the
optical excitation, enabling multi-level recording. Optical pulses with three different widths can be
set as ‘reset’, ‘input 0’, and ‘input 1’. To perform logic operations, the device can initially be reset to
a pre-defined transmission value using a reset signal. This pre-defined transmission value will remain
unchanged unless the two input signals include at least one input value of ‘1’. ‘OR’ logic can be thus
be realized by using a reference transmission between the pre-defined value and the one resulting
from an input ‘1’ signal.
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Figure 13. Photonic-based PCRAM: (a) an all-photonic memory structure; (b) the resulting transmission
levels when adjusting the intensity and the width of the optical pulse; (c) schematic of the optical logic
device and its corresponding ‘truth’ table. (Reprinted with permission from [131]).

4.3. Comparative Advantages and Disadvantages

PCRAM is considered to be the most competitive rival of Flash or even DRAM because of its
scalability (<5 nm), fast switching speed (~ns), and excellent endurance (>1011). However, PCRAM
will not replace Flash as a working memory in the shorter term because of the outstanding recent
progress in Flash devices, particularly with regard to their write speed (~ns) and endurance (>1012).
The relatively high cost of PCRAM is another factor that is hampering its commercialization.
Nonetheless, when compared to its electronic counterpart, the capacity of phase-change photonic
memory to take advantage of light to convey, record, and detect information, enables it to not only
circumvent the bandwidth limitations of silicon electronics, but to also obviate the need for extra devices
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for electronic-to-light conversion. This being said, it is currently still difficult for it to provide a density
comparable to conventional phase-change memories, despite the possibility of multi-level recording.

Most PCM-based computational memories function electronically and use the contrast in electrical
resistivity between the PCM’s amorphous and crystalline states [132]. The viability of photonic
computational memory depends upon the effectiveness of the computations inside the device itself.
A potential scheme (see Figure 14a) for performing arithmetic calculation is to use a rectangular
waveguide array where a PCM-cell is deposited at every waveguide crossing point [133]. This makes
it possible to selectively address and manipulate each basic arithmetic unit. So, as an example, base-10
arithmetic calculations can be performed by using a group of identical picosecond (ps) pulses to
divide the degree of crystallization in each PCM cell into 10 different levels. The PCM can then be
re-amorphized by using another group of picojoule pulses. This strategy was recently used to realize
logic functions within the same photonic device while adopting a novel pulse width modulation (PWM)
scheme [131]. Usually, the pulses used to induce phase-transformation adhere to a pulse amplitude
modulation (PAM) scheme, where there is a fixed width and different amplitudes. PWM, by contrast,
uses optical pulses with a fixed peak amplitude and different widths. Thus, the phase-transformation
levels can be controlled by using different pulse widths. The key advantage of using PWM is that it
makes it possible to directly access one specific memory level (i.e., phase-transformation level) from
any other memory level using the same pulse sequence. This significantly increases the range of logic
functions that can be realized within the PCM-based memory. This approach led to development of
a photonic computational memory that can handle direct scalar multiplications of two numbers [134],
using a single integrated PCM-based photonic cell (see Figure 14b). In this device, a write pulse,
Pwrite, programmed the device to a particular level of transmittance (T). Another, lower intensity,
read pulse, Pin, was then used to sense the device transmittance without changing the PCM’s
phase-transformation. The power of the Pin pulse at the output port, Pout = T(Pwrite) × Pin, is the result
of an a × b multiplication, where the multiplicand a is mapped to T and the multiplier b is mapped
to Pin. 429 multiplications using arbitrary values were undertaken using this method and matched
with the exact multiplication values. This underscores the potential of PCMs for developing photonic
hardware. Critically, it demonstrates the real scope to integrate optics, data storage and processing in
a single all-photonic memory that is capable of in-memory computations.

