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Abstract: We report the negative effective mass metamaterials based on the electro-mechanical
coupling exploiting plasma oscillations of free electron gas. The negative mass appears as a result
of the vibration of a metallic particle with a frequency ω which is close to the frequency of the
plasma oscillations of the electron gas m2, relative to the ionic lattice m1. The plasma oscillations
are represented with the elastic spring constant k2 = ω2

pm2, where ωp is the plasma frequency.
Thus, the metallic particle vibrating with the external frequency ω is described by the effective mass

me f f = m1 +
m2ω

2
p

ω2
p−ω

2 , which is negative when the frequency ω approaches ωp from above. The idea is

exemplified with two conducting metals, namely Au and Li embedded in various matrices. We treated
a one-dimensional lattice built from the metallic micro-elements me f f connected by ideal springs
with the elastic constant k1 representing various media such as polydimethylsiloxane and soda-lime
glass. The optical and acoustical branches of longitudinal modes propagating through the lattice
are elucidated for various ratios ω1

ωp
, where ω2

1 = k1
m1

and k1 represents the elastic properties of the
medium. The 1D lattice, built from the thin metallic wires giving rise to low frequency plasmons,
is treated. The possibility of the anti-resonant propagation, strengthening the effect of the negative
mass occurring under ω = ωp = ω1, is addressed.

Keywords: metamaterials; negative effective mass; plasma oscillations; low frequency plasmons;
optical and acoustical branches

1. Introduction

Metamaterials are artificial materials demonstrating properties that are not found in naturally
occurring materials [1–3]. In metamaterials, the index of refraction and magnetic permittivity may
be negative at certain frequencies. Moreover, they may be tuned in a broad range of values [4].
One of the most rapidly developed fields within the domain of metamaterials is the field of photonic
band-gap crystals, which are multidimensional periodic structures with a period of order of the optical
wavelengths [5–7]. The theory predicted the existence of a photonic bandgap (PBG), a frequency
band of inhibited optical modes [5,6]. Analogously, acoustical band gap materials were predicted and
manufactured [8–11]. In particular, resonance sonic crystals, based on the idea of localized resonant
structures, that exhibit spectral gaps with a lattice constant two orders of magnitude smaller than the
relevant wavelength are reported in the literature [10,11].

Acoustic metamaterials, in which both the effective density and bulk modulus are simultaneously
negative, in the true and strict sense of an effective medium have been reported [12]. Acoustic
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metamaterials demonstrating a negative Poisson’s ratio [13] and negative elastic modulus were
discussed [14]. Mechanical metamaterials exhibiting auxetic behaviors and negative compressibility
were suggested [15]. Acoustic metamaterials demonstrate a potential to be perfect absorbers of
mechanical vibrations [16] and also of materials enabling the focusing of ultrasound [17]. In our recent
paper, we proposed the exploitation of the plasma oscillations of the electron gas for the development of
the metamaterials with the negative effective mass (density) [18]. The plasma oscillations in this model
are represented with the elastic spring [18]. The notion of the negative effective mass (density) acoustic
metamaterials was introduced in Refs. [19–21]. We suggested the exploitation of the so-called plasma
oscillations of the electron gas [22] for the development of the metamaterials with a negative effective
mass or density [18]. Now we elucidate the structure of the optical and acoustical branches of elastic
waves propagating in chain structures built of elements possessing a negative effective mass, exploiting
the plasma oscillations in metal particles connected by ideal springs and representing elastic media.

2. Results and discussion

2.1. Propagation of Harmonic Waves in the 1D Lattice Comprising Negative Effective Mass Plasmonic Elements

The mechanical model giving rise to the negative effective mass effect, introduced in Refs. [20,21,23]
is depicted in Figure 1.
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mechanical, plasmonic analogy of the aforementioned model, giving rise to the negative effective 

Figure 1. (A) Free electron gas is embedded in the ionic lattice; ωp is the electron plasma frequency (B).
The equivalent mechanical scheme of the system (A). Core with mass m2 (free electron gas mass) is
connected internally through the spring with k2 = ω2

pm2 to a shell with mass m1 (ionic lattice mass).
The system is subjected to the sinusoidal force F(t) = F̂sinωt.

