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Coatings deposited utilizing different thermal spray variants have been widely used for diverse
industrial applications. Today, various coating techniques belonging to the thermal spray family and
spanning a vast cost–quality range have been embraced by the industry to either extend the longevity
of components or enhance their performance, especially when these parts routinely operate in harsh
conditions. The current state-of-the-art route for depositing the ceramic coatings is usually atmospheric
plasma spraying (APS), while metallic and intermetallic coatings are sprayed by high-velocity oxy-fuel
(HVOF) methods. Between them, the above spray methods and the vast portfolio of commercially
available spray grade powders are capable of providing coatings that can combat premature surface
degradation when industrial components are exposed to wear, corrosion, oxidation, high thermal
load, etc. The immense versatility of the technique has already led to its numerous industrial uses,
ranging from the advanced gas turbine requirements to the relatively more mundane needs of sectors
such as textile, mining, pulp and paper and petrochemical sectors.

However, efforts continue to explore new potential applications to further expand this envelope.
Two of the papers in this Special Issue focusing on impact wear [1] and tribocorrosion properties [2] of
sprayed coatings, and another that seeks to augment mechanical properties via plasma spray deposition
of multi-constituent amorphous coatings [3] are motivated by the above. Another paper explores
novel surface designs to develop thermally sprayed icephobic coatings [4]. With the emergence of
new engineering materials such as composites, there is also an interest in implementing thermal spray
approaches for imparting them suitable protection, as exemplified by the contribution focusing on ZrC
barrier coatings deposited on SiC-coated carbon/carbon composites by vacuum plasma spraying [5].
Post-treatment of thermal sprayed coatings by adopting approaches such as shot peening and laser
remelting has also been a subject of considerable academic research. As a complement to such efforts,
one of the papers deals with gas nitriding of HVOF-sprayed AISI 316L low-carbon austenitic stainless
steel coatings [6].

Traditionally, thermal sprayed coatings have been realized employing powder feedstock, with the
particle size typically being in the 10–100 µm range, with the lower end of this range being preferred
for high melting point materials such as ceramics. Use of such feedstock, now commercially available
for an exhaustive spectrum of material chemistries, results in splat sizes that are several tens of
microns and consequently in coarse-structured coatings. However, there is growing interest in
realizing fine-structured coatings using submicron and nanosized powders that can potentially yield
enhanced functional performance. Such a feedstock injection methodology constitutes the basis for
Suspension Plasma Spraying (SPS), which has been found capable of producing coatings with tailored
microstructures, including the extremely porous to the very dense, vertically cracked, columnar, etc.,
and thus are not easily realizable when using a typical spray-grade powder feedstock. With the above
approach providing a convenient pathway to deposit fine-structured coatings, thermal spraying with
suspensions is perhaps the next frontier.
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A vast majority of interest in SPS has hitherto been driven by the excitement of obtaining columnar
thermal barrier coatings (TBCs). One of the papers in this Special Issue investigates SPS-derived
double-layered Gadolinium Zirconate/Yttria-Stabilized Zirconia (YSZ) coatings [7]. The rapidly growing
interest in this method is apparent from contributions that extend use of SPS to other materials such as
oxides [8] and carbides [9], as well as to other high-velocity non-plasma spray processes [8,10].

It is also relevant to point out that the advent of axial injection capable plasma spray systems
is a potential game-changer for use of liquid feedstock in the form of suspensions or solution
precursors. This is by virtue of the fact that axial feeding enables far more intimate contact between
the liquid feedstock and the plasma plume to facilitate thermal energy transfer and enable effective
utilization of plasma energy. This advantage, which manifests in the form of higher throughputs,
longer stand-off distances etc., has been harnessed in a couple of the above-mentioned studies [7,9].
The favourable thermal energy transport between the plasma plume and the suspension feedstock has
also encouraged deployment of “hybrid” powder-suspension feedstocks to achieve unique coatings
microstructures. One of the papers investigates the performance of such a hybrid powder-suspension
sprayed Al2O3—YSZ coating in bovine serum solution [11].

Admittedly, it was not possible to include in this Special Issue other key areas that, too, continue
to play a crucial role in the continued development of thermal spraying. These include, for example,
evolution of new torch designs, advanced characterization of coatings, novel approaches for in-flight
diagnostics and modelling of coating formation. The use of artificial intelligence/machine learning and
data-driven modelling approaches, as illustrated in one of the papers [12], is also destined to play an
important role in the future as thermal spray expands into new application domains such as additive
manufacturing. Perhaps these can be the focus of a subsequent Special Issue.
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