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Abstract: Phenomena occurring during the curing of concrete can decrease its mechanical properties,
specifically strength, and serviceability, even before it is placed. This is due to excessive stresses
caused by temperature gradients, moisture changes, and chemical processes arising during the
concreting and in hardened concrete. At stress concentration sites, microcracks form in the interfacial
transition zones (ITZ) in the early phase and propagate deeper into the cement paste or to the surface
of the element. Microcracks can contribute to the development of larger cracks, reduce the durability
of structures, limit their serviceability, and, in rare cases, lead to their failure. It is thus important to
search for a tool that allows objective assessment of damage initiation and development in concrete.
Objectivity of the assessment lies in it being independent of the constituents and additives used in
the concrete or of external influences. The acoustic emission-based method presented in this paper
allows damage detection and identification in the early age concrete (before loading) for different
concrete compositions, curing conditions, temperature variations, and in reinforced concrete. As such,
this method is an objective and effective tool for damage processes detection.

Keywords: early age concrete; acoustic emission method; damage processes detection before loading;
strength of structures

1. Introduction

All engineering projects encounter a range of challenges associated with the most widely used
building material, concrete. Being a major problem in current concrete construction, concrete cracking
or damage requires a continuous search for new methods and improvement of the existing concrete
assessment techniques. This is especially important for fresh concrete, which affects the behavior of
concrete under load.

Due to the multilevel nature of concrete, with qualitatively distinct mechanisms taking place
during the formation of the concrete, the interaction of various parameters must be considered and
the ways to study these relationships and effects have to be found to detect damage. Concrete
deterioration occurs primarily through technological cracks (microcracks) and different interfacial
properties (cracks) formed at various structural levels, which propagate and initiate operational cracks
affecting the usability and strength of concrete elements. The composition of the concrete largely
affects its properties. Concrete has high compressive strength and is durable. It can be formed into
virtually any shape. Weak points of this material include low tensile strength, shrinkage during
the hardening process, and susceptibility to external influences, such as moisture [1], temperature,
chemical influences, etc. [2,3].

Particularly important for concrete elements is the early period accompanied by a number of
phenomena related to cement hydration [4–6].
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Chemical reactions occurring in the cement paste during the hydration process, drying out (water
evaporation), the cement paste properties themselves (e.g., bleeding in fresh concrete and temperature
changes), as well as volumetric changes due to external factors (temperature and air humidity) cause
swelling and chemical, plastic, autogenous, and drying shrinkage. These volume changes of hardening
concrete generate natural stress, including “micro” stress. Stresses occur most often in the interfacial
transition zones (ITZ) between the grains of aggregate and cement paste and decide on the mechanical
properties of these zones and their microcracking. At stress concentrations exceeding the tensile
strength of concrete, the microcracks may propagate into the deeper layer of the cement paste or to the
surface of the element. Examples of damages in the concrete elements shown in Figure 1.
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To mitigate microcracking in concrete, an addition of fly ash, an application of the blast-furnace
slag cement or low density aggregate is good practice, as demonstrated in [8]. However, in the case of
normal-weight concrete, under the influence of destructive external factors, such as high temperature,
frost, and loading, these microcracks can develop into cracks, thereby reducing structural durability
and serviceability and in rare cases lead to failures, e.g., walls in tanks [9], concrete slabs [10,11], precast
elements [12], or other structural elements [13].

Objective assessment of damage formation and development in concrete, which is independent of
the components, additives, and external impacts is essential.

Various non-destructive methods have been used for this purpose [14–16]. Acoustic emission
(AE) is the technique capable of detecting, classifying [17], and locating [18,19] damage in concrete.
Traditional use of acoustic emission methods in the building industry includes the monitoring of
damage [20,21] and crack development under load [22–26], cement setting and curing [27–32], or an
assessment of the ASR (alkali–silica reaction) in concrete [33,34].

The research analyzing stress in concrete is especially related to the acoustic emission phenomenon.
The acoustic emission method enables the determination of basic parameters of fracture mechanics
necessary to analyze the course of stress affecting concrete destruction. Depending on the grade
of concrete tested, the criteria for the estimation of the level of stress were established [35,36].
Another approach aimed at estimating the correlation between acoustic emission and stress in
compressed concrete is the technique that relies on the Gutenberg–Richter (GBR) law [37]. It was
observed that the event frequency in concrete samples during compression corresponds to about 70%
of the maximum stress.