A core with mass m2 is connected internally through the spring with the elastic constant k2 to a
shell with mass m1. The system is submitted to the external sinusoidal force F = F̂sinωt. If we solve
the equations of motion for the masses m1 and m2 and replace the entire system with a single effective
mass me f f , we obtain [20,21,23] Equation (1):

me f f = m1 +
m2ω2

0

ω2
0 −ω

2
(1)

where ω0 =
√

k2
m2

. It is easily recognized that when the frequency ω approaches ω0 from
above, the effective mass me f f will be negative [20,21,23]. In our recent paper we suggested the
electro-mechanical, plasmonic analogy of the aforementioned model, giving rise to the negative effective
mass [18]. Consider the cubic metal particle shown in Figure 1A, seen as an atomic lattice m1 containing
the Drude–Lorenz free electron gas possessing a total mass of m2 = menV, where me = 9.1× 10−31 kg is
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the mass of electron, n is the concentration (number density) of the electron gas and V is the volume of

the particle [22,24,25]. Electron gas is free to oscillate with the plasma frequency ωp =
√

ne2

meε0
[22,24,25].

Exposing the entire metal particle to the external sinusoidal force given by F = F̂sinωt. The effective
mechanical scheme of the metallic particle is shown in Figure 1B and it exactly coincides with that
giving rise to the negative effective mass, supplied in this case by, Equation (2):

me f f = m1 +
m2ω2

p

ω2
p −ω2

(2)

where m1 is the mass of the ionic lattice, m2 is the total mass of the electron gas. It can be seen that
it may be negative when the frequency ω approaches ωp from above [18]. It was demonstrated that
the effective dimensionless mass

me f f
m1+m2

�
me f f
m1

is independent on the metallic particles’ size [18].
The results of calculations of the effective negative mass for Li and Au are supplied in Ref. [18]
(the physical parameters of these metals are summarized in Table 1).

Table 1. Properties of the metals used in the calculations.

Metal ρ,
kg/m3

ne,
m−3

p,
Hz

Li 530 4.7 × 1028 1.0 × 1016

Au 19,300 5.9 × 1028 1.3 × 1016

Consider now the one-dimensional lattice built from the elements (cells) shown in Figure 1B
and depicted in Figure 2. The 1D lattice is built up of identical elements possessing the effective
negative masses me f f given by Equation (2) and connected by ideal springs with the elastic constant k1;
the separation between the elements a is constant, as shown in Figure 2.
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Figure 2. The mechanical scheme of the one-dimensional lattice is depicted.

Considering the propagation of harmonic waves (ω, q), Equation (3):

uk+n
i (x, t) = û0e j(qx+nqa−ωt) (3)

where uk+n
i (x, t) is the displacement of the mass i (i = 1, 2) in the k + n-cell, û0 is the complex wave

amplitude, and q is the wave number [21]. The dispersion equation for the 1D lattice depicted in
Figure 2 was derived in Ref. [21], Equation (4):

m1m2 ω
4
− [(m1 + m2)k2 + 2m2k1(1− cos(qa))]ω2 + 2k1k2(1− cos(qa)) = 0 (4)
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Dividing Equation (4) by m1m2, and considering m1
m2
� 1 (which is true for plasmonic systems,

thus, we can neglect m2 in the sum m1 + m2) and k2 = m2ω2
p, yields Equation (5):

ω4
−

[
ω2

p + 2
k1

m1
(1− cos(qa))

]
ω2 + 2

k1

m1
ω2

p[1− cos(qa)] = 0 (5)

Denoting ω2
1 = k1

m1
supplies in turn, Equation (6):

ω4
−

[
ω2

p + 2ω2
1(1− cos(qa))

]
ω2 + 2ω2

1ω
2
p[1− cos(qa)] = 0 (6)

Equation (6) yields the following exact solutions, Equations (7) and (8):

ω = ωp (7)

ω = ω1

√
2(1− cos(qa)) (8)

The solution of Equation (6) gives rise to the “acoustic” and “optical” branches of vibrations [26,27].
The solution supplied by Equation (7) is intrinsic to the plasma oscillations of the electron

gas and corresponds to the absence of dispersion within the optical branch of vibrations; whereas,
the solution supplied by Equation (8) corresponds to the well-known dispersion relation inherent to
the propagation of longitudinal acoustic waves spreading within a homogeneous 1D lattice, possessing
the lattice constant a [27]. In the limiting case of qa→ 0 , we obtain the non-dispersion propagation
ω = ω1qa corresponding to the continuous string, possessing the highest eigenfrequency of ω = ω1.
The degenerated double-resonance propagation occurs whenω=ωp =ω1 takes place. This propagation
corresponds to the so-called anti-resonance, when the amplitude of vibration of the mass m1 is minimal
and in the limiting case even equals zero [28,29]. When the anti-resonance ω = ωp = ω1 condition is
fulfilled, all of the energy is transferred to the mass m2, thus strengthening the effect of the negative mass.