A key problem confronting the development of all-photonic memory circuits is making them
scalable. Recently, however, Feldmann et al. have developed a 256 cell all-photonic phase-change
memory that can store 512 bits of data [135], with the data being stored in an array of nanoscale
PCM-based devices. This memory array is based upon rows of microring resonators that are individually
connected to a single input waveguide (see Figure 14c). Every row has a certain number of memory
cells consisting of an input and output waveguide, joined by two microring resonators, with another
waveguide with a PCM-patch on top. As light passes through the input waveguide, part of it is coupled
to the lower microring resonator and PCM waveguide. Once it has passed through the PCM and
induced phase-transition, it is guided to the second microring resonator. The input wavelength can be
adjusted by tuning the radius of the microring resonators. As both resonators have the same radius
and resonance wavelength, the input signal can easily be multiplexed and demultiplexed. The quantity
of light going to the PCM and output waveguide can be controlled by adjusting the gaps between
the resonators and the waveguides. The actual data storage component is the PCM cell between
the resonators. This design was tested using SiN-based waveguides and resonators, a GST PCM,
and a protective ITO layer and was able to store a 16 × 16 pixel pictogram of a floppy disk in two-bit
resolution. All of the cells could be addressed individually and could reproduce the pictogram with
a high degree of accuracy. This device had an overall footprint of 1000 × 2400 µm2.
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Figure 14. (a) Sketch of a waveguide crossing array illustrating the two-pulse addressing of individual
phase-change cells. Only overlapping pulses provide sufficient power to switch a desired PCM-cell;
(b) scheme of the multiplication of two scalars a and b, codified in the device transmittance T and in
the energy of the read pulse Pin; (c) 16 × 16 cell photonic matrix memory showing optical micrograph
of the memory cells (top) and SEM of a single cell within the array (bottom). ((a) is reprinted with
permission from [133]; (b) is reprinted with permission from [134], and (c) is reprinted with permission
from [135]).

Conventional optical computing approaches have been limited by the lack of an integrated
non-volatile photonic memory and multiplexing capability for calculations. Recent work has shown
how this can be alleviated by using an integrated photonic tensor core that consists of phase-change
memory arrays that can locally store convolution kernels on-chip [136], together with photonic
chip-based frequency combs that can provide in-memory photonic computing using wavelength
division multiplexing (WDM). Calculations are performed by measuring the reconfigurable and
non-resonant optical transmissions. This photonic device has the potential to conduct computations at
the speed of light while consuming only tiny amounts of power. This method promises to eliminate
the existing computing bottleneck in machine learning hardware and could be used for applications
ranging from live video processing to autonomous driving and AI-assisted life-saving. In other recent
work, Prucnal et al. have developed a silicon-based photonic network (consisting of digital electronics
and analogue photonics (DEAP)) that can be used for convolutional neural networks [137]. The network
is capable of performing convolutions at between 2.8 and 14 times faster than a GPU while using
approximately 25% less energy. To test its viability, it performed a convolution and solved an MNIST
handwriting recognition task with an overall accuracy of 97.6%. Importantly silicon photonics-based
computing memory has the capacity to both outperform the conventional electronic hardware used for
machine learning and to be potentially scalable for a range of future applications.

Further recent developments in PCM-based computational RAM at IBM have demonstrated the
potential of PCRAM to store synaptic weights, taking things a step closer to brain-like memory and



Materials 2020, 13, 3532 19 of 36

processing [132,138]. This technology has been shown to be able to handle cloud-based two-layer
neural network processing of relatively large bodies of data [132] and seems to also have the potential
to handle more complex, convolutional neural networks [139].

The challenges confronting the ongoing development of PCRAM and its uptake are, as with MRAM,
the relative immaturity of many of the most promising technological approaches and, closely related
to this, the currently high cost of the materials required for its implementation.

5. Logic in Resistive RAM

5.1. The Technology

Resistive RAM (RRAM or ReRAM) basically makes use of a simple metal-insulator-metal (MIM)
architecture (see Figure 15), with a dielectric layer being sandwiched between two metal electrodes.
The most attractive feature of RRAM is that a dielectric layer that is subjected to external electrical
excitations can be reversibly and rapidly switched between high and low resistance states, just as
is the case with PCRAM. There is still some controversy surrounding the resistance switching (RS)
phenomena found in various resistive materials, such as transition metal oxide, organic polymer
composites, graphene oxide, and selenides. Several hypotheses have been put forward regarding the
RS mechanism of these materials, including valence change memory (VCM) [140–142], electrochemical
metallization memory (ECMM) [143–145], and thermochemical memory [146–148] (see Figure 16).
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(electrochemical metallization memory); and (c) thermochemical memory ((a) is reprinted with
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Devices that are assumed to work on a VCM basis mainly adopt oxide-based materials to generate
a large amount of oxygen vacancy when subjected to an external electric field. This causes a change
in the valence of the cations in the active RS layer. The migration of the oxygen vacancies and metal
cations leads to the formation of a conductive filament through the entire RS layer, allowing for LRS
(Low Resistive State). To restore an HRS (High Resistive State), higher levels of electrical excitation are
employed to rupture the conductive filament, forcing the metal ions to be oxidized and the number of
oxygen vacancies to decrease.