Progressive damage of structural elements (Reinforced Concrete beams—RC beams) under
bending is assessed using the Keiser effect by monitoring AE activity during cyclic loading [38].



Materials 2020, 13, 3523 3 of 16

The Keiser effect is used to estimate the stress to which the structural element was previously
exposed. To estimate the Kaiser effect (according to NDIS-2421 by JSNDI—the Japanese Society for
Non-Destructive Inspection) two ratios are calculated: the load ratio and calm ratio. Their values
are the basis for damage qualification as intermediate, minor, or heavy. Digital image correlation
(DIC) techniques supporting the AE method are applied for providing information about the level
of damage in the RC beams [39]. The relaxation ratio may also be a good indicator of damage status.
During initial stages of loading the deflections increase slightly (loading phase). The element is in a
serviceable state up to 50% of the deflection limit. In a higher deflection range (50–85%) the structural
element is no longer serviceable. Deflection higher than 85% represents the failure of the element.
The acoustic emission method is also used for the observation of the crack mouth opening displacement
(CMOD). The different nature of dissipated and emitted energy rates was observed in [38] during the
loading process.

The methods performed on concrete subjected to compression and bending do not consider an
influence of internal stress on concrete strength. At the initial stage of concrete setting, the cement
paste shrinks and meets the resistance of aggregate grains that do not shrink. A self-balancing state
of compressive and tensile stress arises. If the tensile stresses in the cement paste exceed the tensile
strength, microdefects occur. These defects may form in the matrix and in the interfacial transition
zone (ITZ) around the aggregate [4] (first destructive process). Internal microcracks interact with each
other; they can join together in a damage network. This happens when the structure surrounding the
internal microcracks in the cement paste is not able to transfer accumulated stresses. This is when
the second destructive process arises. Furthermore, the heterogeneous increase in temperature in the
cross-section of the element, as well as water evaporation from the surface layers causes the stretching
in the outer zones and compression of the inner zones of the element. These non-stationary and
non-linear temperature and humidity areas generate macrostress in the cross-section [36] that can
lead to microcracks on the concrete surface (third destructive process) and then their propagation
(fourth destructive process). These destructive processes result in discontinuities in the structure.
Local structural defects initiate future destruction of the concrete and may reduce the strength of
elements, causing their linear deformation and affecting serviceability functions [4,36,40].

There is no information about the assessment procedure of fresh concrete quality by acoustic
emission before loading. In most cases analysis of non-loaded concrete is based on ring-down
counting, which involves counting how many times the amplitude passes the fixed threshold or
event-counting corresponding to number of AE waves recorded by a single sensor [41]. In these cases,
acoustic emission signals the damage (crack formation) without being able to identify the underlying
processes. Only some of the AE techniques, such as the methods described in [19,23,24], allow for
effective identification and location of the destructive process.

The non-invasive acoustic emission method (modified IADP method—Identification of Active
Destructive Processes method) presented in [42–44] has been shown to be suitable for investigating
defect formation process at the early stage of hardening of young concrete.

The study presented in this paper demonstrates that this method is of a general nature and allows
observation and identification of destruction processes regardless of the aggregate used, cement types,
admixtures added, hardening conditions, temperature, or the presence of reinforcement. It also enables
quantitative assessment of destructive processes, which can be important when assessing the strength
properties of concrete.

The method can thus be applied to diagnosing elements made of reinforced concrete, controlling the
concrete hardening stage, and supporting decision making (e.g., related to demolding), thereby ensuring
the reliability of the structure.