The “optical” and “acoustical” branches of longitudinal modes propagation in the 1D lattice,
depicted in Figure 2 for various ω1

ωp
ratios, are shown in Figure 3A–C [26,27].
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It is recognized from Figure 3, that the relative location and configuration of the optical and
acoustical branches depends strongly on the ratio ω1

ωp
. The optical and acoustical branches may be

separated by the frequency (energy) gap, as shown in Figure 3A. The configurations of optical and
acoustical branches at which this gap is zero are also possible, as shown in Figure 3B,C. It is noteworthy
that the optical and acoustical branches may intersect, as depicted in Figure 3C.

In order to exemplify the suggested metamaterial, we considered the 1D lattice of spherical Li and
Au particles, dispersed in the polymer (polydimethylsiloxane) and soda-lime glass matrices. The values
of the spring stiffness k1 [30] and frequencies ω1 (representing the elastic media) calculated for various
diameters of the metallic particles (D � 10−7

−10−6 m) and lattice constants (a � 1.5×10−7
−1.5×10−6 m)

are summarized in Table 2.

Table 2. Dimensions of spherical metallic particles and physical properties of the matrix materials used
in the calculations.

Metal D,
m

a,
m

m1,
kg

m2,
kg

k1,
N/m

(PDMS)

k1,
N/m

(Glass)

k2,
N/m

(Plasma)

ω1,
Hz

(PDMS)

ω1,
Hz

(Glass)

Au 1 × 10−6 1.5 × 10−6 1.01 × 10−14 2.81 × 10−20 1.18 1.1 × 105 3.65 × 10−4 1.72 × 106 5.25 × 108

Li 1 × 10−6 1.5 × 10−6 2.77 × 10−16 2.24 × 10−20 1.18 1.1 × 105 2.24 × 10−4 1.04 × 107 3.17 × 109

Au 5 × 10−7 7.5 × 10−7 1.26 × 10−15 3.51 × 10−21 0.59 5.5 × 104 4.57 × 10−5 3.44 × 106 1.05 × 109

Li 5 × 10-7 7.5 × 10−7 3.46 × 10−17 2.80 × 10−21 0.59 5.5 × 104 2.80 × 10−5 2.08 × 107 6.34 × 109

Au 1 × 10−7 1.5 × 10−7 1.01 × 10−17 2.81 × 10−23 0.12 1.1 × 104 3.65 × 10−7 1.72 × 107 5.25 × 109

Li 1 × 10−7 1.5 × 10−7 2.77 × 10−19 2.24 × 10−23 0.12 1.1 × 104 2.24 × 10−7 1.04 × 108 3.2 × 1010

D—diameter of the spherical metallic particle (Figure 2); a—lattice constant.
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It is clearly recognized from the numerical data supplied in Tables 1 and 2, that for the suggested
composite metamaterials takes place the inequality ωp >> ω1. Thus, the relative location of the acoustic
and optical branches of modes, resulting in the formation of the band gap, depicted in Figure 3A,
necessarily occurs. The situations presented in Figure 3B,C demand an essential decrease in the plasma
frequency, which is possible in the metamaterials, addressed in the following section.

2.2. Propagation of Harmonic Waves in the Metallic Mesostructures Demonstrating the Effect of Negative
Effective Mass

The plasma oscillations shown in Figure 1 will demonstrate the negative mass in the vicinity
of the plasma frequency which is in the order of magnitude of ωp � 1016 rad/s, which is very high.
However, this frequency may be strongly decreased for the mesostructures built from thin metallic
wires, as demonstrated in Ref. [31]. Depression of the plasma frequency into the far infrared and even
GHz band becomes possible due to the mutual inductance appearing in the periodic arrays built of
thin metallic wires arranged in a simple cubic lattice, joined at the corners of the lattice [31], as depicted
in Figure 4.
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Consider the longitudinal acoustic modes propagating along such a lattice. For the sake of
simplification, we replaced the 3D lattice with the 1D lattice, shown in Figure 2. The effective (pseudo)
density of electrons in the metamaterial lattice shown in Figure 4 is given by [31], Equation (9):

ñ � πn
r2

l2
(9)