ECMM cells have a solid electrolyte layer sandwiched between an electrochemically active
electrode, such as Ag or Cu, and an electrochemically inert electrode, such as Pt or W. Unlike VCM,
the formation and rupture of the conductive filament inside an ECMM is focused upon changing
the polarity of the externally applied bias. Application of a positive voltage gives rise to an anodic
dissolution of the metal and the resulting metal cations thus drift toward the inert electrode via the
solid electrolyte. The deposition of the metal cations on the surface of the inert cathode reduces the
number of metal positive ions, thereby switching the cell to an LRS. Reversing the polarity of the
applied bias facilitates electrochemical dissolution of the conductive filament, switching the cell back
to an HRS. As with VCM, the thermochemical memory also encourages the formation of a conductive
filament for the migration of oxygen vacancies. In a thermochemical memory device, the application
of a negative bias pushes the O2− ions away from the top electrode, but attracts oxygen vacancies
towards it, thereby forming a filament-like path. At present, the switching process from an LRS to
an HRS for thermochemical memory is considered to be the consequence of the thermal rupture of the
filaments because of the heat produced in the presence of a large current flow.

RRAM has recently received a lot of attention, especially with regard to device fabrication and the
kind of materials to use for the electrodes. A scalability of cells below 10 nm and a switching speed of
~100 ps have been accomplished using HfOx/WOx-based RRAM [149] and TaOx/Pt dispersed SiO2-based
RRAM [150], respectively. RRAM architectures using TiN/Hf/HfO2/TiN and Pt/Ta2O5−x/TaO2−x/Pt also
exhibit an ultra-low energy consumption of <0.1 pJ [151] and an extremely long endurance of >1012

switching cycles [152], respectively. The possibility of developing RRAM with a data retention time of
several months or even up to 10 years has also been demonstrated experimentally and in simulations.
These achievements indicate the scalability of RRAM, its excellent stability, and its scope for handling
fast switching speeds.

Despite these achievements, there have been concerns expressed that the matrix-vector
multiplication characteristic of RRAM’s crossbar structure does not have the flexibility to meet
changes in the market, especially towards big-data applications [153]. To offset this, some research
has focused on developing fully programmable in-memory computing architectures. In this way,
the RRAM crossbar structure can provide flexible partitioning according to the specific needs of
different applications [153].

5.2. Potential for Logic Operations

In relation to in-memory logic operations, the LRS and HRS of RRAM perfectly match the binary
digits ‘1’ and ‘0’, renders it suitable for in-memory computation. One practical scheme to realize
in-memory computing of logic operations for RRAM is to develop a hybrid device with one switch
and one unipolar Ta2O5-based RRAM cell [154] (see Figure 17a). The switch’s physical state and the
external voltage can be considered as input logic signals. Thus, the ‘on’ and ‘off’ states of the switch
can correspond to the input logic values of ‘0’ and ‘1’, respectively, while, for the external voltage,
the input logic values of ‘0’ and ‘1’ can refer to writing the RRAM cell into comparable states of ‘0’
and ‘1’, respectively. The non-volatile HRS and LRS of an RRAM cell can indicate output values of ‘0’
and ‘1’, respectively. Thus, a logic combination of input (01) can enable the switching of the RRAM
from a ‘0’ to a ‘1’ state, while maintaining a ‘0’ state the other three combinations (00, 10, and 11)
are encountered. Switching from an output state of ‘0’ to ‘1’ can be achieved by using the 00 input
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combination, while the other three input configurations will not change the memory state. This allows
for the production of 14 of the 16 Boolean logic functions in no more than three sequential write cycles.
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Figure 17. Various RRAM configurations: (a) a hybrid device structure with one switch and one
unipolar RRAM cell; (b) the I-V characteristics of a typical TaOx-based RRAM; (c) the logic operation of
two anti-serial RRAM devices; (d) experimental results for “WL-IMP” operations on M1 and M2 ((a) is
reprinted with permission from [154]; (b) is reprinted with permission from [155]; (c) is reprinted with
permission from [156]; (d) is reprinted with permission from [157]).