2. Materials and Methods

A total of 30 samples (ten concrete series, W2, W3, W4, W5, W6, W7, W8, B2, B3, and B4, of three
samples each—A, B, and C) were tested.
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Twenty-one samples (W2–W8) were made of C30/37 concrete, six samples (B2, B3) were made of
C40/50 concrete and three (W2) of C25/30 concrete. Except for sample W2 (100 mm× 100 mm× 500 mm),
all samples had square cross-sections with 150 mm on each side and the length of 600 mm. Samples B2
were made with chemical admixtures (plasticizer and air entraining agent), other samples without
admixtures. Samples denoted by “W” were made with limestone aggregate from the Trzuskawica
quarry, while these marked with “B” with basalt aggregate from Górażdże quarry. All samples were
made with cement CEMI 42,5N—MSR/NA from the Warta cement plant (Cementownia Warta S.A.,
Trębaczew, Poland) (except B4—CEMIII/A 42,5N—LH/HSR/NA from the cement plant in Małogoszcz,
(Cementownia Lafarge Małogoszcz, Poland). The chemical compositions of the cements are compiled
in Table 1. Mixture proportions of samples W2–W8 and B2–B4 are listed in Table 2.

Table 1. Cement composition (%).

Cement CaO MgO SiO2 Al2O3 Fe2O3 SO3 Na2Oeq Cl−

CEM I 66.03 0.79 21.23 3.66 3.21 2.63 0.43 0.076
CEM III 2.69 0.81 0.066

Table 2. Mixture proportions (kg/m3).

Symbol Aggregate 2–16 Sand 0–2 CEMI/CEMIII Water Air Entraining Agent Plasticizer

W3–W8 1110 1 740 338 (CEMI) 169 0 0
W2 1073 1 777 290 (CEMI) 188 0 0
B2 1312 2 691 360 (CEMI) 150 0.36 1.98

B3, B4 1312 2 691 360 (CEMIII) 180 0 0
1 limestone aggregate, 2 basalt aggregate.

Three samples B4 were made with basalt aggregate, blast furnace slag, and cement CEM III
without any additions.

The W3 and W4 samples after fabrication were cured in water for 10 days and then tested for
58 days under cyclic temperature variations (Figure 2). Additionally, steel reinforcement was embedded
in the W4 samples (Figure 3a).
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The samples in series W7 were tested for 58 days without water curing at a constant temperature
(+22 ± 2 ◦C).

Before the test, the AE (Acoustic Emission) sensors were attached to one side of each sample
(Figure 3b,c).

To provide appropriate conditions, the test stand was developed, comprising of a thermally and
acoustically insulated chamber. A list of samples examined is shown in Table 3.

AE signals were recorded for 58 days in 12-h stages.
The proposed identification of active damage processes (IADP) method was presented in [19,21,24]

and applied for damage identification and location in reinforced concrete beams under loading [22].
It relies on the study of AE signals produced by the process causing the deterioration of strength
properties in structural elements. The results recorded in samples (AE signals) were compared with
the reference signals obtained in the laboratory.
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Then the modified version of this method was applied to detect damage in young concrete [23,42].
The IADP method outline is shown in Figure 4. This concept is based on the comparative

analysis of waves generated by defects in concrete (detected by sensors) with a database of reference
signals created earlier. Preamplifiers with a gain of 35 dB were used to amplify signals generated
by defects. Then the signals were detected, transformed into electric signals, measured, recorded,
analyzed, and assigned to the reference signals in the database using Noesis software and unsupervised
learning methods.Materials 2020, 11, x 5 of 19 
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Figure 3. (a) Schematic diagram of reinforcement of W4 samples; (b) sample during the test;
and (c) acoustic emission (AE) sensor arrangement (unit: mm).

Figure 3 shows the AE sensors arrangement on the test sample. Two piezoelectric sensors with a
gain of 25–80 kHz allow not only detection of destructive processes (AE source) but also finding their
linear location.

Table 3. Sample parameters and testing conditions.