Materials 2020, 13, 3512 7 of 9

where l is the lattice constant, r is the radius of the wire, and n is the concentration of the free electron
gas supplied in Table 1 for Li and Au. The pseudo-mass of electrons in such matrices is given
by [31], Equation (10):

m̃ =
µ0r2e2n

2
ln

l
r

(10)

where µ0 is the magnetic permittivity of the vacuum. The value m̃ expressed by Equation (10) is called
in Ref. [31] as the “effective mass”; however, in our paper, the notion of the “effective mass” is already
ascribed to the mass of the vibrated element, given by Equation (1). Thus, we call the value expressed
by Equation (10) the “pseudo-mass”, and the effective density of electrons expressed by Equation (9)
we label as the “pseudo-density”. Assuming r = 1.0× 10−6 m; l = 5.0× 10−3 m (which is typical for
metamaterials) enables the calculation of the effective pseudo-plasma frequencies ω∗p for Au and Li
according to Equation (11) (Ref. [31]):

ω∗p =

√
ñe2

ε0m̃
=

√
2πc2

0

l2ln(l/r)
(11)

where c0 � 3.0 × 108 m
s is the speed of light in the vacuum. Substituting the aforementioned

numerical parameters yield the effective plasma frequencies of the lattices built from Au and Li wires
ω∗Au

p = ω∗Li
p = 8.2 rad/s, which are already comparable with the frequencies attainable by the modern

piezoelectric devices [32,33].
The relative location of the optical and acoustical branches of the longitudinal modes’ propagation

in the 1D meta-lattice, depicted in Figure 4, is similar to that shown in Figure 3. However, contrastingly
to the situation addressed in the previous section, the approximate equalityωp � ω1 becomes attainable
under the reasonable choice of the geometrical parameters l and r. Thus, the anti-resonant propagation,
strengthening the effect of the negative mass under ω = ωp = ω1 becomes possible [28,29].

Again, the configurations of the optical and acoustic branches separated and non-separated by
the frequency (energy) gap are possible, as illustrated in Figure 3. It should be emphasized that the
ensembles of metallic wires, shown schematically in Figure 4, will not demonstrate simultaneously
the negative mass (density) and the negative refraction effects [34]. This is due to the fact that the
negative refraction becomes possible below the plasma frequency ωp [34]; contrastingly, the effect of
the negative mass in our model emerges when the frequency ω approaches ωp from above; therefore,
it remains a challenge to create a material that simultaneously presents a negative density and a
negative dielectric constant.

3. Conclusions

We address the propagation of harmonic longitudinal acoustic waves through a 1D lattice,
demonstrating the effect of the negative mass arising from the plasma oscillations of the electron gas
relatively to the atomic lattice. The effect takes place when a metallic particle vibrates with the external

frequency ω approaching the plasma frequency ωp =
√

ne2

meε0
from above. In this case, the effective

mass of the metallic particle me f f = m1 +
m2ω

2
p

ω2
p−ω

2 , where m1 is the mass of the ionic lattice, and m2 is the

mass of the electron gas, becomes negative [12,13,15,18,21].
The plasma oscillations may be phenomenologically represented with the ideal elastic spring

constant k2 = ω2
pm2. In this paper, a one-dimensional lattice built of identical metallic (Li and Au)

elements, with effective mass me f f connected by ideal springs with the elastic constant k1 that allows
electromechanical coupling, is addressed. A model of metamaterials built of Li and Au micro-particles
embedded into polymer and glass matrices, represented by the referred ideal elastic springs with the
constant k1, is also considered. Thus, dispersion relationships are clarified in the case where m1

m2
� 1.

The configurations of the optical and acoustical branches of the longitudinal modes propagating
through the 1D lattice arising from the various ratios ω1

ωp
are explored [26,27]. The relative location and
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configuration of the optical and acoustical branches depend strongly on the ratio ω1
ωp

. The optical and
acoustical branches may be separated by the frequency (energy) gap. We also deal with the possibility

of anti-resonant wave propagation when ω = ωp = ω1 =
√

k1
m1

takes place.
The effects due to the negative effective mass become possible in the nearest vicinity of the

plasma frequencies, namely ωp ∼ 1016rad/s, which is characteristic of a typical metal. The plasma
frequency may be decreased markedly for the low frequency plasmons predicted for the metallic
mesostructures [31], allowing the creation of metamaterials that demonstrate negative effective densities.
This shows that the possible configurations of the optical and acoustic branches are separated and
non-separated by the frequency (energy) gap. Again, the anti-resonant propagation, strengthening
the effect of the negative mass under ω = ωp = ω1 is feasible [28,29]. It should be emphasized that
our paper neglects completely the effects of losses inevitable in plasmas, among which the Landau
damping and radiation losses may affect the derived results [35,36]. We addressed in our paper 1D
plasma oscillations giving rise to the effect of negative mass in metals; however, plasma oscillations are
also observed in 2D systems [37–40], such as graphene, where losses may be relatively small.
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