Recently, another type of RRAM was developed that makes use of a complementary resistive
switch (CRS). This, too, can realize a range of Boolean logic functions [155] (see Figure 17b). The CRS
circuit can be thought of as two anti-serially connected bipolar switching devices, at each cross-point
junction. Each junction element is thus regarded as a two-terminal device (terminals T1 and T2),
when the input logic signals are applied. Application of a high potential and a ground potential
will represent logic values of ‘1’ and ‘0’, respectively. Only a certain input combination can switch
the junction element, depending on the previous device state. A destructive spike readout scheme
can be applied to establish the output logic signal, with the presence or absence of a spike meaning
‘0’ or ‘1’, respectively. This CRS-logic concept has been effectively demonstrated for VCM-based
RRAM, using TaOx as the active material. Ta2O5-based RRAM and HfO2-based RRAM both have
bipolar resistive switching (BRS) and CRS-related structures and are capable of realizing in-memory
computation of logic operations [156] (see Figure 17c). For the BRS circuit shown in Figure 17c, a high
voltage pulse and an LRS are defined as being a logical 1, while a low voltage pulse and an HRS are
defined as a logical 0. Devices with an initial HRS (‘0’) state can only be switched by applying a high
voltage pulse (‘1’) to the word line, with the bit line grounded (‘0’). This means that the other three
combinations (00, 01, 11) cannot induce a state transition. However, switching to the logic value of
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‘0’ from ‘1’ can only be obtained from the input 01, while 00, 10, and 11 will preserve the memory
state. A CRS circuit can be viewed as two anti-serially connected BRS, with the logic function being
realized by floating the terminal bit line and applying operation signals to the two selected word
lines. Although the definition of the terminal voltage is the same as it is for the BRS, the CRS structure
includes four memory states rather than the two available in the BRS. The output states 00 and 11 can
be converted to 01 or 10, given the inputs 01 or 10, and the output states 01 and 10 can be transformed
into each other if the right signals are applied.

The key feature of RRAM is the similarity of its electrical behavior to that of a ‘memristor’.
This endows RRAM with the capacity to realize material implication (IMP) logic. This offers a number
of advantages, such as non-volatility, functional completeness, high compactness, and the symmetry
of the two inputs for a binary function. Basically, two RRAM (considered as memristors here) are
selected by a common shared word line and two bit lines. Applying a positive voltage higher than
the ‘SET’ value and a negative voltage higher than the ‘RESET’ value can switch the RRAM from
an HRS to an LRS and vice versa. The initial resistive states of the two memristors indicate the logic
inputs for binary computation. During logic operations, VCOND and VSET are simultaneously applied
on bit line 1 and bit line 2, respectively. The logic result stored inside the RRAM then corresponds
to its final resistance. As this scheme uses two RRAM in the same word line, it is usually called
WL-IMP. A different approach to WL-IMP was recently proposed that implements two RRAM in the
same bit line, leading to it being called BL-IMP. BL-IMP presents an analogue circuit configuration
to WL-IMP, apart from the voltage polarity. The feasibility of using these two schemes to achieve
important Boolean functions has been proven experimentally. In one notable case, a 2 × 2 Ti/HfO2/W
RRAM array [157] was used to execute logic computation and apply logic inputs (i.e., VCOND and
VSET in either positive or negative polarity) to two working RRAM, followed by a read process to
detect the correct logic output (see Figure 17d). This method enables the 16 binary Boolean logic
functions to be reprogrammed in one small single cell with superb performance. Differing from the
aforementioned electrically writable and readable RRAMs, one novel nanoscale plasmonic memristor
that can be written and re-written electrically but read optically was also devised, as illustrated in
Figure 18. The designed device comprises a vertical Ag/a-Si/p-Si butt-coupled to a single-mode SOI
waveguide where light is propagated. As light propagates through such a device, it couples mainly to
the fundamental plasmonic mode, highly confined at the Ag/a-Si interface. The formation and rupture
of the conductive Ag filament inside a-Si can greatly change the optical transmission of the RRAM
device, enabling its readout functionality [158].
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off state (Reprinted with permission from [158]).
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Some recent research has taken a somewhat orthogonal view to other approaches by exploring
the provision of a non-volatile memory architecture for logic operations that is able to work with
different kinds of NVM, including phase changing memory (PCM), STT-MRAM and RRAM. One such
proposition [159] has looked at redesigning the read circuitry to enable the computation of bitwise
logic in multiple memory rows. This seems to offer very efficient processing-in-memory (PIM) and
significantly better processing speeds and energy consumption than conventional processors [159].
In principal, memristors can be used for both logic and memory functions, thus supporting the
development of resistive computing architectures. Borghetti et al. [160] demonstrated that these kinds
of devices have the scope to be used for fundamental Boolean logic operations, with them being able
to work simultaneously as logic gates and memory latches based solely upon resistance, rather than
voltage or charge. Vourkas et al. [161] subsequently developed a new logic circuit design paradigm
based upon these characteristics of memristors. Kvatinsky et al. [162] took further advantage of this
idea to construct a memristor-based logic family that they called MAGIC (Memristor Aided LoGIC).
They had previously used the same idea to construct a family of hybrid CMOS-memristive logic
devices, so that the approach was compatible with existing CMOS logic [163]. In addition to the
aforementioned achievements, a novel RRAM-based very long instruction word (VLIM) architecture for
an in-memory computing (ReVAMP) system was also proposed [164]. Its data storage and computation
memory (DCM) that performs data and in-memory computation makes use of RRAM crossbar memory,
while the instruction memory (IM) stores the instruction and is accessed using the program counter (PC).
The proposed work outperforms state-of-the-art programmable logic in-memory (PLiM) architecture
by up to 11.2× in terms of latency. A robust in-memory computing core with digital input and analog
output multiplication-and-accumulation (MAC) circuit based on RRAM was also designed, leading to
2.23−7.26× better energy efficiency in an 8-bit weight pattern when compared with previously reported
in-memory computing implementations and deep learning accelerators.