Series Water Curing (days) Hardening Temperature Cement Type Concrete Class

W2 10 constant 22 ± 2 ◦C CEMI C25/30

W3 10 varied −5 to + 42 ◦C CEMI C30/37

W4 (reinforced) 10 varied −5 to + 42 ◦C CEMI C30/37

W5 10 constant 22 ± 2 ◦C CEMI C30/37

W6 (100 × 100 × 500) 10 constant 22 ± 2 ◦C CEMI C30/37

W7 (without curing) none constant 22 ± 2 ◦C CEMI C30/37

W8 (without curing) none varied −5 to +42 ◦C CEMI C30/37

B2 (with admixtures) 10 constant 22 ± 2◦ C CEMI C40/50

B3 different agregate type) 10 constant 22 ± 2 ◦C CEMI C40/50

B4 10 constant 22 ± 2 ◦C CEM III C30/37

The preliminary reference signal database was developed based on 12 parameters of the AE signal:
counts, counts to the peak, amplitude signal duration, signal rise time, signal amplitude, signal energy,
signal strength average, effective voltage, absolute energy, average frequency, reverberation frequency,
and initiation frequency. There are four destructive processes, described in [2–4,7], which may be a
source of AE in freshly made concrete before loading. In [42,43,45] damage processes were ascribed to
four signal classes recorded in non-loaded concrete (Table 4).
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Table 4. Destructive processes by the IADP (Identification of Active Destructive Processes) method.

Denotation AE (Acoustic Emission)
Signal Class

Number of
Destructive Process

The Source of the
Destructive Process

• Class 1 I formation of internal microcracks

• Class 2 II propagation of internal microcracks

• Class 3 III formation of surface microcracks

• Class 4 IV propagation of surface cracks

3. Results

3.1. Test Results

The method of assessing the quality of early-age concrete must enable identification of internal
defects, regardless of the components used for its manufacture or the conditions under which the
structure of hardened concrete forms. The potential of the IADP method was analyzed in this context.
Damage processes were identified based on the assessment of signal classes recorded during the test.

The AE signals were recorded for 12 h on days: 1–8, 12, 16, 20, 24, 28, 38, 46, and 57 using MISTRAS
software. Then the proposed IADP method was used to analyze the signals (hits). The signals from the
tests were compared by 12 AE parameters with signals from the database and assigned to particular
classes. The reference database was first developed using K-means clustering and then verified in [43].

An analysis was performed on averaged results of the number of recorded signals (hits) with
respect to destructive processes assigned to them. Concrete of each series was investigated by 6
sensors (two sensors were attached to one side of each of the three samples (A, B, and C) in a given
series). All signals recorded by these 6 sensors capturing the processes were averaged for each series.
The number of signals recorded on average by one sensor was analyzed.

The development of damage processes in series W3, W4, W6, and W7 and B2, B3, and B4 is shown
in Figures 5, 7, 9, 10, 12, and 13. Corresponding images of side surface cracks (for samples A, B, and C)
are presented in Figures 6, 8, and 11, except W6 and B2-B4 samples, because no cracks were observed
on their surfaces.

3.1.1. Concrete W3—Curing in Water, Variable Hardening Temperature (+42 to −5 ◦C)

Figure 5 shows the values of destructive processes I–III captured during 56 days in samples W3.
Throughout the test, 5195 signals (hits) were assigned to the initiation of internal microcracks (damage
process I) and 94 AE signals were assigned to damage process II.
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3.1.2. Reinforced Concrete W4—Curing in Water, Variable Hardening Temperature (+42 to −5 ◦C)

Figure 7 shows the values of destructive processes I–III captured during 56 days in samples W4.
Most processes I and II were recorded during 20 days, later their number decreased. Throughout the
test, 8608 hits were assigned to the initiation of internal microcracks (damage process I) and 90 AE
signals were assigned to damage process II.
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Figure 8. Surface microcracks distribution on sides of the W4 samples. Linear location of destructive
processes III (AE signal class 3) in W4 samples obtained by the AE method is marked in red.

3.1.3. Concrete W6—Curing in Water, Constant Hardening Temperature of 22 ◦C

Figure 9 shows the values of destructive processes I and II recorded during 56 days in samples
W6. Most processes were recorded during the first week of the test, then their number decreased.
Throughout the test, 2560 hits were assigned to the initiation of internal microcracks (damage process
I) and 94 AE signals were assigned to damage process II but not on every measuring day.
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Class III signals were not captured in the test and no microcracks at the surface of the samples
were observed.

3.1.4. Concrete W7—Curing in Water, Constant Hardening Temperature of 22 ◦C

Figure 10 shows the values of destructive processes I-III captured during 56 days in samples W7.
Most processes denoted as I were recorded during 20 days, later their number decreased. Throughout
the test, 2795 hits were assigned to the initiation of internal microcracks (damage process I) and six AE
signals were assigned to damage process II until day 24.

A few signals Class III assigned to the formation of surface microcracks were recorded in W7
samples. A single surface microcracks were detected on the sides of the samples (Figure 11).

3.1.5. Concrete B2 (with Admixtures)—Curing in Water, Constant Hardening Temperature of 22 ◦C

Figure 12 shows the values of destructive processes I and II recorded during 56 days in samples
B2. Most processes were recorded during the initial days of the test, then their number decreased.
Throughout the test, 4519 hits assigned to the initiation of internal microcracks (damage process I)
were recorded together with 52 AE signals assigned to damage process II, which practically faded out
after day 24 of the test.

Class III signals were not captured in the test and no microcracks at the surface of the samples
were observed.
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3.1.6. Concrete B4—Curing in Water, Constant Hardening Temperature of 22 ◦C

Figure 13 shows the values of damage processes I and II captured during 56 days in samples B4.
Throughout the test, 2886 hits assigned to the initiation of internal microcracks (damage process I) and
19 AE signals assigned to damage process II were recorded.

Class III signals were not captured in the test and no microcracks at the surface of the samples
were observed.
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3.2. Destructive Processes Analysis

The analysis of the destructive processes confirmed that the internal structure of the concrete
was affected by a range of factors such as aggregate and cement type, curing conditions (especially
moisture and ambient temperature) that influence cement hydration, dimensions of the tested element
as well as reinforcing bars embedded in the samples.

The identified processes, number of signals and curing conditions are shown in Table 1.
Analysis of the results shows that Class 1 signals were recorded most often in the test. These signals

correspond to internal microcrack formation. Most damage processes I were observed during the first
week. Their number decreased over time but they did not fade out during 56 days.

The number of Class 2 signals assigned to damage process II (internal microcracks development)
was almost an order of magnitude smaller.

Class 3 signals were not recorded in (W2, W6, and B2–B4) concrete samples cured after demolding
during 10 days and then hardened at constant temperature (22 ± 2 ◦C). This indicates that destructive
processes III (surface microcrack formation) did not occur, which was confirmed by the observation of
the sample.

In addition to tracking the growth of individual destructive processes in time, the number of
destructive processes recorded at any given time interval can be also analyzed. Several analyses
based on this precise information about damage and damage development in early age concrete
were performed.

The results selected for W3 and W4 concrete samples (Figure 14) show that in the case when
reinforcement was used, the number of damage processes I (internal microcrack formation) increased
(in the analyzed concrete samples by about 65%) due to the occurrence of additional interfacial
transition zones (ITZ) between reinforcing bars and cement paste. Damage processes II (propagation of
internal microcracks) in the analyzed samples slightly decreased and damage processes III (formation
of microcracks on the surface of concrete) were limited by embedded reinforcement.Materials 2020, 11, x 16 of 19 
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Figure 14. Number of hits accompanying processes I–III recorded in W3 and W4 samples (10 days
curing, varied temperature, and with and without reinforcement).

In Table 5 shown the testing conditions of the samples with the results of number of AE signals and
destructive processes in non-loaded concrete obtained by modified IADP acoustic emission method.

Figure 15 shows an influence of variable temperature on the number of damage processes in
concrete hardening without initial curing. In the samples hardened at variable temperatures (−5 to
+42 ◦C), far more destructive processes (I–III) were recorded compared to constant temperature
conditions. This indicates a significant impact of the heating and cooling cycles on damage processes
development in the early-age concrete, which may influence the strength of hardened concrete.
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Table 5. Sample parameters, testing conditions, results, and detected damage.

Series

Curing
Conditions

(Days of
Curing)

Hardening
Temperature

Cement
Type

Concrete
Strength
after 28

Days (MPa)