Another fascinating feature of RRAM arises from its ability to construct the so-called spike
neural networks (SNNs) that can closely imitate the storing and computing functionalities of
the biological brain. One strategy is to take advantage of a Ti/HfOx/TiN RRAM based on 1T1R
configuration [165], as illustrated in Figure 19a. The possibility of realizing the well-known
spike-timing-dependent-plasticity (STDP) behavior using the designed 1T1R synapse was also verified.
In addition to the emulation of the STDP mechanism, the RRAM-based SNNs were also implemented
for unsupervised learning of visual patterns in hardware [166], as shown in Figure 19b. Pattern learning
experiment is based on three sequential phase where only one 4 × 4 visual pattern among Pattern
#1, Pattern #2, and Pattern #3 is submitted to the input layer, and was conducted using a stochastic
approach. Note that above RRAM-based SNNs generally adopt a concept of overlap-based synapse.
Recently, a concept of non-overlap ReRAM-based synapse was also presented [167], exemplified by
a Pt/Ta2O5-x/TaOy/Pd RRAM device. Adjusting the sequence of the pre-and post-synaptic spikes
gives rise to the analogous STDP behavior to the observed biological phenomenon as well as the
numerically calculation outcomes. In spite of these impressive studies, hardware implementation of
the neuromorphic system still remains challenging due to the extremely complexity of the human brain
that contains ~ 1014 synapses. One promising scenario to provide the similar degree of complexity is to
implement a so-called cross-bar architecture where a two-terminal resistive device (i.e., memristor)
is located at each cross-point. It should be noticed that conventional cross-bar neural networks still
adopt an additional transistor at each cross-point, which severely impairs their scalability. To overcome
this limit, a transistor-free metal-oxide memristor with Pt/Al2O3/TiO2-x/Pt stack [168], as described
in Figure 19c, was recently reported to achieve a successful operation of a simple integrated neural
network having one single layer perceptron, thus paving the path toward the effective analog-hardware
realization of much more complex neuromorphic networks.
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Figure 19. (a) Schematic structure of the 1T1R RRAM structure (left) and of the 1T1R as a synapse to
achieve STDP (spike-timing-dependent-plasticity) in hardware (right); (b) schematic of a single-layer
perceptron network where a 4 × 4 input layer is fully connected to a single post-synapse (top)
and sequence of three visual patterns submitted to the neural network during training process and
an example of a random noise image, which is alternatively applied to patterns according to a stochastic
approach (bottom); (c) integrated 12 × 12 crossbar with an Al2O3/TiO2-x memristor at each crosspoint
(left) and a typical current-voltage curve of a formed memristor (right). ((a) is reprinted with permission
from [165]; (b) is reprinted with permission from [166]; (c) is reprinted with permission from [168]).

5.3. Comparative Advantages and Disadvantages

Although RRAM offers a fast speed, long endurance, and large on/off ratio, its retention time
remains a problem. This is largely a result of RRAM devices exhibiting a rapid ‘relaxation’ behavior
immediately after programming, thus undermining their reliability and retention capacity [169].
The switching mechanisms for RRAM also rely on the formation and rupture of a localized conductive
filament through insulating dielectrics. The location, dimension and composition of the filaments differ
from cycle to cycle and from cell to cell. This causes an intrinsically stochastic switching process that
leads to fluctuations in the device resistance and switching voltage [170]. Most critically, the majority of
RRAM devices require a forming process (i.e., placing under a higher bias or for a longer duration than
the set/reset conditions) prior to them being able to realize stable programming. This leads to added
complications in the device design and operation [163]. How to construct a truly ‘forming-free’ RRAM
is still unknown. Thus, the principal challenges confronting RRAM relate to the need to produce more
stable and durable solutions with a much lower manufacturing overhead.

6. Conclusions

A completely brain-like device needs to be able to simultaneously process and store data in
the same place. This is beyond the capability of conventional CMOS-based circuits. The advent of
non-volatile devices has presented the possibility of realizing genuinely neuromorphic computers.
This is mainly down to their resistive switching characteristics, which enable computation and storage
to happen not only in the same place, but also at the same time. The physical attributes of these devices,
such as their scalability, fast switching speed and low energy consumption, make their computation
and storage behavior very close to that of biological synapses. However, to seriously compete with
existing established forms of volatile memory, non-volatile memory has a number of issues to overcome.
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Comparing the relative advantages and disadvantages of the various approaches to non-volatile RAM
we have discussed above and their scope to replace volatile memory, we can note the following:

• FeRAM offers low power consumption, a fast writing speed and good endurance but it lacks
scalability. The latter is largely due to the limitations of the ferroelectric materials currently
being used and this has become the main focus of research in this area, with some materials
showing definite promise, such as metal oxide-doped HfOx [56,57]. A distinctive approach to
tackling the scalability issue is to replace capacitor-type FeRAM with Fe field-effect transistors
(FeFETs) [58–60], though this can impact rewrite capacity and retention time, necessitating the use
of yet other materials. Ferroelectric tunnel junction (FTJ)-based devices also show promise in this
area [10,63], though early tests of their potential to deliver large on-off tunnel current ratios [54]
require further confirmation.

• Some forms of MRAM, for instance STT-MRAM, offer performance that is comparable, at least in
terms of switching speed and endurance, to more mainstream forms of volatile RAM, such as
SRAM [56]. However, other features of their performance such as their TMR ratio and reading
schemes are preventing them from being properly commercialized. Additional fabrication
issues indicate a need for more advanced designs and materials for MRAM, for instance,
Voltage-Controlled Magnetic Anisotropy (VCMA)-based MTJs [97] and heavy metal-based
GSHEs [98]. There have been notable successes in the fabrication of SOT-MRAM-based devices
that overcome many of the issues associated with STT-MRAM [99], but it is clear that current
density and field-free switching are still issues that will require further work and most research in
this area remains largely theoretical at present.

• PCRAM offers the closest non-volatile memory performance to volatile memories such as
Flash and DRAM, in terms of not only switching speed and endurance but also scalability.
However, high manufacturing costs make it unlikely that PCRAM will be treated as a serious
competitor to Flash in the shorter term. If it can overcome its present density limitations, perhaps
the most promising development in PCRAM is phase-change photonic memory, because it can
use light to convey, record, and detect information, thereby circumventing the bandwidth
limitations of traditional electronics and stepping around any need for extra devices for
electronic-to-light conversion.