Process No of
Signals

W2 10 constant 22 ± 2 ◦C CEMI 36.0
I 5980

II 31

III 0

W3 10 variable −5 to +42 ◦C CEMI 44.5
I 5195

II 94

III 23

W4 (reinforced) 10 variable −5 to +42 ◦C CEMI 44.5
I 8608

II 90

III 10

W5 1 10 constant 22 ± 2 ◦C CEMI 40.1
I 2192

II 9

III 0

W6 (100 × 100 × 500) 10 constant 22 ± 2 ◦C CEMI 40.1
I 2560

II 6

III 0

W7 (without curing) none constant 22 ± 2◦C CEMI 45.8
I 2795

II 6

III 1

W8 1 (without curing) none variable −5 to +42◦C CEMI 41.2
I 5200

II 42

III 7

B2 2 (with admixtures) 10 constant 22 ± 2 ◦C CEMI 63.5
I 4519

II 52

III 0

B3 2 different agregate type) 10 constant 22 ± 2 ◦C CEMI 55.8
I 2984

II 18

III 0

B4 10 constant 22 ± 2 ◦C CEM III 48.1
I 2886

II 19
1 The tests and analysis of W5 and W8 samples results were described in [45], 2 the test results of the B2 and B3
samples were described in [44].
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4. Discussion

The presented results for concrete tested under different curing conditions, hardening temperature,
aggregate type, concrete strength, dimensions of the sample, presence of the admixtures, and presence
of reinforcement show that the proposed AE method is the general method that allows for early age
damage identification, damage tracking, and location.

In each of the analyzed cases, it was possible to select damage classes. The emergence of class 1
and class 2 signals does not represent direct effects on the strength level.

Evaluation of concrete strength based on the presented AE method has a qualitative nature.
Therefore, it seems expedient to look for a correlation between the intensity of destructive processes
and the strength of the concrete obtained.

The data obtained can also be used in several analyses of practical significance such as:

• In the case of hardening at varied temperature, class II damage (internal microcrack development)
increases but class III (surface microcracks) decreases in reinforced concrete, which confirms that
the reinforcement restricts most dangerous class III damage (Figure 14),

• All damage processes increase in the case of hardening at variable temperature (Figure 15).
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34. Świt, G.; Zapała-Sławeta, J. Application of acoustic emission to monitoring the course alkali-silica reaction.
Bull. Polish Acad. Sci. Tech. Sci. 2020, 68, 169–178.

35. Newman, K.; Newman, I.B. Failure theories and design criteria for plain concrete. In Proceedings of the Civil
Engineering Materials Conference; Te’eni, M., Ed.; Wiley-Interscience: London, UK, 1969; Part 2, pp. 963–996.

36. Hoła, J. Determination of initiating and critical stress levels in compressed plain and high-strength concrete
by Acoustic Emission. Arch. Acoust. 2000, 25, 57–65.

37. Carni, D.L.; Scuro, C.; Lamonaca, F.; Sante Olivito, R. Damage analysis of concrete structures by means of
acoustic emissions technique. Compos. Part B 2017, 115, 79–86. [CrossRef]

http://dx.doi.org/10.1016/S1644-9665(12)60133-2
http://dx.doi.org/10.1016/j.conbuildmat.2010.05.004
http://dx.doi.org/10.1680/macr.1991.43.155.127
http://dx.doi.org/10.1016/j.acme.2012.03.004
http://dx.doi.org/10.1016/j.engstruct.2010.02.020
http://dx.doi.org/10.2478/bpasts-2013-0008
http://dx.doi.org/10.1515/bpasts-2015-0007
http://dx.doi.org/10.1016/j.acme.2013.06.002
http://dx.doi.org/10.1617/s11527-015-0641-3
http://dx.doi.org/10.1016/S0008-8846(00)00358-6
http://dx.doi.org/10.1016/j.cemconres.2009.06.015
http://dx.doi.org/10.1007/s10921-016-0355-7
http://dx.doi.org/10.1016/S0955-2219(02)00152-8
http://dx.doi.org/10.1016/j.conbuildmat.2010.01.018
http://dx.doi.org/10.1016/j.compositesb.2016.10.031


Materials 2020, 13, 3523 16 of 16

38. Sagar, R.V.; Prasad, B.K.R. Damage limit states of reinforced concrete beams subjected to incremental cyclic
loading using ratio analysis of AE parameters. Constr. Build. Mater. 2012, 35, 139–148. [CrossRef]

39. Carpinteri, A.; Lacidogna, G.; Corrado, M.; Di Battista, E. Cracking and crackling in concrete-like materials:
A dynamic energy balance. Eng. Fract. Mech. 2016, 155, 130–144. [CrossRef]
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