• RRAM performs well in terms of its speed, endurance and TMR ratio, but has issues in terms
of retention capacity and reliability [169]. RRAM also makes use of an intrinsically stochastic
switching process that can cause fluctuations in device resistance and switching voltage [170].
This, coupled with the complexity arising from its need for a forming process [171] makes RRAM
an unlikely replacement for conventional volatile memory in the near future. It should be noted
that MRAM also has a stochastic nature. Here, however, this has formed the basis of non-volatile
stochastic computing schemes, which have traded upon its stochastic nature to gain energy
advantages, improve tolerance to errors and reduce complexity and cost [89]. Attempts have also
been made to turn the stochastic character of RRAM to good effect in the context of stochastic
computing by producing random bit streams and reshuffle bit streams at a much lower cost.
These can then be used as a basis for certain kinds of solvers and clustering algorithms [172].

• When it comes to implementing the above as memory arrays, such arrays are currently focused on
crossbar array architectures that typically make use of either phase-change materials (see [173,174])
or resistive materials (see [43,175–177]). More work is still needed on realizing memory arrays
using either FeRAM or MRAM, though there have already been some successes in constructing
STT-MRAM memory arrays [178], and there have also been some notable moves in this direction
using SOT-MRAM lately [179]. By and large, this paper has focused on discussing single device
implementations and how they might be used for logic operations, but constructing larger-scale
non-volatile memory arrays has also been given substantial treatment in the literature and
significant progress has been made [180,181].
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A comparison of the physical performance of non-volatile memories is shown in Table 1. It can
be seen that RRAM currently exhibits the smallest feature size and shares the smallest cell area with
PCRAM. Only FeRAM does not offer multilevel switching. The write-erase time for RRAM is also
superior to the other devices, while PCRAM performs the worst in this respect. The retention time for
all devices is much the same, while MRAM offers the best overall endurance. Examination of the table
reveals that FeRAM is outperformed by at least one other kind of non-volatile memory in some respect.
RRAM, by contrast, has the greatest overall superiority.

Table 1. Performance comparisons of different nonvolatile devices.

MRAM PCRAM FeRAM RRAM GPP * with
On-Chip Memory

Non-Volatility Yes Yes Yes Yes No
CMOS Technology (nm) 130 45 180 < 5 65

Write/Read Time (ns) 10/10 50/10 30/10 5/5 2/2
Cyclability >1014 106 ~ 109 1014 106 ~ 109 >1016

Multilevel Switching Yes Yes No Yes No
Throughput (Mbits/s) 100 50 100 200 72

Energy Efficiency (nJ/bit) 0.1 ~ 2.5 2 ~ 25 0.37 × 10−3 2.7 389
Reference [182,183] [183,184] [182–184] [182–184] [185]

* GPP stands for ‘General Purpose Processor’.

It is interesting to compare the performances of the large-scale artificial neural networks (ANNs)
using NVM-based synapses with those trained using CPUs or GPUs. A 3-layer perceptron with
164,885 PCM-based synapses has been developed and trained with backpropagation to recognize
the handwritten digits, providing a similar test accuracy to the case when trained by software [186].
However, both training and test accuracies in these initial experiments were limited to 82–83% due to
the nonlinearity and asymmetry in PCM conductance response. Such problems might be overcome by
developing more advanced algorithm to offer wider tolerance to learning rate, higher classification
accuracies, and lower training energy. The expected training time (per ANN example) and training
power comparison between PCM-based on-chip machine learning and conventional GPU training is
schematically shown in Figure 20. The PCM-based on-chip machine learning seems to enable lower
power and faster training for both large and small networks than the conventional GPU training.
However, either increasing the circuit sharing or performing occasional RESET too frequently may
harm the speed of the PCM-based on-chip machine learning. Looking on to which device is the most
promising in terms of logic operations, it should be noted that, in order to replace the traditional
arithmetic/logic unit of a CPU, non-volatile memory will need to not only perform logic operations,
but to also process fundamental arithmetic/matrix computations. This requires a gradual change
in resistance, rather than abrupt switching. This is probably beyond FeRAM and MRAM. For this
reason, too, RRAM-based devices are seen as the most promising candidates for future memory and
logic computing applications. However, a lot of work still needs to be done to resolve their current
issues regarding reliability, control of the switching process, variability and the complexity of their
manufacture. These all urgently need further research before there will be any realistic prospect of the
commercial development of RRAM devices.
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